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Abstract: Eight middle- and high-school Computer Science (CS) teachers in San Diego County were interviewed about 
the major challenges their students commonly encounter in learning computer programming. We identified 
strategic design opportunities -- that is, challenges and needs that can be addressed in innovative ways through 
the affordances of Augmented and Virtual Reality (AR/VR). Thematic Analysis of the interviews yielded six 
thematic clusters: Tools for Learning, Visualization and Representation, Pedagogical Approaches, Classroom 
Culture, Motivation, and Community Connections. Within the theme of visualization, focal clusters centered 
on visualizing problem spaces and using metaphors to explain computational concepts, indicating that an 
AR/VR coding system could help users to represent computational problems by allowing them to build from 
existing embodied experiences and knowledge. Additionally, codes clustered within the theme of learning 
tools reflected educators’ preference for web-based IDEs, which involve minimal start-up costs, as well as 
concern over the degree of transfer in learning between block- and text-based interfaces. Finally, themes 
related to motivation, community, and pedagogical practices indicated that the design of an AR coding 
platform should support collaboration, self-expression, and autonomy in learning. It should also foster self-
efficacy and learners’ ability to address lived experience and real-world problems through computational 
means. 

1 INTRODUCTION 

The increasing sophistication and availability of 
Augmented Reality (AR) devices wield the potential 
to transform how we teach and learn computational 
concepts and coding. Instead of interfacing with 
keyboards, mice, and monitors while seated at a 
workstation, learners could engage with holographic 
representations of their code and the output of their 
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code -- both of which are projected into their physical 
environment. Instead of clicking arbitrary buttons and 
toggles, users could invoke intuitive gestures and 
other body movements to combine, execute, and 
debug elements of code.  In place of segmenting code 
through line breaks or indentations, learners could 
assign distinct sub-processes different shapes, sizes, 
and locations in space -- and even enclose some 
elements within others.  



As these examples illustrate, a potential key 
advantage of coding in 3D physical space is the 
opportunity that it affords learners to leverage their 
existing sensorimotor experiences. This concept 
hearkens to Papert’s notion of body syntonic 
reasoning (Papert, 1980), whereby young learners 
rely on their own sensorimotor experiences to make 
sense of LOGO programming tools. It is also 
consistent with more recent work; for instance, Fadjo 
(Fadjo, 2012) explored the pedagogical impact of 
physically embodying aspects of Scratch scripts on 
middle school students’ own Scratch artifact 
construction. As an extension of this idea, a number 
of tangible programming environments allow users to 
implement and debug commands or programs by 
acting out commands through physical body 
movements (Berland, Martin, Benton, Petrick Smith, 
& Davis, 2013; Berland, 2016; Raffle, Parkes, & 
Ishii, 2004).  

At the core of much of this research is the idea that 
abstract computational concepts, such as data, 
operators, and loops, are grounded in embodied 
representations. For instance, when computer science 
(CS) students describe algorithms, conditionals, and 
other computational structures, they frequently 
gesture in ways that suggest they are conceptualizing 
interactions with objects (Manches, McKenna, 
Rajendran, & Robertson, 2019).  Further, it has been 
suggested that stimulating embodied mappings 
between sensorimotor experience and computational 
concepts can benefit CS learning.  When students 
physically modelled or “acted out” prewritten code 
structures, it was found that they tended to produce 
code that is longer and more mathematically complex 
(Black, Segal, & Vitale, 2012). 

Theories of embodied cognition were originally 
advanced in repudiation of the view that the human 
mind can be described in terms of computational 
operations exacted upon amodal representations 
(Barsalou, 2008). As an alternative, embodied 
perspectives emphasize the tight coupling between 
our capacities for perception and action, on the one 
hand, and higher-order conceptual processing, on the 
other.  Our ability to understand and reason about 
abstract concepts such as time, for instance, is 
grounded in our experience of space (Núñez & 
Sweetser, 2006).  Our ability to comprehend words 
and language, which are largely abstract, symbolic 
representations, is mediated by our perceptual 
experiences of speakers’ meanings (Glenberg, 
Webster, Mouilso, Havas, & Lindeman, 2009). 
Over two decades of empirical evidence support 
theories of embodied cognition, ranging from 
evidence of mental simulations during language 

