
Need Finding for an Embodied Coding Platform: Educators’
Practices and Perspectives

Tommy Sharkey1,2 a, Robert Twomey2,3 b, Amy Eguchi4 c, Monica Sweet5

and Ying Choon Wu6 d
1Design Lab, University of California San Diego, U.S.A.

2Arthur C. Clarke Center for Human Imagination, University of California San Diego, U.S.A.
3Johnny Carson Center for Emerging Media Arts, University of Nebraska Lincoln, U.S.A.

4Department of Education Studies, University of California San Diego, U.S.A.
5Center for Research on Educational Equity, Assessment, and Teaching Excellence,

University of California San Diego, U.S.A.
6Swartz Center for Computational Neuroscience, University of California San Diego, U.S.A.

tsharkey@ucsd.edu, rtwomey@unl.edu, {a2eguchi, msweet, ycwu}@ucsd.edu

Keywords: Visualization, Collaborative and Social Computing, Interaction Design, K-12 Computer Science Education,
Embodiment, Augmented Reality, Virtual Reality, Computer Science Educational Technology, Visual
Programming.

Abstract: Eight middle- and high-school Computer Science (CS) teachers in San Diego County were interviewed about
the major challenges their students commonly encounter in learning computer programming. We identified
strategic design opportunities -- that is, challenges and needs that can be addressed in innovative ways through
the affordances of Augmented and Virtual Reality (AR/VR). Thematic Analysis of the interviews yielded six
thematic clusters: Tools for Learning, Visualization and Representation, Pedagogical Approaches, Classroom
Culture, Motivation, and Community Connections. Within the theme of visualization, focal clusters centered
on visualizing problem spaces and using metaphors to explain computational concepts, indicating that an
AR/VR coding system could help users to represent computational problems by allowing them to build from
existing embodied experiences and knowledge. Additionally, codes clustered within the theme of learning
tools reflected educators’ preference for web-based IDEs, which involve minimal start-up costs, as well as
concern over the degree of transfer in learning between block- and text-based interfaces. Finally, themes
related to motivation, community, and pedagogical practices indicated that the design of an AR coding
platform should support collaboration, self-expression, and autonomy in learning. It should also foster self-
efficacy and learners’ ability to address lived experience and real-world problems through computational
means.

1 INTRODUCTION

The increasing sophistication and availability of
Augmented Reality (AR) devices wield the potential
to transform how we teach and learn computational
concepts and coding. Instead of interfacing with
keyboards, mice, and monitors while seated at a
workstation, learners could engage with holographic
representations of their code and the output of their

a https://orcid.org/0000-0001-9705-6788
b https://orcid.org/0000-0002-9663-0706
c https://orcid.org/0000-0003-1240-9228
d https://orcid.org/0000-0002-9382-8805

code -- both of which are projected into their physical
environment. Instead of clicking arbitrary buttons and
toggles, users could invoke intuitive gestures and
other body movements to combine, execute, and
debug elements of code. In place of segmenting code
through line breaks or indentations, learners could
assign distinct sub-processes different shapes, sizes,
and locations in space -- and even enclose some
elements within others.

As these examples illustrate, a potential key
advantage of coding in 3D physical space is the
opportunity that it affords learners to leverage their
existing sensorimotor experiences. This concept
hearkens to Papert’s notion of body syntonic
reasoning (Papert, 1980), whereby young learners
rely on their own sensorimotor experiences to make
sense of LOGO programming tools. It is also
consistent with more recent work; for instance, Fadjo
(Fadjo, 2012) explored the pedagogical impact of
physically embodying aspects of Scratch scripts on
middle school students’ own Scratch artifact
construction. As an extension of this idea, a number
of tangible programming environments allow users to
implement and debug commands or programs by
acting out commands through physical body
movements (Berland, Martin, Benton, Petrick Smith,
& Davis, 2013; Berland, 2016; Raffle, Parkes, &
Ishii, 2004).

At the core of much of this research is the idea that
abstract computational concepts, such as data,
operators, and loops, are grounded in embodied
representations. For instance, when computer science
(CS) students describe algorithms, conditionals, and
other computational structures, they frequently
gesture in ways that suggest they are conceptualizing
interactions with objects (Manches, McKenna,
Rajendran, & Robertson, 2019). Further, it has been
suggested that stimulating embodied mappings
between sensorimotor experience and computational
concepts can benefit CS learning. When students
physically modelled or “acted out” prewritten code
structures, it was found that they tended to produce
code that is longer and more mathematically complex
(Black, Segal, & Vitale, 2012).

Theories of embodied cognition were originally
advanced in repudiation of the view that the human
mind can be described in terms of computational
operations exacted upon amodal representations
(Barsalou, 2008). As an alternative, embodied
perspectives emphasize the tight coupling between
our capacities for perception and action, on the one
hand, and higher-order conceptual processing, on the
other. Our ability to understand and reason about
abstract concepts such as time, for instance, is
grounded in our experience of space (Núñez &
Sweetser, 2006). Our ability to comprehend words
and language, which are largely abstract, symbolic
representations, is mediated by our perceptual
experiences of speakers’ meanings (Glenberg,
Webster, Mouilso, Havas, & Lindeman, 2009).
Over two decades of empirical evidence support
theories of embodied cognition, ranging from
evidence of mental simulations during language

