

Modelling of Advanced Dependencies Between the Start and the End
of Activities in Business Processes

Thomas Bauer a
Hochschule Neu-Ulm, University of Applied Sciences, Wileystr. 1, 89231 Neu-Ulm, Germany

thomas.bauer@hnu.de

Keywords: Business Process, Process Modelling, Build-Time, Flexibility, Control-Flow, Sequence.

Abstract: The control-flow of a business process (BP) defines the allowed execution orders of its activities. Until now,
only whole activities can be used to define such orders. This shall be extended: Additional execution orders
are enabled by allowing to use the start and the end events of activities at control flow modelling. For example,
defining that the end of Act. A must happen before the end of Act. B, increases the flexibility since Act. B
can be started earlier as with a classic sequence edge. This paper presents corresponding examples from prac-
tice and derives the resulting requirements for BP modelling. Furthermore, possibilities for a BP modelling
tool are discussed, to visualize such dependencies graphically.

1 INTRODUCTION

An advantage of process-aware information systems
(PAIS) (Reichert and Weber 2012), compared to tra-
ditional IT systems, is that the process management
system (PMS) guarantees that a business process (BP)
is executed exactly as modelled at build-time (process
reliability). Furthermore, end users are unburdened
from non-productive actions, e.g. searching the right
function of the application or the data required for the
current process step (activity). At PAIS, such actions
are performed automatically. However, these applica-
tions also come with disadvantages: Some users dis-
like their reduced freedom caused by this active pro-
cess control. Furthermore, in exceptional cases, the
restricted execution orders of process activities can
result in situations, where orders are forbidden, which
would be advantageous for the business. One solution
for this problem are dynamic changes that are trig-
gered by a user at run-time of the BP, e.g. inserting a
new activity dynamically (Reichert and Weber 2012).
The project CoPMoF (Controlable Pre-Modeled Fle-
xibility) follows a different approach: Required flex-
ibility is already modelled at build-time (Bauer 2019,
Bauer 2021). This has the advantage that such pre-
dictable and pre-modelled deviations can be checked
and approved during BP design. Therefore, process
reliability can still be guaranteed. In addition, this re-

a https://orcid.org/0000-0001-8360-8430

sults in reduced effort for the end users since all in-
formation, required for the deviation, was already
pre-modelled at build-time.

At (Bauer 2020, Bauer 2021), the idea to pre-
model flexibility was presented and many different
aspects were described shortly as, for instance, op-
tional activities, alternative activities, multi-instance
activities, dynamic jumps (Bauer 2022), or aborting
an activity. In the following, one of these aspects is
examined in detail: Current meta-models for BP con-
sider activities as (atomic) units. The control-flow de-
fines dependencies between such (whole) activities
(e.g. a sequence), that are respected by the BP engine
at run-time. We extend this concept, by allowing to
use the start and the end event of an activity separately
at BP modelling. Then, among other things, new
types of sequence edges become available, e.g. it can
be defined that the start of Act. A must happen before
the start of Act. B. Since this results in additional ex-
ecution orders, that cannot be modelled until now,
this increases flexibility for the end users at BP exe-
cution (in a pre-modelled manner).

Currently, this approach for BP modelling was
hardly respected by meta-models for BP as BPMN or
by scientific literature (Russell and Hofstede 2006),
for details see Section 4. This applies to semantic
modelling of BP (the business view) as well as for its
implementation in a PMS with the goal to control
workflow execution automatically (the technical

view). To reduce this gap, this paper deals with the
following research question: Which scenarios exist,
where dependencies between the start and the end
events of activities shall be modelled, and how should
they be visualized in a BP modelling tool?

This paper presents the corresponding require-
ments and explains their necessity by concrete exam-
ples from practice.1 The work is based on scenarios
that are known by the author because of his long-term
work in industry and research in the area of BP man-
agement, as well as on BP examples from literature.
They were examined in order to figure out, which de-
pendencies exist between the start and the end events
of activities. Herefrom, abstract and generally appli-
cable requirements were derived. With this research
design, of course, completeness of the requirements
cannot be achieved. Instead, the requirements have to
be extended in future. For this purpose, it is not suffi-
cient to search respective building blocks in BP mod-
els that already exist in an organization, since it is not
possible, until now, to use such new (i.e. not sup-
ported) modelling concepts in BP models.

In Section 2, the identified requirements are pre-
sented. Section 3 examines how the corresponding
building blocks can be modelled graphically. In Sec-
tion 4, it is discussed to what extent current tools,
standards, and scientific work cover the presented
topics. The paper closes with a summary and an out-
look on future work.