comprehension (Barsalou, 2009; Wu & Coulson, 
2007; Zwaan, Stanfield, & Yaxley, 2002), to 
sensorimotor cortical activations accompanying 
literal and figurative meanings of words such as kick 
(Hauk, Johnsrude, & Pulvermüller, 2004) or grasp 
(Boulenger, Hauk, & Pulvermüller, 2009), to 
evidence of mirror-based empathy (Gallese, 2001) 
and action comprehension systems (Gallese, Fadiga, 
Fogassi, & Rizzolatti, 1996; G Rizzolatti, Fadiga, 
Gallese, & Fogassi, 1996; Giacomo Rizzolatti & 
Craighero, 2004). In education, the notion of 
embodiment as a force that can drive learning has 
gained traction as well – perhaps due to the inherent 
congruence of this idea with constructivist theories of 
learning, all of which include active components of 
learning -- or learning by doing -- as central tenets. In 
embodiment theory, knowledge structures are 
proposed to be acquired and retained more efficiently 
when they involve related sensorimotor input 
(Lindgren & Johnson-Glenberg, 2013). This principle 
has been illustrated both in simple practices, such as 
hand gestures to scaffold understanding of 
mathematical equations (Goldin-Meadow, Cook, & 
Mitchell, 2009), as well as immersive, mixed-reality 
environments that allow users to predict with their 
own body movements the trajectory of asteroids 
affected by planetary gravitational fields (Lindgren, 
Tscholl, Wang, & Johnson, 2016). Pedagogical tools 
and methods harnessing full-body interaction and 
other aspects of embodied learning have been 
explored in a wide range of STEM domains, 
including quantitative reasoning (Davidsen & 
Ryberg, 2017) and math (Abrahamson & Sánchez-
García, 2016; Alibali & Nathan, 2012; Goldin-
Meadow et al., 2009), as well as physics (Johnson-
Glenberg, Megowan-Romanowicz, Birchfield, & 
Savio-Ramos, 2016; Johnson-Glenberg & Megowan-
Romanowicz, 2017; Yoon, Elinich, Wang, 
Steinmeier, & Tucker, 2012), chemistry (Johnson-
Glenberg, Birchfield, Tolentino, & Koziupa, 2014), 
and astronomy (Lindgren et al., 2016).     

It has been proposed that syntonic mappings 
between CS concepts on the one hand, and our 
mental, sensory, and kinesthetic experiences, on the 
other, can make learning CS easier (Watt, 1998).  In 
the view espoused by Watt, programming languages 
are learned more readily in cases where the structure 
of the language exhibits syntonicity, or resonance, 
with people’s existing bodily knowledge and mental 
models.  For instance, in the case of Papert’s Logo 
turtles, children are able to take on the perspective of 
the turtle and act out procedures that it should 
undertake in order to accomplish a task (e.g. drawing 
a circle).  Likewise, adults tend to impute 



psychological characteristics to different 
programming elements, such as the operating system, 
the compiler, and so forth, and tend to reason about 
them as they would another human being. 
 In the present study, how to foster syntonic mappings 
through an AR/VR platform – and which mappings 
are the most important and the best fit – is an open 
design question. Through structured interviews with 
secondary school CS educators in San Diego County, 
the authors aimed to understand common challenges 
and pivotal needs faced by students learning to code.  
Are there specific coding environments, syntaxes, 
computational structures, or classroom activities that 
tend to be embraced – or conversely, that tend to elicit 
frustration or lead to learner disengagement?  The 
interviews were also structured to probe methods for 
fostering syntonicity already in use in the classroom. 

2 STUDY DESIGN 

2.1 Subjects 

Eight CS educators from the San Diego region in 
California were interviewed for the study: five 
secondary school teachers, two informal CS 
educators, and one post-secondary educator. The five 
teachers were all instructing either middle- or high-
school CS courses at the time of the interview; two at 
low-SES public schools serving large numbers of 
under-represented students, and three at higher-SES, 
highly resourced private schools. The informal CS 
educators either taught after-school workshops or 
otherwise supported CS teaching outside of the 
classroom for ages ranging from elementary through 
high school. The post-secondary educator has taught 
at both the community college and university levels. 
All participants gave informed consent. 

2.2 Interview Questions and Thematic 
Analysis 

Participants were asked a series of open-ended 
questions in semi-structured interviews. Teachers 
were asked the same set of questions (see Appendix) 
but were allowed to speak at length and move to 
topics they found important, giving unprompted 
evaluations of tools, platforms, concepts that 
challenge students, and more. Interviewers asked 
follow-up questions pertinent to individual teacher 
responses to each question. The average interview 
length was 1 hour (range: 41 to 107 min). Interviews 
included questions about specific challenges that 
learners encounter (e.g. “What do your students 

struggle with when learning to code?”), classroom 
activities (e.g. What tasks are students solving?) and 
perspectives on the current state of CS education (e.g. 
Where do you see opportunities for improvements in 
programming education?); a complete list of 
questions can be found in Appendix A.   