comprehension (Barsalou, 2009; Wu & Coulson,
2007; Zwaan, Stanfield, & Yaxley, 2002), to
sensorimotor cortical activations accompanying
literal and figurative meanings of words such as kick
(Hauk, Johnsrude, & Pulvermüller, 2004) or grasp
(Boulenger, Hauk, & Pulvermüller, 2009), to
evidence of mirror-based empathy (Gallese, 2001)
and action comprehension systems (Gallese, Fadiga,
Fogassi, & Rizzolatti, 1996; G Rizzolatti, Fadiga,
Gallese, & Fogassi, 1996; Giacomo Rizzolatti &
Craighero, 2004). In education, the notion of
embodiment as a force that can drive learning has
gained traction as well – perhaps due to the inherent
congruence of this idea with constructivist theories of
learning, all of which include active components of
learning -- or learning by doing -- as central tenets. In
embodiment theory, knowledge structures are
proposed to be acquired and retained more efficiently
when they involve related sensorimotor input
(Lindgren & Johnson-Glenberg, 2013). This principle
has been illustrated both in simple practices, such as
hand gestures to scaffold understanding of
mathematical equations (Goldin-Meadow, Cook, &
Mitchell, 2009), as well as immersive, mixed-reality
environments that allow users to predict with their
own body movements the trajectory of asteroids
affected by planetary gravitational fields (Lindgren,
Tscholl, Wang, & Johnson, 2016). Pedagogical tools
and methods harnessing full-body interaction and
other aspects of embodied learning have been
explored in a wide range of STEM domains,
including quantitative reasoning (Davidsen &
Ryberg, 2017) and math (Abrahamson & Sánchez-
García, 2016; Alibali & Nathan, 2012; Goldin-
Meadow et al., 2009), as well as physics (Johnson-
Glenberg, Megowan-Romanowicz, Birchfield, &
Savio-Ramos, 2016; Johnson-Glenberg & Megowan-
Romanowicz, 2017; Yoon, Elinich, Wang,
Steinmeier, & Tucker, 2012), chemistry (Johnson-
Glenberg, Birchfield, Tolentino, & Koziupa, 2014),
and astronomy (Lindgren et al., 2016).

It has been proposed that syntonic mappings
between CS concepts on the one hand, and our
mental, sensory, and kinesthetic experiences, on the
other, can make learning CS easier (Watt, 1998). In
the view espoused by Watt, programming languages
are learned more readily in cases where the structure
of the language exhibits syntonicity, or resonance,
with people’s existing bodily knowledge and mental
models. For instance, in the case of Papert’s Logo
turtles, children are able to take on the perspective of
the turtle and act out procedures that it should
undertake in order to accomplish a task (e.g. drawing
a circle). Likewise, adults tend to impute

psychological characteristics to different
programming elements, such as the operating system,
the compiler, and so forth, and tend to reason about
them as they would another human being.
 In the present study, how to foster syntonic mappings
through an AR/VR platform – and which mappings
are the most important and the best fit – is an open
design question. Through structured interviews with
secondary school CS educators in San Diego County,
the authors aimed to understand common challenges
and pivotal needs faced by students learning to code.
Are there specific coding environments, syntaxes,
computational structures, or classroom activities that
tend to be embraced – or conversely, that tend to elicit
frustration or lead to learner disengagement? The
interviews were also structured to probe methods for
fostering syntonicity already in use in the classroom.

2 STUDY DESIGN

2.1 Subjects

Eight CS educators from the San Diego region in
California were interviewed for the study: five
secondary school teachers, two informal CS
educators, and one post-secondary educator. The five
teachers were all instructing either middle- or high-
school CS courses at the time of the interview; two at
low-SES public schools serving large numbers of
under-represented students, and three at higher-SES,
highly resourced private schools. The informal CS
educators either taught after-school workshops or
otherwise supported CS teaching outside of the
classroom for ages ranging from elementary through
high school. The post-secondary educator has taught
at both the community college and university levels.
All participants gave informed consent.

2.2 Interview Questions and Thematic
Analysis

Participants were asked a series of open-ended
questions in semi-structured interviews. Teachers
were asked the same set of questions (see Appendix)
but were allowed to speak at length and move to
topics they found important, giving unprompted
evaluations of tools, platforms, concepts that
challenge students, and more. Interviewers asked
follow-up questions pertinent to individual teacher
responses to each question. The average interview
length was 1 hour (range: 41 to 107 min). Interviews
included questions about specific challenges that
learners encounter (e.g. “What do your students

struggle with when learning to code?”), classroom
activities (e.g. What tasks are students solving?) and
perspectives on the current state of CS education (e.g.
Where do you see opportunities for improvements in
programming education?); a complete list of
questions can be found in Appendix A.

Participants’ thoughts and opinions were turned
into single sentence nodes (324 total) that were then
independently coded into themes by four researchers
with diverse expertise (CS Education, Cognitive
Neuroscience, Data Science, and Human-Computer
Interaction). The nodes were created by first
manually extracting quotes from the recorded
interviews. Any time the participant expressed an
opinion, made an observation, or described an
activity/scenario, a quote was pulled. Each quote was
then paraphrased and separated into independent
thoughts (e.g. ‘Scratch and Blockly are both great
programs’ became ‘Participant remarks that Scratch
is a great program’ and ‘Participant remarks that
Blockly is a great program’). A single individual
paraphrased the quotes to help mitigate language
biasing.

The four researchers were then given the
paraphrased nodes and each individually grouped the
nodes into themes. They then met to talk about their
themes and resolve discrepancies; ambiguities or
disagreements emerging from the integration of
coding schemes were resolved through discussion.
Once final themes were identified, the group also
discussed them to determine if higher-level themes
might be uncovered as well. Ultimately, researcher
discussions identified the 47 themes of 245 labels
collectively applied to single sentence nodes, as well
as the six higher-level themes. Each theme, as well as
its subcomponents, will be elaborated in the Results
section.

3 RESULTS

Thematic Analysis revealed six primary themes
labelled as: Tools for Learning, Visualization and
Representation, Pedagogical Approaches, Classroom
Culture, Motivation, and Community Connections
(Table 1). Each theme contains sub-components, as
detailed in the Table. Notably, these themes cover a
continuum that extends from person-level aspects of
computational concept learning to increasingly
broader social connections and motivations important
for CS education. As will be detailed in the following
sections, our analysis revealed that learning and
teaching core elements of CS, such as syntax and
debugging, are fundamentally influenced not just by

the attributes and knowledge existing within the
individual who is learning, but also by dynamics
within and across groups of learners – and more even
broadly, by dynamics within classrooms and within
the learners' families and greater communities.