2 REQUIREMENTS

This section presents scenarios (i.e. requirements)
where the order of activities has to be defined based
on their start and end events. The validity of these re-
quirements is shown by examples from practice.

2.1 Extensions of the Sequence Edge

As already mentioned, we extend the “normal” se-
quence edge between activities: It shall become pos-
sible to model edges arbitrarily from the start or the
end of the preceding Act. A to the start or the end of
the succeeding Act. B. These are similar dependen-
cies as suggested in Allen’s Interval Algebra (Allen
1983) and available for project management at net-
work diagrams (Wysocki 2019). The result are four
possible types of control flow edges (the first is the
classic sequence):

1 The development of a formal execution semantics for

such dependencies and their (prototypical) realization is
out of scope of this paper. This will be part of future work.

1. EndBeforeStart: The end of Act. A must happen
before the start of Act. B
2. EndBeforeEnd: The end of Act. A must happen
before the end of Act. B
3. StartBeforeStart: The start of Act. A must happen
before the start of Act. B
4. StartBeforeEnd: The start of Act. A must happen
before the end of Act. B
Fig. 1a shows how such control flow edges may be
modelled (alternative visualizations are discussed in
Section 3). For each edge type, Fig. 1b defines the al-
lowed execution orders of Act. A and Act. B. Fig. 1c
visualizes this behaviour graphically. The standard
sequence edge (Type 1) comes with the lowest num-
ber of possible execution orders (only one) and, there-
fore, with the lowest flexibility. Type 4 (StartBe-
foreEnd) enables the largest number of execution or-
ders (5 possibilities) of Act. A and B. Compared to a
parallel execution (AND-Split, i.e. all execution or-
ders are allowed) it is only forbidden that Act. B is
completed before Act. A starts (i.e. End(B) before
Start(A) is not allowed). Both, Types 2 and 3 enable
three execution orders.

Figure 1: Types of Sequence Edges between Act. A and B.

The example process depicted in Fig. 2 contains an
edge of type EndBeforeEnd (Type 2) from Act. A to
Act. B: The Act. A (vehicle cleaning: the truck driver
removes rubbish from car cabin, e.g. transport docu-
ments) must be completed before the Act. B (vehicle
transport) is finished. He is not able to clean the vehi-
cle afterwards since he does not possess it anymore.
It is possible, however, that the activities A and B are
performed concurrently, e.g. when the driver cleans
the vehicle during a transportation break.

In the following example, an edge of Type 3
(StartBeforeStart) is required (cf. Fig. 2): The Act. B
(vehicle transport) must start before Act. C (inform
customer about upcoming vehicle handover) can be

started. Otherwise (i.e. when the information is trans-
mitted to the customer earlier), the risk of a misinfor-
mation would be too high because the transport may
be not performed in fact, e.g. since the truck is not
available or broken.

Figure 2: BP with Control Flow Edges of Type 2 and 3.

It shall be possible to model multiple of these edges
between the same activities. If they are combined
with a logical AND-Operation, all their conditions
must be fulfilled, i.e. the possible execution orders re-
sult as the intersection of the orders allowed for the
single edge types. It is not meaningful, however, to
combine edges of the Types 1 or 4 with other types,
since Type 1 only allows one single execution order
(1α in Fig. 1b) and Type 4 allows all execution orders
that are possible at the other types. Therefore, only a
combination of edges with the Types 2 and 3 makes
sense. This results in the allowed execution orders
2α=3α and 2β=3β (cf. Fig. 1). An OR-combination is
meaningful only for these Types 2 and 3 as well. The
allowed execution orders result as the union of both
cases: 2α (=3α), 2β (=3β), 2γ, and 3γ. These combi-
nations may be modelled either as two edges or as one
edge with two types. In addition, it has to be defined,
which kind of combination (AND/OR) shall be used.

It shall be even possible to model a second edge
between two activities, that has the opposite direction.
For instance, assume as extension of the example of
Fig. 2, that Act. C (notify customer) must be finished
before Act. B (transport vehicle) can be completed (in
order to avoid a delayed or forgotten notification).
This requires an additional edge from Act. C to
Act. B of Type 2 (EndBeforeEnd). The result of these
two edges is that Act. B must start before Act. C and
it must end later than Act. C (cf. 3γ in Fig. 1).

2.2 Optional Control Flow Edges

As extension of the Types 1 to 4, it shall be possible
to define that such an edge represents an optional ex-
ecution order (cf. edges to Act. C and D in Fig. 3a).
Their meaning is that this order is desired, but it is not
absolutely necessary. After completion of Act. A, the
Act. B (that shall be executed next in normal cases) is
offered to the users in their worklists. Its optional suc-
cessors Act. C and Act. D are also visible in the work-

lists. However, these worklist entries possess a warn-
ing sign (the triangles in Fig. 3b and c) and a text with
an explanation. Therefore, the end users are able to
detect that these activities shall not be started yet, but
that this is only an option for exceptional cases. That
means, a user has the possibility to decide explicitly,
that he wants to perform one of these activities earlier
than Act. B.