Participants’ thoughts and opinions were turned 
into single sentence nodes (324 total) that were then 
independently coded into themes by four researchers 
with diverse expertise (CS Education, Cognitive 
Neuroscience, Data Science, and Human-Computer 
Interaction). The nodes were created by first 
manually extracting quotes from the recorded 
interviews.  Any time the participant expressed an 
opinion, made an observation, or described an 
activity/scenario, a quote was pulled. Each quote was 
then paraphrased and separated into independent 
thoughts (e.g. ‘Scratch and Blockly are both great 
programs’ became ‘Participant remarks that Scratch 
is a great program’ and ‘Participant remarks that 
Blockly is a great program’). A single individual 
paraphrased the quotes to help mitigate language 
biasing. 

The four researchers were then given the 
paraphrased nodes and each individually grouped the 
nodes into themes. They then met to talk about their 
themes and resolve discrepancies; ambiguities or 
disagreements emerging from the integration of 
coding schemes were resolved through discussion. 
Once final themes were identified, the group also 
discussed them to determine if higher-level themes 
might be uncovered as well. Ultimately, researcher 
discussions identified the 47 themes of 245 labels 
collectively applied to single sentence nodes, as well 
as the six higher-level themes. Each theme, as well as 
its subcomponents, will be elaborated in the Results 
section. 

3 RESULTS 

Thematic Analysis revealed six primary themes 
labelled as: Tools for Learning, Visualization and 
Representation, Pedagogical Approaches, Classroom 
Culture, Motivation, and Community Connections 
(Table 1). Each theme contains sub-components, as 
detailed in the Table. Notably, these themes cover a 
continuum that extends from person-level aspects of 
computational concept learning to increasingly 
broader social connections and motivations important 
for CS education. As will be detailed in the following 
sections, our analysis revealed that learning and 
teaching core elements of CS, such as syntax and 
debugging, are fundamentally influenced not just by 



the attributes and knowledge existing within the 
individual who is learning, but also by dynamics 
within and across groups of learners – and more even 
broadly, by dynamics within classrooms and within 
the learners' families and greater communities. 

Table 1: Themes and higher-order themes obtained from 
thematic analysis of CS educators’ interviews. 

Tools for Learning 

● Web IDEs with minimal 
startup cost 

● Hardware frustrations  
● Forums and 

communities  

● Interoperability between 
block and text code 

● Languages and platforms 
● Online courses 

Visualization and Representation 

● Enacting metaphors for 
computational concepts 

● Verbal metaphors for 
computational concepts 

● Visualizing in 3D or 2D 

● Visualizing concepts and 
problems (flow charts, 
memory diagrams) 

● Manipulatives (e.g. deck 
of cards, plastic bags) 

Pedagogical Approaches 

● Project-based learning 
● Focus on problem 

solving 
● Teach syntax and 

structure 
● Storytelling 
● Active learning 
● Scaffolding for success 
● Fostering design 

thinking and planning 
skills 

● Modifying skeleton code 
● Pair programming 
● Peer and group feedback 
● Facilitating, guiding, and 

modelling instead of 
instructing 

● Culturally responsive CS 
● Just in time learning 

Classroom Culture 

● Making thinking visible 
(metacognitive 
awareness) 

● Embracing mistakes and 
accepting uncertainty 

● Flexible classroom 
organization 

● Collaboration 
● Identifying and 

responding to obstacles 
● Learning community 
● Fostering reflection 

Motivation 

● Making meaning 
● Authenticity 
● Self-expression 
● Fostering self-efficacy 
● Student-centered 

approach 
● Success motivates 

learners 

● Autonomy and self-
directed learning 

● Patience and 
perseverance 

● Creativity 
● Frustration and 

impatience 
● Fear of failure 

Community Connections 

● Bridging disciplines 
● Diversity in learners 
● Access to CS Education 

● Showcasing work 
● Addressing lived 

experiences 

 

3.1 Tools for Learning 

In all interviews, participants talked about the tools 
they used in teaching CS to their students and in 
encouraging their students to learn about CS concepts 
and apply these concepts to creating successful 
computer programs. All respondents expressed 
enthusiasm for streamlined instructional tools and 
online resources on the one hand, and concern over 
their educational value on the other. For instance, 
many participants expressed favorable opinions of 
web-based integrated development environments 
(IDEs) – which can be accessed through web 
browsers and support remote software development 
using low-capacity local devices.  Web IDEs were 
described as easy to set up and could be configured 
and managed by the instructor. Other participants 
expressed frustration with non-web-based IDEs, 
particularly those for physical computing, where 
seemingly random glitches would cause immense 
discouragement among students. On the other hand, 
one teacher spoke critically of web-based IDEs for 
reducing student comprehension of how libraries are 
imported.  