Table 1: Themes and higher-order themes obtained from
thematic analysis of CS educators’ interviews.

Tools for Learning

● Web IDEs with minimal
startup cost

● Hardware frustrations
● Forums and

communities

● Interoperability between
block and text code

● Languages and platforms
● Online courses

Visualization and Representation

● Enacting metaphors for
computational concepts

● Verbal metaphors for
computational concepts

● Visualizing in 3D or 2D

● Visualizing concepts and
problems (flow charts,
memory diagrams)

● Manipulatives (e.g. deck
of cards, plastic bags)

Pedagogical Approaches

● Project-based learning
● Focus on problem

solving
● Teach syntax and

structure
● Storytelling
● Active learning
● Scaffolding for success
● Fostering design

thinking and planning
skills

● Modifying skeleton code
● Pair programming
● Peer and group feedback
● Facilitating, guiding, and

modelling instead of
instructing

● Culturally responsive CS
● Just in time learning

Classroom Culture

● Making thinking visible
(metacognitive
awareness)

● Embracing mistakes and
accepting uncertainty

● Flexible classroom
organization

● Collaboration
● Identifying and

responding to obstacles
● Learning community
● Fostering reflection

Motivation

● Making meaning
● Authenticity
● Self-expression
● Fostering self-efficacy
● Student-centered

approach
● Success motivates

learners

● Autonomy and self-
directed learning

● Patience and
perseverance

● Creativity
● Frustration and

impatience
● Fear of failure

Community Connections

● Bridging disciplines
● Diversity in learners
● Access to CS Education

● Showcasing work
● Addressing lived

experiences

3.1 Tools for Learning

In all interviews, participants talked about the tools
they used in teaching CS to their students and in
encouraging their students to learn about CS concepts
and apply these concepts to creating successful
computer programs. All respondents expressed
enthusiasm for streamlined instructional tools and
online resources on the one hand, and concern over
their educational value on the other. For instance,
many participants expressed favorable opinions of
web-based integrated development environments
(IDEs) – which can be accessed through web
browsers and support remote software development
using low-capacity local devices. Web IDEs were
described as easy to set up and could be configured
and managed by the instructor. Other participants
expressed frustration with non-web-based IDEs,
particularly those for physical computing, where
seemingly random glitches would cause immense
discouragement among students. On the other hand,
one teacher spoke critically of web-based IDEs for
reducing student comprehension of how libraries are
imported.

Many of these web-based IDEs use graphical
metaphors to augment coding. Interview participants
praised Scratch and other block-based programming
languages for their ability to help students focus on
algorithms instead of syntax. However, many
teachers also described resistance to block-based
languages in older high school students, who perceive
the tools as unprofessional or childish. Participant 1
(P1) further noted that as programs become more
complex, block-based coding becomes “unwieldy,”
particularly when it comes to understanding calls
between collapsed code blocks. At least two
participants observed that knowledge obtained
through block-based coding did not readily transfer to
text-based coding systems. P8 speculates that this,
“might be due to the fact that… JavaScript and Java
are very similar… Whereas [block-based coding] just
doesn’t map well to Java – even though on the
backend it is compiling to Java.” P8 goes on to
describe how they believe this problem might be
mitigated by providing students with a visual
demonstration of how blocks relate to textual code –
an idea that was echoed by several of the other
participants.

Finally, several interview participants relied on
online resources (e.g. Code.org) or courses (e.g. Code
Academy) to cover basic syntax and other concepts.
They also encouraged students to exploit online
forums such as Stack Overflow in order to increase
their own self-efficacy. However, some educators

expressed concern about the effectiveness of these
tools. For instance, P3 specifically called out the
“knowledge checks” that appear in many online
courses for falling short of checking for
comprehension and only checking for simple
recollection.

3.2 Visualization and Representation

A recurrent theme in the interviews was the
importance of visualizing problems and concepts or
finding other effective means of representing them.
Participants spoke at length on different strategies for
making coding concepts more understandable. At
least four individuals used physical and collaborative
(embodied) exercises to help students understand
core CS concepts like function calls and parameter
passing, sorting algorithms, procedural instructions
and precision of language. For instance, one high
school instructor organized students into groups and
used sticky notes passed between groups and
individuals to represent the passing of values to
variables. She described how this activity evolved
over time in her classroom, stating that she, “used to
just draw diagrams, but think[s] having that
physicality helps [students]... understand and form
mental models.” Participants used this activity to
represent more complex concepts as well, using
reciprocal movements to represent dependency or
even high-level Transfer Control Protocol: “Certain
students act as the routers and the other ones are… the
packets… When network congestion happens,
they’re stressed out.”

Props were also used, such as plastic bags
representing variables and sticky notes placed inside
the plastic bags representing different values – or a
deck of cards used to demonstrate a sorting algorithm.
In a different classroom, paper airplanes were thrown
between students, who represented functions, in order
to demonstrate the passing of information between
functions. Notably, props were often crucial
components to the teaching strategy: P4 went so far
as to say that, “Teaching sorting and searching
algorithms without cards is basically impossible.” In
addition to props, educators also recalled
incorporating metaphors in their lectures. For
instance, analogies were drawn between nested
statements and Google maps or grading curves.
Likewise, the hierarchical structure of HTML pages
was likened to Russian nesting dolls.