Figure 3: BP with Optional Edges and Resulting Worklists.

The hospital process depicted in Fig. 3a is used to ex-
plain that optional edges are required in practice: Di-
rectly after the diagnosis in Act. A, an electrocardio-
gram (ECG) is made (Act. B) normally, i.e. in regular
cases that match to the standard of this hospital. Af-
terwards, an X-ray (Act. C) and a magnetic resonance
tomography imaging (MRTI, Act. D) are made. For
the case that one of the examination facilities is cur-
rently not available or overburdened, it is possible to
deviate from this standard order: After completion of
Act. A, all remaining activities B, C, and D are of-
fered to users in their worklists. However, as already
mentioned, Act. C and Act. D are marked as not
scheduled for regular execution yet (cf. Fig. 3b and
c). Assume the exceptional case that, after completion
of Act. A for the patient Paul Johnson, the ECG ma-
chine (required for Act. B) is currently not available.
Then, the patient can be sent directly to the X-ray in
order to perform Act. C earlier. Since the worklists of
the employees of the X-Ray department contain this
Act. C (Fig. 3b), they can start it without any difficul-
ties. The Act. B and D are started later on.

For this patient Paul Johnson, it is also possible to
start Act. D before Act. B and C (cf. Fig. 3c), due to
the optional edge from Act. C to Act. D. This also ap-
plies to Adam Hansen. But for the latter patient,

Act. B was already finished. Thus, his worklist entry
of Act. C contains no warning (cf. Fig. 3b) since it
can be started regularly.

At the BP depicted in Fig. 3a, it is possible to per-
form the Act. B, C, and D concurrently. This is hardly
meaningful for an examination process, since a pa-
tient can be in only one examination facility at the
same time. Such an overlapping execution of activi-
ties can be prevented by using an area of mutual ex-
clusion (cf. the next Subsection 2.3).

2.3 Mutual Exclusions

At a mutual exclusion (also named interleaved rout-
ing, critical section (Russell and Hofstede 2006)) the
following applies to all activities of the corresponding
area: Any Act. X, that was already started, must be
finished before any other Act. Y can be started. That
means, at any point in time, only one of these activi-
ties can be executed. Since this concerns the start and
the end events of activities, mutual exclusions match
to the topics presented in this article.

A mutual exclusion is only meaningful in combi-
nation with a parallel execution of activities (cf. the
AND-Split in Fig. 4a, followed by the area of mutual
exclusion visualized as green rectangle) or combined
with the new edge types already presented in this sec-
tion, since otherwise only one activity is executed at
the same time. After completion of Act. A in Fig. 4a,
all startable activities are offered to the end users in
their worklists (Act. B and Act. E). When one of these
activities is started by a user, all other activities are
removed from the worklists. Therefore, only one ac-
tivity can be executed at the same time. After comple-
tion of this activity, the others appear in the user
worklists, again.

The manufacturing process depicted in Fig. 4a is
used to explain the necessity of mutual exclusions: It
is only allowed to execute one of the activities con-
tained in the green rectangle (Act. B, C, and E) at the
same time, i.e. the others are performed completely
before or completely after this activity. In this exam-
ple, first a part is moulded (Act. A), then it is hard-
ened (Act. B), and painted in Act. C. Afterwards, a
bill for this part is created (Act. D). In parallel to Act.
B, C, and D, the part is shown to and controlled by
the customer (Act. E). It is necessary for the execu-
tion of Act. B, C, and E that the part is present. Since
these activities are performed at different locations,
their execution must not overlap (in time). This is
modelled by the area of mutual exclusion, that pre-
vents that one activity is started while another one is
currently running. Therefore, only the execution or-
ders depicted in Fig. 4b and c are allowed.

Figure 4: Mutual Exclusions and Time Dependencies.

Since Act. D is not part of the area of mutual exclu-
sion, it only has the restriction that it must be executed
after Act. C (because of the sequence edge). There-
fore, in Case α, Act. D can be executed in parallel to
Act. E (i.e. at the same time) or earlier than Act. E.

In Case γ, Act. E is executed between Act. B and
Act. C. If this behaviour is undesired, the process
must be modelled differently: Instead of Act. B and
Act. C, the upper branch of the mutual exclusion con-
tains only one Act. BC. This Act. BC is composed of
the elementary Act. B followed by Act. C. Since the
composed Act. BC is part of the mutual exclusion, an
overlapping execution with Act. E is forbidden, i.e.
Act. E cannot be executed between Act. B and
Act. C.