Many of these web-based IDEs use graphical 
metaphors to augment coding. Interview participants 
praised Scratch and other block-based programming 
languages for their ability to help students focus on 
algorithms instead of syntax. However, many 
teachers also described resistance to block-based 
languages in older high school students, who perceive 
the tools as unprofessional or childish. Participant 1 
(P1) further noted that as programs become more 
complex, block-based coding becomes “unwieldy,” 
particularly when it comes to understanding calls 
between collapsed code blocks. At least two 
participants observed that knowledge obtained 
through block-based coding did not readily transfer to 
text-based coding systems. P8 speculates that this, 
“might be due to the fact that… JavaScript and Java 
are very similar… Whereas [block-based coding] just 
doesn’t map well to Java – even though on the 
backend it is compiling to Java.” P8 goes on to 
describe how they believe this problem might be 
mitigated by providing students with a visual 
demonstration of how blocks relate to textual code – 
an idea that was echoed by several of the other 
participants. 

Finally, several interview participants relied on 
online resources (e.g. Code.org) or courses (e.g. Code 
Academy) to cover basic syntax and other concepts. 
They also encouraged students to exploit online 
forums such as Stack Overflow in order to increase 
their own self-efficacy. However, some educators 



expressed concern about the effectiveness of these 
tools. For instance, P3 specifically called out the 
“knowledge checks” that appear in many online 
courses for falling short of checking for 
comprehension and only checking for simple 
recollection. 

3.2 Visualization and Representation 

A recurrent theme in the interviews was the 
importance of visualizing problems and concepts or 
finding other effective means of representing them. 
Participants spoke at length on different strategies for 
making coding concepts more understandable.  At 
least four individuals used physical and collaborative 
(embodied) exercises to help students understand 
core CS concepts like function calls and parameter 
passing, sorting algorithms, procedural instructions 
and precision of language. For instance, one high 
school instructor organized students into groups and 
used sticky notes passed between groups and 
individuals to represent the passing of values to 
variables. She described how this activity evolved 
over time in her classroom, stating that she, “used to 
just draw diagrams, but think[s] having that 
physicality helps [students]... understand and form 
mental models.” Participants used this activity to 
represent more complex concepts as well, using 
reciprocal movements to represent dependency or 
even high-level Transfer Control Protocol: “Certain 
students act as the routers and the other ones are… the 
packets… When network congestion happens, 
they’re stressed out.” 

Props were also used, such as plastic bags 
representing variables and sticky notes placed inside 
the plastic bags representing different values – or a 
deck of cards used to demonstrate a sorting algorithm. 
In a different classroom, paper airplanes were thrown 
between students, who represented functions, in order 
to demonstrate the passing of information between 
functions. Notably, props were often crucial 
components to the teaching strategy: P4 went so far 
as to say that, “Teaching sorting and searching 
algorithms without cards is basically impossible.”  In 
addition to props, educators also recalled 
incorporating metaphors in their lectures. For 
instance, analogies were drawn between nested 
statements and Google maps or grading curves. 
Likewise, the hierarchical structure of HTML pages 
was likened to Russian nesting dolls.   

With respect to planning and debugging, 
educators also encouraged students to use 
storyboards, diagrams, drawings, props, and roleplay.  
Many respondents found role-playing and 

diagramming useful strategies for students to adopt – 
possibly because they helped novice coders 
intuitively break a problem or a project into 
subcomponents. Students might imagine themselves 
as a robot, for instance, and attempt to navigate a 
room only using their sense of touch. In lessons that 
involved programming mobile robots, analysis of the 
robots’ behavior in 3D, physical space proved 
helpful. Respondents also encouraged students to 
problem solve by creating flow charts, memory 
diagrams, and other types of drawings in order to 
represent various states of their systems. P7 placed 
easels with sticky notes in different locations of the 
classroom and encouraged students to create “life-
size” flow charts, so to speak, anchored in physical 
space. 

3.3 Pedagogical Approaches and 
Classroom Culture 

The bulk of most interviews centered on participants’ 
discussion of teaching practices and methods that 
they felt were effective.  A consistent pattern that 
emerged was educators’ emphasis on problem-
solving and planning as core abilities for novice 
coders to strengthen. This prioritization of design 
thinking and problem-solving skills was reflected 
across participants both in their embrace of certain 
established pedagogical methods and philosophies 
(e.g. project-based learning, active learning, iterative 
design, pair programming) and in their high valuation 
of opportunities for students to reflect, develop 
metacognitive awareness of their own thinking, and 
to give and receive peer feedback on work. A specific 
example: P4 believes that given a problem, students 
need to, “figure out how to solve the problem without 
even thinking about coding first, and then translate 
it.”   

In keeping with this prioritization of problem 
solving and planning, respondents tended to view 
their own role in the classroom as one of facilitating 
rather than instructing. At least two individuals 
described a preference for “storytelling” rather than 
lecturing.  One of the high school teachers related 
how she works on her own project alongside students.  
Three of the participants described sharing a student’s 
code with the whole class in order to elicit feedback 
when someone is stuck or prompting students to share 
their reflections on problems or lessons learned. 