With respect to planning and debugging,
educators also encouraged students to use
storyboards, diagrams, drawings, props, and roleplay.
Many respondents found role-playing and

diagramming useful strategies for students to adopt –
possibly because they helped novice coders
intuitively break a problem or a project into
subcomponents. Students might imagine themselves
as a robot, for instance, and attempt to navigate a
room only using their sense of touch. In lessons that
involved programming mobile robots, analysis of the
robots’ behavior in 3D, physical space proved
helpful. Respondents also encouraged students to
problem solve by creating flow charts, memory
diagrams, and other types of drawings in order to
represent various states of their systems. P7 placed
easels with sticky notes in different locations of the
classroom and encouraged students to create “life-
size” flow charts, so to speak, anchored in physical
space.

3.3 Pedagogical Approaches and
Classroom Culture

The bulk of most interviews centered on participants’
discussion of teaching practices and methods that
they felt were effective. A consistent pattern that
emerged was educators’ emphasis on problem-
solving and planning as core abilities for novice
coders to strengthen. This prioritization of design
thinking and problem-solving skills was reflected
across participants both in their embrace of certain
established pedagogical methods and philosophies
(e.g. project-based learning, active learning, iterative
design, pair programming) and in their high valuation
of opportunities for students to reflect, develop
metacognitive awareness of their own thinking, and
to give and receive peer feedback on work. A specific
example: P4 believes that given a problem, students
need to, “figure out how to solve the problem without
even thinking about coding first, and then translate
it.”

In keeping with this prioritization of problem
solving and planning, respondents tended to view
their own role in the classroom as one of facilitating
rather than instructing. At least two individuals
described a preference for “storytelling” rather than
lecturing. One of the high school teachers related
how she works on her own project alongside students.
Three of the participants described sharing a student’s
code with the whole class in order to elicit feedback
when someone is stuck or prompting students to share
their reflections on problems or lessons learned.

Additionally, multiple respondents described
measures to create a culture of embracing mistakes
and uncertainty rather than becoming frustrated. P6
succinctly states: “50% of this class is learning to be
okay with being uncomfortable and not knowing the

answer.” Respondents also recognized the
importance of scaffolding for beginners in order to
ensure success. P5 notes, "Having some successes
early on is really important... not just something
dumb, but a valuable experience is really helpful.”
Further, they also valued tactics such as just-in-time
instruction to mitigate unnecessary frustration. P1
states, "If it takes me 5 minutes to come over and
figure out what is going on - it only takes a few of
those times [before the students give up on coding].”

As a corollary to the motif of facilitating rather
than instructing, the corpus of interviews also
revealed a prevalent pattern across educators of
actively fostering collaboration between students. All
respondents implemented classroom activities
designed to stimulate collaboration and
communication -- from group projects to working in
pairs on assignments to peer reviews of code and peer
teaching. Two respondents described approaches to
organizing the physical components of the classroom
(e.g. desks, chairs) to support collaboration. Three of
the respondents explicitly described strengthening
teamwork and communication skills as important
achievements in themselves that are orthogonal to
other aspects of class performance. Two respondents
described strategies for cultivating learning
communities within and beyond a classroom. For
instance, through a buddy system, older students
might be paired with younger ones in order to develop
excitement for CS in younger age groups. Or during
a lesson, students who had finished a step in an
assignment would be asked to mark their name on a
board so that other students would know whom to ask
for help. A different teacher from a low SES serving
secondary school described his use of an online forum
where students succeeding in class could help the
students that are struggling and asking questions.
Whereas respondents’ perspectives on problem-
solving, collaboration, and educators’ roles in the
classroom were clear and consistent, conflicting
opinions were voiced on approaches to teaching
syntax. On the one hand, some educators felt that
classic syntax should serve as the framework for
organizing an introductory course. Some responses
described regular reliance on skeleton code as a basis
from which students could develop their own
computer programs. On the other hand, however,
some respondents favored approaches that promote
creativity and design thinking over a syntax-heavy
curriculum. One of the private school teachers
elegantly summarized this perspective in the
following:

"I think that we overestimate the necessity of…
learning the basics before moving on to other things...
and that giving kids more freedom and latitude to try
new things and jump into things they're not totally
prepared to do is, I think, a really productive process.
If the basics are so important then they'll find them
and learn them during that project.”

In line with their statement, this instructor tended to
rely on web-based tutorials in order to quickly cover
basic syntax so that students could devote more time
to projects.

3.4 Motivation and Community
Connections

Methods for attracting interest and sustaining
engagement also received robust attention from all of
the interviewees, along with ways to build bridges
from the classroom to other communities. Analysis of
their responses revealed that student motivation was
closely tied to sub-themes of pedagogical approaches
and classroom culture. Perhaps because respondents
recognized the intrinsic motivational value of
creating a successful computer program, their
interviews reflected the intent to foster self-efficacy
through diverse means, including opportunities for
autonomy and self-directed learning. P5, P6, and P7,
for instance, either shape their project assignments
around the students, or allow the students to “bend the
rules” for the sake of increasing engagement.
Conversely, they also recognized factors that
discouraged and detracted from student motivation
such as the “fear of failure”, frustration, and
impatience. Some participants sought to mitigate this
by fostering a classroom culture that supports both
collaboration and learning from, rather than
penalizing mistakes. Participants often described the
importance of minimizing obstacles to promote this
culture, often referencing unpredictable hardware
problems as a major obstacle to success.
The second cluster of recurrent thematic elements
involved topics related to student-centered teaching
methodologies. One respondent expressed a desire
for more "culturally responsive teachers" for students
from demographics that tend towards non-
engineering fields in order to ensure a diversity of
learners in CS. Other participants reflected on the
importance of encouraging self-expression and
creativity and providing opportunities to create
meaningful final products in order to sustain learner
engagement.