All variants of edges presented in this paper can
be used to connect the activities of a mutual exclu-
sion, e.g. optional edges. The assignment of an activ-
ity to an area of mutual exclusion can be optional it-
self, as well. Assume that this applies to Act. E of
Fig. 4a. Then it can be started while Act. B or C are
currently executed. But, similar to the behaviour of
optional edges, there is a warning in the worklist that
this will result in a not desired overlapping execution.
Even multiple optionally assigned activities of a mu-
tual exclusion can be executed simultaneously. But
the PMS ensures that always only one activity, that is
mandatorily assigned to a mutual exclusion, is exe-
cuted at the same time. Of course, it shall be allowed
that an activity belongs to several areas of mutual ex-
clusion since multiple resources, that can only be used
exclusively, may be required by the same activity.
Each assignment to such an area may be defined as
optional or mandatory.

An explicit building block for mutual exclusions
is necessary in the BP meta-model because it is not

meaningful to realize a mutual exclusion with se-
quence edges and gateways (i.e. Split- and Join-
Nodes). Since several different execution orders are
allowed (cf. Fig. 4b and c), with this workaround, it
would be necessary to model many different execu-
tion orders separately. Furthermore, XOR-Splits must
be used to select the path required at this process in-
stance. The result would be a very confusing process
model that contains redundant activities. But even
worse, the desired behaviour cannot be realized in
fact: The branching condition of a normal XOR-Split
is evaluated before the succeeding activities are in-
serted into the user worklists. Therefore, the activity,
that shall be started next, cannot be determined by an
end user who selects a worklist entry. Instead, this de-
cision is already made at the XOR-Split, i.e. too early.

2.4 Time Dependencies

In some scenarios, it is necessary that minimal and
maximal time intervals are respected at the execution
of activities. Some commercial PMS already allow
defining a maximum time for the execution of a spe-
cific (single) activity. Exceeding this execution time
results in an escalation, e.g. a warning of the actor or
a message to his supervisor (Aalst et al. 2007). This
mechanism is extended by allowing to define minimal
and maximal time intervals between different activi-
ties, as well. The start and the end of such a time in-
terval correspond to the start of the activity execution
(i.e. the selection of the work item in the worklist by
an actor) and its end (i.e. the completion of this activ-
ity). These are the same events that are relevant for
the edge types presented in Section 2.1. Therefore, it
is possible to model time restrictions as labels as-
signed to such edges (cf. Fig. 4). Defining a time in-
terval, however, in some cases, does not require that
also a corresponding control flow (sequence) edge ex-
ists: Assume, as depicted in Fig. 4d, that an Act. A is
modelled in parallel to Act. B (AND-Split) and
Act. B must be started not later than 4 hours after the
end of Act. A to prevent delays. Then, a time edge of
the type EndBeforeStart has to be used. In this sce-
nario, it is allowed to perform Act. B earlier than or
overlapping with Act. A. This is no longer possible if
a control dependency of type EndBeforeStart exists
from Act. A to Act. B, additionally. In Fig. 4e, this
dependency is visualized as a control flow edge, ex-
plicitly. In order to enable also execution orders as
depicted in Fig. 4d, we need “pure” time edges, i.e. a
time edge that does not result in a control flow de-
pendency (of Type 1 to 4, cf. Section 2.1).

The necessity of time edges shall be explained by
examples from practice: At the manufacturing pro-
cess depicted in Fig. 4a, after hardened (Act. B), the
part has to cool for at least 24 hours before it can be
painted (Act. C). The latter activity, therefore, only
appears in the worklists of the end users after these 24
hours have elapsed. This is an example for a time de-
pendency between the end of the preceding Act. B
and the start of the succeeding Act. C, i.e. Type 1
(EndBeforeStart).

As an extension of the example of Fig. 4a, it may
be meaningful to define a maximum time interval
(e.g. max. 72 hours) for this edge. Then, Act. C can
be started between 24 and 72 hours after completion
of Act. B. Therefore, sufficient cooling is still guar-
anteed, but undesired storage costs and delays are pre-
vented.

It can be necessary, in addition, that several edges
with different types are modelled between the same
activities. Some of these edges may only define time
restrictions. At the manufacturing process of Fig. 4a,
it may be defined additionally, that painting (Act. C)
must be completed not later than 80 hours after the
end of Act. B (again: to prevent delays), i.e. an addi-
tional time edge of type EndBeforeEnd is required
with the restriction “max. 80h”.