Additionally, multiple respondents described 
measures to create a culture of embracing mistakes 
and uncertainty rather than becoming frustrated. P6 
succinctly states: “50% of this class is learning to be 
okay with being uncomfortable and not knowing the 



answer.” Respondents also recognized the 
importance of scaffolding for beginners in order to 
ensure success.  P5 notes, "Having some successes 
early on is really important... not just something 
dumb, but a valuable experience is really helpful.”  
Further, they also valued tactics such as just-in-time 
instruction to mitigate unnecessary frustration. P1 
states, "If it takes me 5 minutes to come over and 
figure out what is going on - it only takes a few of 
those times [before the students give up on coding].”  

As a corollary to the motif of facilitating rather 
than instructing, the corpus of interviews also 
revealed a prevalent pattern across educators of 
actively fostering collaboration between students. All 
respondents implemented classroom activities 
designed to stimulate collaboration and 
communication -- from group projects to working in 
pairs on assignments to peer reviews of code and peer 
teaching. Two respondents described approaches to 
organizing the physical components of the classroom 
(e.g. desks, chairs) to support collaboration. Three of 
the respondents explicitly described strengthening 
teamwork and communication skills as important 
achievements in themselves that are orthogonal to 
other aspects of class performance. Two respondents 
described strategies for cultivating learning 
communities within and beyond a classroom. For 
instance, through a buddy system, older students 
might be paired with younger ones in order to develop 
excitement for CS in younger age groups.  Or during 
a lesson, students who had finished a step in an 
assignment would be asked to mark their name on a 
board so that other students would know whom to ask 
for help.   A different teacher from a low SES serving 
secondary school described his use of an online forum 
where students succeeding in class could help the 
students that are struggling and asking questions.   
Whereas respondents’ perspectives on problem-
solving, collaboration, and educators’ roles in the 
classroom were clear and consistent, conflicting 
opinions were voiced on approaches to teaching 
syntax. On the one hand, some educators felt that 
classic syntax should serve as the framework for 
organizing an introductory course. Some responses 
described regular reliance on skeleton code as a basis 
from which students could develop their own 
computer programs. On the other hand, however, 
some respondents favored approaches that promote 
creativity and design thinking over a syntax-heavy 
curriculum. One of the private school teachers 
elegantly summarized this perspective in the 
following:  
 

"I think that we overestimate the necessity of… 
learning the basics before moving on to other things... 
and that giving kids more freedom and latitude to try 
new things and jump into things they're not totally 
prepared to do is, I think, a really productive process. 
If the basics are so important then they'll find them 
and learn them during that project.”  
 
In line with their statement, this instructor tended to 
rely on web-based tutorials in order to quickly cover 
basic syntax so that students could devote more time 
to projects. 

3.4 Motivation and Community 
Connections 

Methods for attracting interest and sustaining 
engagement also received robust attention from all of 
the interviewees, along with ways to build bridges 
from the classroom to other communities. Analysis of 
their responses revealed that student motivation was 
closely tied to sub-themes of pedagogical approaches 
and classroom culture. Perhaps because respondents 
recognized the intrinsic motivational value of 
creating a successful computer program, their 
interviews reflected the intent to foster self-efficacy 
through diverse means, including opportunities for 
autonomy and self-directed learning. P5, P6, and P7, 
for instance, either shape their project assignments 
around the students, or allow the students to “bend the 
rules” for the sake of increasing engagement. 
Conversely, they also recognized factors that 
discouraged and detracted from student motivation 
such as the “fear of failure”, frustration, and 
impatience. Some participants sought to mitigate this 
by fostering a classroom culture that supports both 
collaboration and learning from, rather than 
penalizing mistakes. Participants often described the 
importance of minimizing obstacles to promote this 
culture, often referencing unpredictable hardware 
problems as a major obstacle to success. 
The second cluster of recurrent thematic elements 
involved topics related to student-centered teaching 
methodologies. One respondent expressed a desire 
for more "culturally responsive teachers" for students 
from demographics that tend towards non-
engineering fields in order to ensure a diversity of 
learners in CS. Other participants reflected on the 
importance of encouraging self-expression and 
creativity and providing opportunities to create 
meaningful final products in order to sustain learner 
engagement. 