Finally, the majority of respondents recognized
that a third key factor driving motivation is

authenticity and connections to a broader community.
Seven of the eight participants strongly advocated for
expanding the scope of CS teaching to focus on ‘real
world’ tools for solving ‘real world’ problems and
pushing students to make an impact on a community.
Two assigned projects that required students to
grapple with problems faced by a specific
community. Others described simple strategies such
as helping students publish their apps to app stores or
encouraging students to program robots in useful
ways (e.g. to help with household chores or serve as
a musical instrument). Another individual praised
programs such as Technovation Challenge and
Oncoscape as resources that can cultivate empathy in
young programmers and help them to relate their
coding practices to authentic problems. Importantly,
some respondents noticed a positive correlation
between student engagement and the applicability
and real-world relevance of an assignment –
particularly assignments that involved replicating
popular phone apps or other familiar interfaces.

In keeping with this idea of building bridges and
community connections through CS, three educators
expressed a desire for the human side of coding to be
more foregrounded in CS education. P5 raises the
desire to, “feel more like a whole human being” in a
coding environment and responds to this by having
students draw on personal experience for inspiration
to, “get [students] to connect with their bodies.”
Further, at least half of the respondents voiced interest
in "hybridization across [academic] subjects” – that
is, uniting elements from diverse disciplines through
the coding process. Respondents used lessons that
incorporated music, art, dance, foreign languages, AI,
robotics, and medicine with coding.

4 DISCUSSION

Here, CS educator interviews were analyzed to better
understand the underlying factors impacting
secondary-level CS education, as well as the
challenges teachers and students face as they engage
in CS education. Developing such an understanding
is important, in that it will allow for a better
understanding of whether and how AR and VR
technologies can be leveraged to support
computational concept learning at the secondary
school level. This study highlights that for young
novice coders, learning to code is not a purely
cognitive process -- it is governed by sensorimotor,
social and emotional dynamics as well. Just as lessons
on loops and the choice of a visual versus text-based
programming environment bear significant weight on

learning outcomes, so do opportunities for
collaboration and community membership, self-
expression and autonomy, and linking lived
experience to computing and the outcomes of
computing. Further, successful coding is more than
implementing proper syntax -- it involves planning,
problem-solving, creativity, effective
communication, and the ability to work in teams.

Intriguingly, a seemingly conflicted relationship
was noted within educators’ attitudes towards
projects versus learning tools. On one hand, our
participants highly valued projects and assignments
that promoted authorship, agency, and authenticity –
seeking to enable students in their own endeavors at
the cost of having a controlled project outcome. On
the other hand, participants valued platforms and
IDEs with low variability and instant feedback –
prioritizing control over freedom and extensibility.
How can 3D embodied coding address these diverse,
and sometimes conflicting, needs? We propose that
this type of coding environment can make
computational concepts easier to learn through
syntonic mappings to sensorimotor experience. It can
provide opportunities for robust collaboration that
can facilitate learning with peers. Finally, it can offer
a possibility of structuring 3D space in ways that
support design and debugging processes. Through
these features, it is proposed that learners will be able
to achieve higher levels of self-efficacy more quickly
and will be ready sooner to enjoy “freedom and
latitude to try new things” -- to quote one of the
respondents. In other words, they will be more likely
to achieve a level of mastery that allows them to
engage in self-expression and make connections
between computing and other domains of life and
academics.

4.1 Collaboration and Problem Solving

Pair programming is a widely used method geared
around the affordances of traditional workstations
supporting 2D coding on screens. It involves dyadic
collaboration in which a driver types lines of code,
and a navigator offers guidance and checks the
driver’s work. This approach has been shown to
benefit skill acquisition in K-12 settings (Denner,
Werner, Campe, & Ortiz, 2014; L. Werner &
Denning, 2009) and was commended by some of the
interview participants. It has been praised for aligning
with social motivations of some learners who might
otherwise be disinterested in CS due to a competitive
masculine culture and negative stereotypes (e.g.
geeks) associated with the field (L. Werner &
Denning, 2009). It also helps students to learn from

their own and their peers’ mistakes. Some evidence
exists that females benefit from pair programming
more than males (L. L. Werner, Hanks, & McDowell,
2004).

Despite these positive results, pair programming
methods should be employed carefully. In a study of
middle school learners working with LOGO, cases of
inequity were found to emerge when one team
member dominated in task-related decision-making.
Additionally, some students expressed a preference
for solo work because they found the frequent
switching of roles and obligation to explain their
choices cumbersome (Lewis & Shah, 2015). A
separate study demonstrates that confident
programmers tend to dislike working in pairs. An
AR/VR spatial coding platform could address
problems such as these by supporting more
naturalistic forms of collaboration. Because AR/VR
technologies involve an unbounded virtual space,
teamwork could be accomplished by larger groups
than dyads (teams aren’t huddled around the
computer screen). The common set of manipulable
objects allows team members to negotiate and revise
their own roles and problem-solving strategies to suit
emerging contingencies of their situation. Students
might experience an increased fluidity in team
dynamics, where roles shift as the need arises,
allowing students to work together as a unit or
subdivide into asynchronous units working in
parallel. All three of these approaches may benefit
learning in different individuals (Maguire, Maguire,
& Hyland, 2014). An ideal platform design would
include the capability for different users to easily
view, manipulate, and merge each other’s code. It
would also include mechanisms for exporting content
into forms that can be shared outside of the AR/VR
environment -- for the purposes of class discussion or
peer feedback, for instance.

A second important concept to consider when
building an AR/VR coding platform centers on
problem-solving and planning. Due to the inherent
grounding of their affordances in the 3D spatio-
temporal world, AR and VR naturally support many
of the forms of role play, work with props, and
metaphorical mappings to physical objects that
educators in this study described using in their
classrooms. Students might model system states and
dependencies through body movement rather than
mental abstraction -- making coding real by walking
or gesturing between different locations to ascribe
intent. This idea also ties into roleplaying, where
seeing is believing. Interacting with holograms
(rather than the imagination) provides an important
reference and grounding for understanding. Further,

the ability to situate digital storyboards, pseudocode,
notes, program elements, etc. in space (e.g., attaching
them to an obstacle that a robot has to avoid) provides
valuable context and structure to complex and
interwoven problems -- enabling kinesthetic learners
and allowing students to tap into their spatial
intelligence.