For time edges, even the Type 4 (StartBeforeEnd)
is meaningful: As mentioned, such an edge only de-
fines a time restriction (i.e. no execution order). The
order may be defined by another edge type, e.g.
Type 1 (EndBeforeStart). This applies to the excerpt
of a development process depicted in Fig. 4f: Both ac-
tivities have to be performed within 4 hours. That
means, from the start of the part design by an engineer
(Act. A) till the completion of the check by his col-
league (Act. B), at most 4 hours must elapse. This
prevents delays, but the engineers have the possibility
to use (i.e. distribute) the whole available processing
time more flexibly than at a process model that de-
fines a maximum time of 2 hours for Act. A and also
2 hours for Act. B (after completion of Act. A).

The process designer defines time intervals at BP
modelling (build-time). The PMS must guarantee
these restrictions at BP execution (run-time). It is not
possible for the PMS to perform the start or comple-
tion of an activity directly, since these actions are ex-
ecuted by end users manually. The following
measures, however, can be used to enforce or support
time restrictions:
 Minimum Times: If a minimal time interval is

defined for the start of a succeeding Act. X (i.e.
StartBeforeStart or EndBeforeStart), the PMS
does not insert the corresponding entry into the
worklists till the defined minimal time is

elapsed. Therefore, the users are not able to
start Act. X too early. A minimal time for the
end of an Act. Y may be enforced by prevent-
ing the completion of Act. Y. For this purpose,
the completion function can be deactivated
(e.g. the “Complete Button” is inactive and vis-
ualized in grey).

 Maximum Times: If the start or the end of an
activity does not occur in time, the PMS per-
forms an escalation. For this purpose, the same
techniques can be used at current PMS when
guaranteeing the execution time of single activ-
ities (e.g. notifications, delegations to different
users, etc.). In order to be able to meet the de-
fined maximum times in fact, the escalation
should be performed in good time before the
deadline elapses (Aalst et al. 2007). At BP
modelling, it shall be possible to define this
“warning time” for each activity individually.

Also time edges can be optional (cf. Section 2.2). In
case of an optional minimal time distance, it is possi-
ble to start or complete the activity too early, but an
appropriate warning is displayed at this worklist entry
(cf. Fig. 3b and c) or the “Complete Button”. When
an optional maximal time dependency is missed, the
escalation message may contain a different text (e.g.
“it is desired – but not absolutely necessary – to start
/ complete the Act. … at least at …”) or a different
type of escalation can be defined at BP design (e.g. a
message to the end user instead to his supervisor).

3 VISUALIZATION CONCEPTS

The fact that an edge is optional or represents a time
dependency is solely a single property of this edge.
Therefore, it is an appropriate graphical visualization
method to place a label next to such an edge and, per-
haps in addition, to use different colours or line styles
(e.g. a dotted or double line, cf. Fig. 3a and 4). There-
fore, in the following, only visualization of the other
types of dependencies are discussed. We present dif-
ferent visualization styles and explain their ad-
vantages and disadvantages. However, a final rating
or even an empiric examination of the suitability of
these styles are out of scope

3.1 Types of Control Flow Edges

The new types of control flow edges (cf. Section 2.1)
may be visualized in a BP modelling tool with one of
the following styles:

1. In Fig. 1 to 4, a label next to the edge (e.g. Start-
BeforeStart) is used to distinguish these types.

This is unambiguous, but the meaning is not
visible graphically. Therefore, a disadvantage
is that the BP designer has to read and under-
stand each label, i.e. the type of the edge cannot
be recognized “at first glance”.

2. An alternative to a label is to use different edge
styles (sidled/dotted/double lines, different col-
ours, or arrowheads) for the different edge
types. This is the same technique as used (ad-
ditionally to a label) in Fig. 3a and 4 for op-
tional and time edges. This visualization style
is place-saving, but the meaning of an edge is
even more difficult to recognize as with
Style 1. This becomes even worse by the fact,
that 4 different edge styles are required for the
4 types of control flow edges.

3. Fig. 5a depicts a special graphical visualization
style for the new types of control flow edges
(i.e. Types 2-4): The start and the end of an
edge concern the start or the end event of an
activity. This is visualized by an edge that starts
and ends at the left or right side of the rectangle
representing the activity. In addition, this
“point of contact” of an activity may be marked
with special symbols: In Fig. 5a, small circles,
that are similar to the start and end events of
BPMN, are used for this purpose. The ad-
vantage is that the type of the edge is easy to
recognize. However, such edges cross the lines
of the activity rectangles. Furthermore, this
style is only appropriate for modelling solely
from left to right. It may be adapted for model-
ling from top to down. But if place shall be
saved by modelling a sequence sidled (i.e. from
left to right and underneath back to left) this
style becomes confusing, since then the points
of contact are on the wrong side. Finally, it may
be effort to realize such edges in a modelling
tool because no straight edges can be used (cf.
Fig. 5a).