Finally, the majority of respondents recognized 
that a third key factor driving motivation is 



authenticity and connections to a broader community. 
Seven of the eight participants strongly advocated for 
expanding the scope of CS teaching to focus on ‘real 
world’ tools for solving ‘real world’ problems and 
pushing students to make an impact on a community. 
Two assigned projects that required students to 
grapple with problems faced by a specific 
community. Others described simple strategies such 
as helping students publish their apps to app stores or 
encouraging students to program robots in useful 
ways (e.g. to help with household chores or serve as 
a musical instrument). Another individual praised 
programs such as Technovation Challenge and 
Oncoscape as resources that can cultivate empathy in 
young programmers and help them to relate their 
coding practices to authentic problems. Importantly, 
some respondents noticed a positive correlation 
between student engagement and the applicability 
and real-world relevance of an assignment – 
particularly assignments that involved replicating 
popular phone apps or other familiar interfaces.  

In keeping with this idea of building bridges and 
community connections through CS, three educators 
expressed a desire for the human side of coding to be 
more foregrounded in CS education. P5 raises the 
desire to, “feel more like a whole human being” in a 
coding environment and responds to this by having 
students draw on personal experience for inspiration 
to, “get [students] to connect with their bodies.” 
Further, at least half of the respondents voiced interest 
in "hybridization across [academic] subjects” – that 
is, uniting elements from diverse disciplines through 
the coding process. Respondents used lessons that 
incorporated music, art, dance, foreign languages, AI, 
robotics, and medicine with coding. 

4 DISCUSSION 

Here, CS educator interviews were analyzed to better 
understand the underlying factors impacting 
secondary-level CS education, as well as the 
challenges teachers and students face as they engage 
in CS education. Developing such an understanding 
is important, in that it will allow for a better 
understanding of whether and how AR and VR 
technologies can be leveraged to support 
computational concept learning at the secondary 
school level. This study highlights that for young 
novice coders, learning to code is not a purely 
cognitive process -- it is governed by sensorimotor, 
social and emotional dynamics as well. Just as lessons 
on loops and the choice of a visual versus text-based 
programming environment bear significant weight on 

learning outcomes, so do opportunities for 
collaboration and community membership, self-
expression and autonomy, and linking lived 
experience to computing and the outcomes of 
computing. Further, successful coding is more than 
implementing proper syntax -- it involves planning, 
problem-solving, creativity, effective 
communication, and the ability to work in teams.   

Intriguingly, a seemingly conflicted relationship 
was noted within educators’ attitudes towards 
projects versus learning tools. On one hand, our 
participants highly valued projects and assignments 
that promoted authorship, agency, and authenticity – 
seeking to enable students in their own endeavors at 
the cost of having a controlled project outcome. On 
the other hand, participants valued platforms and 
IDEs with low variability and instant feedback – 
prioritizing control over freedom and extensibility.  
How can 3D embodied coding address these diverse, 
and sometimes conflicting, needs? We propose that 
this type of coding environment can make 
computational concepts easier to learn through 
syntonic mappings to sensorimotor experience.  It can 
provide opportunities for robust collaboration that 
can facilitate learning with peers.  Finally, it can offer 
a possibility of structuring 3D space in ways that 
support design and debugging processes.  Through 
these features, it is proposed that learners will be able 
to achieve higher levels of self-efficacy more quickly 
and will be ready sooner to enjoy “freedom and 
latitude to try new things” -- to quote one of the 
respondents.   In other words, they will be more likely 
to achieve a level of mastery that allows them to 
engage in self-expression and make connections 
between computing and other domains of life and 
academics. 

4.1 Collaboration and Problem Solving 

Pair programming is a widely used method geared 
around the affordances of traditional workstations 
supporting 2D coding on screens. It involves dyadic 
collaboration in which a driver types lines of code, 
and a navigator offers guidance and checks the 
driver’s work. This approach has been shown to 
benefit skill acquisition in K-12 settings (Denner, 
Werner, Campe, & Ortiz, 2014; L. Werner & 
Denning, 2009) and was commended by some of the 
interview participants. It has been praised for aligning 
with social motivations of some learners who might 
otherwise be disinterested in CS due to a competitive 
masculine culture and negative stereotypes (e.g. 
geeks) associated with the field (L. Werner & 
Denning, 2009). It also helps students to learn from 



their own and their peers’ mistakes.  Some evidence 
exists that females benefit from pair programming 
more than males (L. L. Werner, Hanks, & McDowell, 
2004). 