Coding in AR/VR might benefit creative ideation
as well. A number of studies have demonstrated a
positive relationship between everyday physical
activity and performance on tests of creativity
(Oppezzo & Schwartz, 2014; Rominger, Fink,
Weber, Papousek, & Schwerdtfeger, 2020). For
instance, people produced higher quality analogies or
novel uses for common objects while or just after
walking relative to seated controls (Oppezzo &
Schwartz, 2014). Related studies have demonstrated
enhanced creativity during or just after free and fluid
movement versus movement along more structured
paths (Kuo & Yeh, 2016; Leung et al., 2012; Main,
Aghakhani, Labroo, & Greidanus, 2018; Scibinetti,
Tocci, & Pesce, 2011; Slepian & Ambady, 2012). In
other words, simply walking or getting basic exercise
-- can bolster creativity and may benefit learning.
Moreover, it appears that some forms of fluid
movement may benefit creativity even more than
other body movements.

3D spatial interfaces can support these and other
physical activities in a far more seamless manner than
the traditional workstation. Rather than restricting
programmers to text-intensive development and
limiting interaction to the keyboard, mouse, and
monitor, spatial representations engage a range of
bodily gestures (e.g., pinching, swiping, twisting) and
activities (e.g., standing, walking, crouching) to
enable assembly, modification, and interaction with
code structures as physical forms. It is possible that
the opportunities for greater ranges and quantities of
body movements afforded by 3D spatial coding can
support greater gains in creative approaches to
problem-solving and design challenges.

4.2 Embodied Mappings for
Computational Concept Learning

Educators commonly relied on physical movements
and objects to make computational abstractions easier
to understand. These findings extend those found by
Manches et al (2019), who demonstrated that
elements of code are routinely conceptualized as
containers by university students in CS classes. These
kinds of metaphors can become the signifiers woven
into a spatial platform that visualizes variables as
vessels or open boxes. Assigning a value could

involve placing the value inside the vessel. Similarly,
the same study also showed how computational
processes tended to be described in speech and
gestures as motion along a path. This finding suggests
that an ideal gesture or controller-based action for
executing a command or script would involve a broad
sweep of the arm that traces the trajectory of a path.

Another embodied mapping that may benefit
learners is the temporal association of events and
causality. When two events are experienced in close
succession on a regular basis (e.g., a gust of wind and
a door slamming shut), it is often inferred that the first
caused the second. Likewise, during 3d spatial
programming, the execution of sequential commands
could be visualized in real-time together with the
rendered effects of code outputs. Through this, the
user could understand the relationship between each
segment of code under evaluation and the resulting
effect of that code on his/her creative coding
experiment. During program run-time, users could
pause program execution with hand gestures or their
controller and use the interface to examine run-time
variables, program state, alter code, and resume
execution. Granted, these types of features are
already available in existing debugging tools.
However, it is proposed that for learners, temporal
associations between the body movements that they
produce to execute a specific segment of code and the
ensuing output are likely more salient – and hence
important for learning – than temporal associations
available in 2D displays wherein progressive lines of
code under execution may simply be visually
accentuated through highlighting.

Finally, a fourth possible embodied metaphor
centers on the mapping between physical and
conceptual distance. In common experience, objects
that are physically connected tend to be encountered
in close proximity, while objects that are not
connected can be spaced far from one another. As a
metaphorical extension, distinct computational
concepts, such as input and output, could be
visualized in distal spatial locations. For instance,
input to a function could be represented on the left
side of the code segments that constitute the function,
and output, on the right side, with pipeline connectors
between them, as is possible in flow and node-based
coding platforms. In this way, the cognitive burden of
representing the architecture and operation of a
function – which are often highly abstract in many
programming platforms – can be offloaded through
metaphorical mappings to a fully visible framework
grounded in aspects of common experience, such as
the flow of substance through pipes. Moreover, as
users physically orient towards or move between the

different spatial locations where input and output are
represented, they will themselves physically enact
this metaphor.

5 CONCLUSIONS

This work has revealed the importance of cultivating
problem-solving and planning skills in novice coders,
as well as supporting factors that facilitate behavioral
and emotional engagement in CS activities, such as
collaboration, autonomy, and self-expression. It has
also yielded insight into common methods adopted in
the classroom for making abstract CS concepts more
understandable through body movements or
manipulating objects. Based on needs identified
through this study and the unique affordances of AR
and VR technologies, we believe that an AR/VR
embodied coding platform can facilitate mastery of
challenging, abstract computational concepts,
allowing learners to achieve higher self-efficacy and
independence in their coding practice. This medium
would also likely support bodily-kinesthetic learners
(Gardner, 1992) and might encourage
underrepresented groups that consistently report low
confidence in STEM-related abilities (Margolis &
Fisher, 2002; Sax et al., 2017; Wang & Hejazi
Moghadam, 2017) to pursue CS educational and
career pathways by lowering barriers to entry in
computer science.

Although the limited number and diversity of our
participants constrain the generalizability of these
results, this work offers valuable insight for the
development of an AV/VR coding platform by
highlighting the importance of design features that
foster collaboration, simplify planning and
debugging, and exploit mappings between
computational structure and experience of the
physical world. In the future, we plan to study how
students working in pairs in an embodied AR/VR
coding environment learn coding computational
concepts and practices together. It will be examined
whether the opportunities for greater ranges and
quantities of body movement afforded by 3D spatial
coding can support greater gains in computational
learning than traditional 2D methods. Further,
because 3D embodied coding offers new possibilities
for teamwork an additional research goal of this
project centers on characterizing the dynamics of
dyadic collaboration in the AR/VR environment as
they relate to motivation and learning outcomes. Our
end goal centers on determining how these types of
things could be incorporated into more formal
learning environments.