4. The styles depicted in Fig. 5b and c distinguish
the edge types by symbols that represent
iconized visualizations of Style 3 (cf. Fig. 5a).
At Fig. 5b, a symbol is attached to each start
and each end point of an edge, that depicts a
“BPMN-like” start or end event and an out-
going or incoming edge. At Fig. 5c, only one
symbol is attached to the edge that depicts the
concerned event types and their connecting
edge. An advantage of these styles is that
straight edges can be used that can be con-
nected with the activity rectangles at arbitrary
points. This results in a neatly arranged process

graph. Again, the edge type is visualized graph-
ically. The BP diagram, however, contains ad-
ditional symbols that consume place. Since the
symbols can be omitted for the most commonly
used Type 1 (EndBeforeStart), this is almost of
no consequence.

Figure 5: Visualizations of new Types of Sequence Edges.

3.2 Mutual Exclusions

As already depicted in Fig. 4a, a mutual exclusion can
be visualized by locating the concerned activities in
an area that is symbolized by a rectangle and may be
coloured additionally. Therefore, these activities are
easy to identify. In the example of Fig. 6a, the mutual
exclusion concerns activities that are not connected.
In such cases, this style may be difficult to realize by
a modelling tool. This becomes even worse if a third
branch is located between the branches depicted in
Fig. 6a, and the activities of this additional branch do
not belong to the area of mutual exclusion (cf. Act. I
to L in Fig. 6b).

The style depicted in Fig. 6b avoids such confus-
ing visualizations and is easy to realize in a modelling
tool, in addition: All activities that belong to the same
area of mutual exclusion are marked with a symbol.
In the example of Fig. 6b, the symbol X (mutual eX-
clusion) is used for this purpose. If multiple areas of
mutual exclusions exist, this symbol can be extended
by a number (e.g. X-1). In the depicted example, the
activities of the same mutual exclusion are filled with
the same colour to simplify their identification. This
style has the advantage that it is easy to realize, even
for not connected activities, multiple areas of mutual
exclusions, and for activities that belong to multiple
of these areas (by attaching multiple symbols and fill-
ing activities with multiple colours, e.g. striped). An
optional assignment of an activity to a mutual exclu-
sion can be visualized easily, as well, e.g. by a label
X-1_optional, perhaps in addition with a different text
style or a brighter filling colour. The disadvantage of
this approach is that the area itself is not directly vis-
ible (e.g. as rectangle).

Figure 6: Graphical Visualizations for Mutual Exclusions.

4 STATE OF THE ART

This section describes the degree of realizability of
the presented concepts in current PMS (e.g. with
workarounds) and relevant scientific literature.

4.1 Standards and IT Systems

Many commercial PMS are based on standardized BP
modelling languages as BPEL and BPMN. IBM Busi-
ness Automation Workflow (IBM 2022), for instance,
uses BPMN diagrams for BP modelling. Thus, such
products offer the building blocks defined by these
standards. With respect to the topics presented in this
paper, BPEL and BPMN offer the same relevant
building blocks. They are very similar to the possibil-
ities offered by semantic BP modelling languages, i.e.
when modelling the business view (e.g. as eEPC in
ARIS).

The sequence edges of all these modelling lan-
guages solely describe the pure sequential execution
of activities (Type 1). Overlapping execution can be
realized with AND-Splits. For the activities of the re-
sulting parallel branches, however, arbitrary execu-
tion orders are allowed. There does exist no building
blocks that enable to define restrictions introduced by
the Types 2 to 4 of Section 2.1. That means, it is not
possible to define, for instance, that (only) the start of
Act. A must happen before the start of Act. B.

Optional edges are not part of the mentioned mod-
elling languages and, therefore, cannot be realized in
commercial PMS that are based on these standards.

BPEL and BPMN do not offer a building block
for mutual exclusions, directly. For instance with
BPMN, as a workaround, this functionality can be
modelled by realizing all allowed execution orders
and using XOR-Splits of the type “Deferred Choice”.
This (advanced) building block, however, is not of-
fered by most commercial PMS (Havey 2009).

Time edges are not part of the standards as well.
At BPMN, however, a maximal time interval can be
realized with an intermediate timer event. An addi-
tional path has to be modelled that is executed in case
of a missed deadline. It consists of the timer event,
followed by an activity that performs the escalation,
e.g. sends a message. It is executed when the event
occurs (i.e. the deadline is missed). With this worka-
round, (only) maximal time intervals can be realized
in a PMS that is based on BPMN. The result, how-
ever, are complex process graphs that may be too con-
fusing for “normal” BP designers.