Despite these positive results, pair programming 
methods should be employed carefully. In a study of 
middle school learners working with LOGO, cases of 
inequity were found to emerge when one team 
member dominated in task-related decision-making. 
Additionally, some students expressed a preference 
for solo work because they found the frequent 
switching of roles and obligation to explain their 
choices cumbersome (Lewis & Shah, 2015). A 
separate study demonstrates that confident 
programmers tend to dislike working in pairs. An 
AR/VR spatial coding platform could address 
problems such as these by supporting more 
naturalistic forms of collaboration. Because AR/VR 
technologies involve an unbounded virtual space, 
teamwork could be accomplished by larger groups 
than dyads (teams aren’t huddled around the 
computer screen). The common set of manipulable 
objects allows team members to negotiate and revise 
their own roles and problem-solving strategies to suit 
emerging contingencies of their situation. Students 
might experience an increased fluidity in team 
dynamics, where roles shift as the need arises, 
allowing students to work together as a unit or 
subdivide into asynchronous units working in 
parallel. All three of these approaches may benefit 
learning in different individuals (Maguire, Maguire, 
& Hyland, 2014). An ideal platform design would 
include the capability for different users to easily 
view, manipulate, and merge each other’s code. It 
would also include mechanisms for exporting content 
into forms that can be shared outside of the AR/VR 
environment -- for the purposes of class discussion or 
peer feedback, for instance. 

A second important concept to consider when 
building an AR/VR coding platform centers on 
problem-solving and planning. Due to the inherent 
grounding of their affordances in the 3D spatio-
temporal world, AR and VR naturally support many 
of the forms of role play, work with props, and 
metaphorical mappings to physical objects that 
educators in this study described using in their 
classrooms. Students might model system states and 
dependencies through body movement rather than 
mental abstraction -- making coding real by walking 
or gesturing between different locations to ascribe 
intent. This idea also ties into roleplaying, where 
seeing is believing. Interacting with holograms 
(rather than the imagination) provides an important 
reference and grounding for understanding. Further, 

the ability to situate digital storyboards, pseudocode, 
notes, program elements, etc. in space (e.g., attaching 
them to an obstacle that a robot has to avoid) provides 
valuable context and structure to complex and 
interwoven problems -- enabling kinesthetic learners 
and allowing students to tap into their spatial 
intelligence.  

Coding in AR/VR might benefit creative ideation 
as well. A number of studies have demonstrated a 
positive relationship between everyday physical 
activity and performance on tests of creativity 
(Oppezzo & Schwartz, 2014; Rominger, Fink, 
Weber, Papousek, & Schwerdtfeger, 2020). For 
instance, people produced higher quality analogies or 
novel uses for common objects while or just after 
walking relative to seated controls (Oppezzo & 
Schwartz, 2014). Related studies have demonstrated 
enhanced creativity during or just after free and fluid 
movement versus movement along more structured 
paths (Kuo & Yeh, 2016; Leung et al., 2012; Main, 
Aghakhani, Labroo, & Greidanus, 2018; Scibinetti, 
Tocci, & Pesce, 2011; Slepian & Ambady, 2012).    In 
other words, simply walking or getting basic exercise 
-- can bolster creativity and may benefit learning. 
Moreover, it appears that some forms of fluid 
movement may benefit creativity even more than 
other body movements. 

3D spatial interfaces can support these and other 
physical activities in a far more seamless manner than 
the traditional workstation. Rather than restricting 
programmers to text-intensive development and 
limiting interaction to the keyboard, mouse, and 
monitor, spatial representations engage a range of 
bodily gestures (e.g., pinching, swiping, twisting) and 
activities (e.g., standing, walking, crouching) to 
enable assembly, modification, and interaction with 
code structures as physical forms. It is possible that 
the opportunities for greater ranges and quantities of 
body movements afforded by 3D spatial coding can 
support greater gains in creative approaches to 
problem-solving and design challenges. 

4.2 Embodied Mappings for 
Computational Concept Learning 

Educators commonly relied on physical movements 
and objects to make computational abstractions easier 
to understand. These findings extend those found by 
Manches et al (2019), who demonstrated that 
elements of code are routinely conceptualized as 
containers by university students in CS classes. These 
kinds of metaphors can become the signifiers woven 
into a spatial platform that visualizes variables as 
vessels or open boxes. Assigning a value could 



involve placing the value inside the vessel. Similarly, 
the same study also showed how computational 
processes tended to be described in speech and 
gestures as motion along a path. This finding suggests 
that an ideal gesture or controller-based action for 
executing a command or script would involve a broad 
sweep of the arm that traces the trajectory of a path.  

Another embodied mapping that may benefit 
learners is the temporal association of events and 
causality. When two events are experienced in close 
succession on a regular basis (e.g., a gust of wind and 
a door slamming shut), it is often inferred that the first 
caused the second. Likewise, during 3d spatial 
programming, the execution of sequential commands 
could be visualized in real-time together with the 
rendered effects of code outputs. Through this, the 
user could understand the relationship between each 
segment of code under evaluation and the resulting 
effect of that code on his/her creative coding 
experiment. During program run-time, users could 
pause program execution with hand gestures or their 
controller and use the interface to examine run-time 
variables, program state, alter code, and resume 
execution.  Granted, these types of features are 
already available in existing debugging tools.  
However, it is proposed that for learners, temporal 
associations between the body movements that they 
produce to execute a specific segment of code and the 
ensuing output are likely more salient – and hence 
important for learning – than temporal associations 
available in 2D displays wherein progressive lines of 
code under execution may simply be visually 
accentuated through highlighting.   