ACKNOWLEDGEMENTS

This study was supported by award 2017042 from the
National Science Foundation to the senior authors.

REFERENCES

Abrahamson, D., & Sánchez-García, R. (2016). Learning is
moving in new ways: the ecological dynamics of
mathematics education. Journal of the Learning
Sciences, 25(2), 203–239.
doi:10.1080/10508406.2016.1143370

Alibali, M. W., & Nathan, M. J. (2012). Embodiment in
Mathematics Teaching and Learning: Evidence From
Learners’ and Teachers' Gestures. Journal of the
Learning Sciences, 21(2), 247–286.
doi:10.1080/10508406.2011.611446

Barsalou, L. W. (2008). Grounded cognition. Annual
Review of Psychology, 59, 617–645.
doi:10.1146/annurev.psych.59.103006.093639

Barsalou, L. W. (2009). Simulation, situated
conceptualization, and prediction. Philosophical
Transactions of the Royal Society of London. Series B,
Biological Sciences, 364(1521), 1281–1289.
doi:10.1098/rstb.2008.0319

Berland, M. (2016). Making, tinkering and computational
literacy. In Makeology: Makers as Learners (Vol. 2,
pp. 196–205). Routledge.

Berland, M., Martin, T., Benton, T., Petrick Smith, C., &
Davis, D. (2013). Using learning analytics to
understand the learning pathways of novice
programmers. Journal of the Learning Sciences, 22(4),
564–599. doi:10.1080/10508406.2013.836655

Black, J. B., Segal, A., & Vitale, J. (2012). Embodied
cognition and learning environment design. In D.
Jonassen & S. Lamb (eds.), Theoretical Foundations of
Student-centered Learning Environments. New York:
Routledge.

Boulenger, V., Hauk, O., & Pulvermüller, F. (2009).
Grasping ideas with the motor system: semantic
somatotopy in idiom comprehension. Cerebral Cortex,
19(8), 1905–1914. doi:10.1093/cercor/bhn217

Davidsen, J., & Ryberg, T. (2017). This is the size of one
meter“: Children”s bodily-material collaboration.
International Journal of Computer-Supported
Collaborative Learning, 12(1), 65–90.
doi:10.1007/s11412-017-9248-8

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair
programming: under what conditions is it advantageous
for middle school students? Journal of Research on
Technology in Education, 46(3), 277–296.
doi:10.1080/15391523.2014.888272

Fadjo, C. L. (2012). Developing computational thinking
through grounded embodied cognition (Doctoral
dissertation). Columbia University.

Gallese, V. (2001). The’shared manifold'hypothesis. From
mirror neurons to empathy. Journal of consciousness
studies.

Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996).
Action recognition in the premotor cortex. Brain: A
Journal of Neurology, 119 (Pt 2), 593–609.
doi:10.1093/brain/119.2.593

Gardner, H. (1992). Multiple intelligences. academia.edu.
Glenberg, A. M., Webster, B. J., Mouilso, E., Havas, D., &

Lindeman, L. M. (2009). Gender, Emotion, and the
Embodiment of Language Comprehension. Emotion
review, 1(2), 151–161.
doi:10.1177/1754073908100440

Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009).
Gesturing gives children new ideas about math.
Psychological Science, 20(3), 267–272.
doi:10.1111/j.1467-9280.2009.02297.x

Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004).
Somatotopic representation of action words in human
motor and premotor cortex. Neuron, 41(2), 301–307.
doi:10.1016/S0896-6273(03)00838-9

Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L.,
& Koziupa, T. (2014). Collaborative embodied learning
in mixed reality motion-capture environments: Two
science studies. Journal of educational psychology,
106(1), 86–104. doi:10.1037/a0034008

Johnson-Glenberg, M. C., & Megowan-Romanowicz, C.
(2017). Embodied science and mixed reality: How
gesture and motion capture affect physics education.
Cognitive Research: Principles and Implications, 2(1),
24. doi:10.1186/s41235-017-0060-9

Johnson-Glenberg, M. C., Megowan-Romanowicz, C.,
Birchfield, D. A., & Savio-Ramos, C. (2016). Effects of
embodied learning and digital platform on the retention
of physics content: centripetal force. Frontiers in
Psychology, 7, 1819. doi:10.3389/fpsyg.2016.01819

Kuo, C.-Y., & Yeh, Y.-Y. (2016). Sensorimotor-
Conceptual Integration in Free Walking Enhances
Divergent Thinking for Young and Older Adults.
Frontiers in Psychology, 7, 1580.
doi:10.3389/fpsyg.2016.01580

Leung, A. K. Y., Kim, S., Polman, E., Ong, L. S., Qiu, L.,
Goncalo, J. A., & Sanchez-Burks, J. (2012). Embodied
metaphors and creative “acts”. Psychological Science,
23(5), 502–509. doi:10.1177/0956797611429801

Lewis, C. M., & Shah, N. (2015). How equity and inequity
can emerge in pair programming. In Proceedings of the
eleventh annual International Conference on
International Computing Education Research - ICER' '
’15 (pp. 41–50). New York, New York, USA: ACM
Press. doi:10.1145/2787622.2787716

Lindgren, R., & Johnson-Glenberg, M. (2013).
Emboldened by Embodiment. Educational Researcher,
42(8), 445–452. doi:10.3102/0013189X13511661

Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016).
Enhancing learning and engagement through embodied
interaction within a mixed reality simulation.
Computers & education, 95(95), 174–187.
doi:10.1016/j.compedu.2016.01.001

Maguire, P., Maguire, R., & Hyland, P. (2014). Enhancing
collaborative learning using paired-programming: Who
benefits? The Ireland Journal of Teaching and
Learning in Higher Education, 6(2), 141(1)–141(25).