For the visualization of time dependencies,
BPMN only offers the “clock symbol” of timer
events. Therefore, time edges and the time distances
are not directly visible. Instead, the already men-
tioned complex process graphs result. Since there ex-
ist no building blocks for the other dependencies pre-
sented in Section 2, BPMN does not propose a nota-
tion (i.e. visualization).

4.2 Scientific Literature

The control flow patterns (Russell and Hofstede
2006) describe many building blocks for BP design
and, therefore, enable many different execution or-
ders. These patterns, however, only respect the order
of whole activities, e.g. Act. A must be finished be-
fore Act. B can be started. That means, control flow
edges of Types 2 to 4 are not respected. Optional
edges are not mentioned at all. This work describes
mutual exclusions. However, the corresponding con-
trol flow patterns Critical Section and Interleaved
Routing are presented without a discussion of more
advanced requirements (as introduced in Section 2.3).

(Heinlein 2001) enables to define arbitrary de-
pendencies between the start and the end events of ac-
tivities (even the Types 2 to 4). Mutual exclusions can
be realized as well. The goal of this approach, how-
ever, is not to define dependencies between activities
of the same process instance. Instead, it considers de-
pendencies between activities of different process in-
stances or even process templates (i.e. process types).
Since it is not possible to model such dependencies
within a single process graph, regular expressions and
special interaction graphs are proposed.

Case Handling (Aalst et al. 2005, Hewelt and
Weske 2016) does not use control flow edges to de-
fine the execution order of activities. Instead, an ac-
tivity becomes executable when all required input
data are available. This enables the realization of
edges with Type 3 (StartBeforeStart): For this pur-
pose, the preceding Act. X must write a data object,
required by the succeeding Act. Y, directly when

Act. X starts. This workaround is only meaningful for
scenarios, where such a data-flow exists from Act. X
to Act. Y. Furthermore, at case handling, data-de-
pendencies concern only the start of an activity, i.e.
the Types 2 and 4 (..BeforeEnd) cannot be realized.

CrossFlow (Grefen et al. 2000, Klingemann
2000) proposes optional edges as optional execution
order. Similar as described in Section 2.2, the con-
cerned activities shall be executed in the modelled or-
der. Their parallel execution, however, is allowed in
exceptional cases, as well.

At constraint-based approaches (see (Reichert
and Weber 2012) for an overview), no control flow
graph is modelled at all. Instead, constraints were de-
fined, which restrict the set of possible execution or-
ders. These constraints refer to whole activities, and
not to their start and end events separately. Therefore,
dependencies of the Types 2 to 4 cannot be realized.
Optional constraints allow to realize optional execu-
tion orders. A constraint of the type respondedExist-
ence(A, B) (Reichert and Weber 2012) allows defin-
ing a mutual exclusion for these activities.

The necessity of an explicit building block for
mutual exclusions is explained in (Laue and Kirchner
2017) at examples from practice, without discussing
detailed requirements.

(Lanz et al. 2010) presents time patterns that ena-
ble the definition of minimal and maximal time inter-
vals between activities. They can arbitrarily refer to
the start and the end points of the preceding and suc-
ceeding activities. Therefore, all four edge types of
Section 2.1 are covered. But these time constraints
are not discussed in the context of the other concepts
presented in Section 2.

The graphical visualization of mutual exclusions
in (Russell and Hofstede 2006) is similar to Fig. 4a.
This work, however, does not focus on visualizations.
Instead it explains the meaning of control flow pat-
terns. Constraint-based approaches do not use a pro-
cess graph for BP definition. Therefore, they do not
present suggestions for appropriate visualization. The
interaction graphs of (Heinlein 2001) are not pro-
posed as modelling technique for BP designers, but
are a formal (mathematical) representation of the reg-
ular expressions.

To summarize: We propose edges of the Types 2
to 4 for the modelling of dependencies between activ-
ities of the same BP for the first time. The concepts
presented in Section 2.2 to 2.4 were already men-
tioned in literature, but partially in a different context
(e.g. not for graph-based BP modelling) and not in
combination with the other presented aspects that
concern start and end events of activities. Therefore,
for instance, optional time edges and areas of mutual

exclusion with optionally assigned activities also rep-
resent original work. Current standards for BP mod-
elling and the corresponding commercial PMS do not
offer the presented concepts as well. However, some
of them can be realized with workarounds.