Finally, a fourth possible embodied metaphor 
centers on the mapping between physical and 
conceptual distance. In common experience, objects 
that are physically connected tend to be encountered 
in close proximity, while objects that are not 
connected can be spaced far from one another. As a 
metaphorical extension, distinct computational 
concepts, such as input and output, could be 
visualized in distal spatial locations. For instance, 
input to a function could be represented on the left 
side of the code segments that constitute the function, 
and output, on the right side, with pipeline connectors 
between them, as is possible in flow and node-based 
coding platforms. In this way, the cognitive burden of 
representing the architecture and operation of a 
function – which are often highly abstract in many 
programming platforms – can be offloaded through 
metaphorical mappings to a fully visible framework 
grounded in aspects of common experience, such as 
the flow of substance through pipes. Moreover, as 
users physically orient towards or move between the 

different spatial locations where input and output are 
represented, they will themselves physically enact 
this metaphor. 

5 CONCLUSIONS 

This work has revealed the importance of cultivating 
problem-solving and planning skills in novice coders, 
as well as supporting factors that facilitate behavioral 
and emotional engagement in CS activities, such as 
collaboration, autonomy, and self-expression. It has 
also yielded insight into common methods adopted in 
the classroom for making abstract CS concepts more 
understandable through body movements or 
manipulating objects.  Based on needs identified 
through this study and the unique affordances of AR 
and VR technologies, we believe that an AR/VR 
embodied coding platform can facilitate mastery of 
challenging, abstract computational concepts, 
allowing learners to achieve higher self-efficacy and 
independence in their coding practice. This medium 
would also likely support bodily-kinesthetic learners 
(Gardner, 1992) and might encourage 
underrepresented groups that consistently report low 
confidence in STEM-related abilities (Margolis & 
Fisher, 2002; Sax et al., 2017; Wang & Hejazi 
Moghadam, 2017) to pursue CS educational and 
career pathways by lowering barriers to entry in 
computer science.  

Although the limited number and diversity of our 
participants constrain the generalizability of these 
results, this work offers valuable insight for the 
development of an AV/VR coding platform by 
highlighting the importance of design features that 
foster collaboration, simplify planning and 
debugging, and exploit mappings between 
computational structure and experience of the 
physical world.  In the future, we plan to study how 
students working in pairs in an embodied AR/VR 
coding environment learn coding computational 
concepts and practices together.  It will be examined 
whether the opportunities for greater ranges and 
quantities of body movement afforded by 3D spatial 
coding can support greater gains in computational 
learning than traditional 2D methods. Further, 
because 3D embodied coding offers new possibilities 
for teamwork an additional research goal of this 
project centers on characterizing the dynamics of 
dyadic collaboration in the AR/VR environment as 
they relate to motivation and learning outcomes.  Our 
end goal centers on determining how these types of 
things could be incorporated into more formal 
learning environments. 
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APPENDIX 

Interview Questions 

1. Who are you teaching? 
2. What is your background? (age range, location, 

expectations, previous knowledge) 
3. How long is your course? (hours / week and 

number of weeks) 
4. What tasks are students solving? (are they 

creating visualizations, data structures, etc..) 
5. Walk us through one or two example situations? 
6. What do your students struggle with when 

learning to code? 
7. Do you see a difference in computer languages 

with respect to ease of learning? Ex : Python, 
Java, C#, C++ 

8. How comfortable are your students with the 
language? How skillful are they? How quickly 
do they learn? 

9. Is there a learning curve / what is the shape of 
that curve? Can you draw it? 

10. Is there a noticeable difference between reading 
and writing code? 

11. What key concepts do you cover (would you 
cover) in a brief (5-8 session) introduction to 
code and computational thinking? 



12. Where do you see opportunities for 
improvements in programming education? 

13. Imagine an ideal tool for coding - what would it 
look like? What would it do? 

14. How do you tackle motivation and keeping the 
students engaged? 

15. Have you heard of Active Learning? Do you use 
active learning approaches? 

16. If not, is there any reason? 
17. Do you use any libraries or tools to help with the 

learning process? 
18. What metaphors do you use to help your students 

understand concepts?  
19. Are you aware of any spatial metaphors or 

representations that you tend to use? 
20. Do you use any embodied teaching methods? 
21. What kinds of gestures do you tend to use? 
22. When you are teaching, how do you use space, 

your body, and props to communicate concepts?  
 