Main, K. J., Aghakhani, H., Labroo, A. A., & Greidanus, N.
S. (2018). Change it up: inactivity and repetitive
activity reduce creative thinking. The Journal of
creative behavior. doi:10.1002/jocb.373

Manches, A., McKenna, P. E., Rajendran, G., & Robertson,
J. (2019). Identifying embodied metaphors for
computing education. Computers in human behavior.
doi:10.1016/j.chb.2018.12.037

Margolis, J., & Fisher, A. (2002). Unlocking the clubhouse:
Women in computing. books.google.com.

Núñez, R. E., & Sweetser, E. (2006). With the future behind
them: convergent evidence from aymara language and
gesture in the crosslinguistic comparison of spatial
construals of time. Cognitive science, 30(3), 401–450.
doi:10.1207/s15516709cog0000_62

Oppezzo, M., & Schwartz, D. L. (2014). Give your ideas
some legs: the positive effect of walking on creative
thinking. Journal of Experimental Psychology.
Learning, Memory, and Cognition, 40(4), 1142–1152.
doi:10.1037/a0036577

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. dl.acm.org.

Raffle, H. S., Parkes, A. J., & Ishii, H. (2004). Topobo: A
constructive assembly system with kinetic memory. In
Proceedings of the 2004 conference on Human factors
in computing systems' ' - CHI ’04 (pp. 647–654). New
York, New York, USA: ACM Press.
doi:10.1145/985692.985774

Rizzolatti, G, Fadiga, L., Gallese, V., & Fogassi, L. (1996).
Premotor cortex and the recognition of motor actions.
Brain Research. Cognitive Brain Research, 3(2), 131–
141. doi:10.1016/0926-6410(95)00038-0

Rizzolatti, Giacomo, & Craighero, L. (2004). The mirror-
neuron system. Annual Review of Neuroscience, 27,
169–192.
doi:10.1146/annurev.neuro.27.070203.144230

Rominger, C., Fink, A., Weber, B., Papousek, I., &
Schwerdtfeger, A. R. (2020). Everyday bodily
movement is associated with creativity independently
from active positive affect: a Bayesian mediation
analysis approach. Scientific Reports, 10(1), 11985.
doi:10.1038/s41598-020-68632-9

Sax, L. J., Lehman, K. J., Jacobs, J. A., Kanny, M. A., Lim,
G., Monje-Paulson, L., & Zimmerman, H. B. (2017).
Anatomy of an enduring gender gap: the evolution of
women’s participation in computer science. The
Journal of higher education, 88(2), 258–293.
doi:10.1080/00221546.2016.1257306

Scibinetti, P., Tocci, N., & Pesce, C. (2011). Motor
creativity and creative thinking in children: the
diverging role of inhibition. Creativity research
journal, 23(3), 262–272.
doi:10.1080/10400419.2011.595993

Slepian, M. L., & Ambady, N. (2012). Fluid movement and
creativity. Journal of Experimental Psychology:
General, 141(4), 625–629. doi:10.1037/a0027395

Wang, J., & Hejazi Moghadam, S. (2017). Diversity
Barriers in K-12 Computer Science Education:
Structural and Social. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science

Education' ' - SIGCSE ’17 (pp. 615–620). New York,
New York, USA: ACM Press.
doi:10.1145/3017680.3017734

Watt, S. (1998). Syntonicity and the psychology of
programming. PPIG.

Werner, L., & Denning, J. (2009). Pair programming in
middle school. Journal of Research on Technology in
Education, 42(1), 29–49.
doi:10.1080/15391523.2009.10782540

Werner, L. L., Hanks, B., & McDowell, C. (2004). Pair-
programming helps female computer science students.
Journal on Educational Resources in Computing, 4(1),
4–es. doi:10.1145/1060071.1060075

Wu, Y. C., & Coulson, S. (2007). How iconic gestures
enhance communication: an ERP study. Brain and
Language, 101(3), 234–245.
doi:10.1016/j.bandl.2006.12.003

Yoon, S. A., Elinich, K., Wang, J., Steinmeier, C., &
Tucker, S. (2012). Using augmented reality and
knowledge-building scaffolds to improve learning in a
science museum. International Journal of Computer-
Supported Collaborative Learning, 7(4), 519–541.
doi:10.1007/s11412-012-9156-x

Zwaan, R. A., Stanfield, R. A., & Yaxley, R. H. (2002).
Language comprehenders mentally represent the shapes
of objects. Psychological Science, 13(2), 168–171.
doi:10.1111/1467-9280.00430

APPENDIX

Interview Questions

1. Who are you teaching?
2. What is your background? (age range, location,

expectations, previous knowledge)
3. How long is your course? (hours / week and

number of weeks)
4. What tasks are students solving? (are they

creating visualizations, data structures, etc..)
5. Walk us through one or two example situations?
6. What do your students struggle with when

learning to code?
7. Do you see a difference in computer languages

with respect to ease of learning? Ex : Python,
Java, C#, C++

8. How comfortable are your students with the
language? How skillful are they? How quickly
do they learn?

9. Is there a learning curve / what is the shape of
that curve? Can you draw it?

10. Is there a noticeable difference between reading
and writing code?

11. What key concepts do you cover (would you
cover) in a brief (5-8 session) introduction to
code and computational thinking?

12. Where do you see opportunities for
improvements in programming education?

13. Imagine an ideal tool for coding - what would it
look like? What would it do?

14. How do you tackle motivation and keeping the
students engaged?

15. Have you heard of Active Learning? Do you use
active learning approaches?

16. If not, is there any reason?
17. Do you use any libraries or tools to help with the

learning process?
18. What metaphors do you use to help your students

understand concepts?
19. Are you aware of any spatial metaphors or

representations that you tend to use?
20. Do you use any embodied teaching methods?
21. What kinds of gestures do you tend to use?
22. When you are teaching, how do you use space,

your body, and props to communicate concepts?