5 SUMMARY AND OUTLOOK

In this paper, we propose new modelling concepts
with the goal to extend the possibilities of current BP
modelling languages. Their necessity is explained by
examples from practice. The new Types 2 to 4 of con-
trol flow edges enable additional execution orders.
Without these (i.e. at classic BP models), the flexibil-
ity of the end users at BP execution is restricted. Op-
tional edges increase this flexibility by enabling addi-
tional execution orders as well. Areas of mutual ex-
clusions and the definition of time intervals prevent
that activities are executed at the wrong points in
time. This enables a more detailed modelling of the
desired behaviour. The control flow edges of Types 2
to 4 are a completely new aspect for BP. For the other
topics, we have presented requirements that were not
mentioned in BP literature before, e.g. optional time
edges, the optional assignment of activities to an area
of mutual exclusion, or to multiple such areas.

This paper is a first step in a new direction. The
identified requirements are based on a limited number
of BP. In order to complete these requirements, addi-
tional BP and application domains have to be ana-
lysed. This may also allow to figure out whether rel-
evant examples exist, where control flow edges of
Type 4 are required.

Additional possibilities for the visualization of the
presented types of dependencies have to be identified
in future (e.g. more comprehensible symbols). Exper-
iments with BP designers can be used to figure out
which visualization is best suited for BP modelling.

A formal execution semantics has to be developed
for the presented building blocks, as well. It is re-
quired by a BP engine to control such processes, e.g.
to identify the activities that can be started. Based on
a (perhaps prototypical) implementation of such an
engine, case studies have to be performed to rate the
usability of the presented concepts for the end users.

REFERENCES

Aalst, W. van der, Rosemann, M., and Dumas, M., 2007.
Deadline-based Escalation in Process-Aware Information
Systems. Decision Support Systems (43(2)), 492–511.

Aalst, W. van der, Weske, M., and Grünbauer, D., 2005.
Case Handling: A New Paradigm for Business Process
Support. Data & Knowledge Engineering, 53 (2), 129–
162.

Allen, J.F., 1983. Maintaining Knowledge about Temporal
Intervals. Communications of the ACM, 26 (11), 832–
843.

Bauer, T., 2019. Pre-modelled Flexibility for Business Pro-
cesses. Proc. 21th Int. Conf. on Enterprise Information
Systems, 547–555.

Bauer, T., 2020. Business Processes with Pre-designed Flex-
ibility for the Control-Flow. Proc. 22nd Int. Conf. on En-
terprise Information Systems, 631–642.

Bauer, T., 2021. Pre-modelled Flexibility for the Control-
Flow of Business Processes: Requirements and Interac-
tion with Users. Enterprise Information Systems, 833–
857.

Bauer, T., 2022. Requirements for Dynamic Jumps at the Ex-
ecution of Business Processes. Proc. 12th Int. Sympo-
sium on Business Modeling and Software Design, 35–53.

Grefen, P., et al., 2000. CrossFlow: Cross-Organizational
Workflow Management in Dynamic Virtual Enterprises.
Computer Systems Science & Engineering, 15 (5), 277–
290.

Havey, M., 2009. Essential Business Process Modeling:
O'Reilly.

Heinlein, C., 2001. Workflow and Process Synchronization
with Interaction Expressions and Graphs. Proc. 17th Int.
Conf. on Data Engineering, 243–252.

Hewelt, M. and Weske, M., 2016. A Hybrid Approach for
Flexible Case Modeling and Execution. Proc. 14th Int.
Conf. on Business Process Management, Business Pro-
cess Management Forum, 38–54.

IBM, 2022. IBM Business Automation Workflow 20.x and
21.x [online]. Available from: https://www.ibm.com/
docs/en/baw/20.x [Accessed 18 Oct 2022].

Klingemann, J., 2000. Controlled Flexibility in Workflow
Management. Proc. Int. Conf. on Advanced Infor-
mation Systems Engineering, Stockholm, 126–141.

Lanz, A., Weber, B., and Reichert, M., 2010. Workflow
Time Patterns for Process-Aware Information Systems.
Proc. Enterprise, Business-Process, and Information,
94–107.

Laue, R. and Kirchner, K., 2017. Using Patterns for Com-
municating About Flexible Processes. Proc. 18th Int.
Conf. on Business Process Modeling, Development and
Support, Essen, 12–19.

Reichert, M. and Weber, B., 2012. Enabling Flexibility in
Process-Aware Information Systems: Challenges,
Methods, Technologies: Springer.

Russell, N. and Hofstede, A. ter, 2006. Workflow Control-
Flow Patterns: A Revised View. BPM Center Report
BPM-06-22.

Wysocki, R.K., 2019. Effective Project Management:
Wiley.

