Extending BPMN to Enable the Pre-Modelling of Flexibility
for the Control Flow of Business Processes

Thomas Bauer
Hochschule Neu-Ulm, University of Applied Sciences, Wileystr. 1, 89231 Neu-Ulm, Germany
thomas.bauer@hnu.de

Keywords:

Abstract:

Business Process, Flexibility, Build-Time, Control-Flow, BPMN.

Pre-modelling of already known flexibility requirements of business processes (BP) already at build-time has

the advantage that the resulting run-time deviations can be reviewed and approved. Furthermore, this results
in less effort for the end users compared to completely dynamic changes at run-time. Corresponding concepts
have been developed in previous work. In this paper we present an extension of the BPMN standard. It allows
to model corresponding BP with existing BP modelling tools. Scientific literature is analysed in order to
identify suitable methods for BPMN extensions. Then, they are used to develop a BPMN extension that allows
the creation of BP models that contain the mentioned pre-modelled flexibility aspects.

1 MOTIVATION

At run-time, flexibility for business processes (BP)
can be achieved by using dynamic changes (Reichert
and Weber, 2012) to deviate from the modelled con-
trol flow. For this purpose, the end user defines, for
instance, that an additional activity shall be inserted
at a specific point into the BP. Flexibility by Design
(Kumar and Narasipuram, 2006; Schonenberg et al.,
2007) follows a different approach: Flexibility prob-
ably required at run-time, that is expectable already at
build-time for a certain point in the BP, is pre-mod-
elled in the process graph. This has the advantage that
such a deviation can be reviewed and approved by BP
administrators at build-time. In addition, it can be pre-
cisely defined which users are allowed to trigger it.
Furthermore, this reduces their effort at run-time
since it is not necessary that the end users specify a
desired change in detail.

In the CoPMoF (Controlable Pre-Modeled Flexi-
bility) project, several aspects for the pre-modelling
of flexibility at build-time have been identified
(Bauer, 2021, 2020, 2019). These include, optionally
executed activities, optional edges, and dynamically
triggered jumps to other activities. The pre-modelling
of such a run-time behaviour requires additional con-
structs, i.e. they are not provided by current BP mod-
elling languages. We extend the BPMN (Business
Process Model and Notation) standard to show how
they can be integrated. The extensions include simple

aspects, such as marking an edge as optional (Bauer,
2023a), but also complex issues, such as defining
multiple activities as a potential source or target of a
dynamic jump, where a different behaviour can be
specified for each involved activity (Bauer, 2024,
2022).

The overall goal of CoPMoF is that a BP, that in-
cludes such extensions, can be defined with a BP
modelling tool and, later at run-time, executed by a
BP engine. In addition to the BPMN extensions de-
veloped in this paper, this requires further topics that
have been omitted due to lack of space. However,
there already exist solutions for some of these topics:

= Possibilities for the graphical visualization (no-
tation) of pre-modelled dynamic jumps and
special types of sequence edges are discussed
in (Bauer, 2022, 2023a), cf. Fig. 1.
= Formal execution semantics for such special
types of sequence edges, for optional edges,
and for dynamic jumps have been published in
(Bauer, 2025, 2024, 2023b).
So far, there exists no work that examines how a
BPMN extension should be designed to enable the
pre-modelling of the required flexibility aspects for
the control flow of BP. In addressing this task, we aim
to achieve the “best possible design” of the extension.
This means that it must satisfy the following condi-
tions: (i) The extension must be compliant with the
BPMN standard. (ii) Each individual adaptation must
be based on the most suitable BPMN element, and
new elements must only be defined if the BPMN

standard does not contain any suitable elements for
extension.

The structure of this paper corresponds to the cho-
sen approach (research method): First, based on a lit-
erature review, suitable methodologies for BPMN ex-
tensions are selected (Section 2). Section 3 identifies
requirements for the pre-modelling of flexibility. By
applying the chosen methodology, these requirements
are transferred into a concrete extension of the BPMN
standard in Section 4. The paper concludes with a
summary and an outlook to future work.

2 RELATED WORK

In the following, methodologies and concrete ap-
proaches for BPMN extensions are presented.

BPMN 2.0.2 (OMG, 2013) offers a mechanism
for domain-specific extensions of this standard. Such
an extension introduces new elements that extend
BPMN without violating the standard itself. With this
mechanism, the schema of the extension can be de-
fined (e.g. with the BPMN element ExtensionDefini-
tion), i.e. this extends the BP modelling capabilities.
Furthermore, concrete values (with ExtensionAt-
tributeValue) for such new elements, that are required
for a specific process model, can be modelled and
stored in the XML file that specifies this BP template.

Stroppi Methodology: The BPMN standard does
not suggest a procedure for the usage of these ele-
ments when defining an extension. To close this gap,
(Stroppi et al., 2011) proposes the following model-
driven methodology: In Step (1), a “Conceptual Do-
main Model of the Extension” (CDME) of the desired
extensions is created as a UML class diagram. (2)
Then, it is transformed into a “BPMN Plus Extension
Model” (BPMN+X). It shows the additionally re-
quired classes, as well as their attributes and associa-
tions (between each other and with standard BPMN
classes). The result of Step (3) is a “XML Schema
Extension Definition Model”, which defines the
XML Schema of the extension unambiguously. (4)
The transformation into a corresponding XML
Schema document can be performed automatically,
e.g. by the Eclipse plug-in provided by (Stroppi et al.,
2011).

Braun Methodology: The Stroppi Methodology
represents a “purely technical” approach, i.e. it does
not suggest comparing the meaning of new and exist-
ing BPMN elements. Therefore, it is possible that
new elements are defined in Step (1) that are redun-
dant. (Braun et al., 2016; Braun and Esswein, 2014)
propose an equivalence check that avoids such redun-
dancy: For each new element, it is checked whether it

is really required or whether an already existing
BPMN element can be extended (e.g. by new attrib-
utes). This approach can be used in combination with
the Stroppi Methodology to achieve better results.

Now, approaches that extend BPMN (but do not
develop a new methodology) are categorized in order
to choose an appropriate methodology later on.

Standard-Compliant using Stroppi: This meth-
odology is used, among others, at (Ben Hassen et al.,
2017; Betke and Seifert, 2017; Domingos et al., 2016;
Mandal et al., 2017; Stroppi et al., 2015). These pa-
pers consider technical aspects (e.g. event handling)
as well as specific application domains (e.g. disaster
response processes). (Braun et al., 2016) uses the
Braun Methodology, in addition. Only two of the pa-
pers present the Steps (3) and (4) of the Stroppi meth-
odology. This is reasonable since these steps are un-
ambiguous and automatable transformations.

Standard-Compliant without Stroppi: This cat-
egory includes (Ddrndorfer and Seel, 2017; Dukaric
and Juric, 2018; Heguy et al., 2019; Jankovic et al.,
2015; Yousfi et al., 2016). (Martinho et al., 2015)
considers controllable flexibility: In contrast to the
CoPMoF approach, only hints are modelled where
and how, for example, dynamic changes should be
used. (Neumann et al., 2019; Onggo et al., 2018) ad-
ditionally use the Braun Methodology.

Not Compliant with the BPMN Standard:
(Abouzid and Saidi, 2019; Arevalo et al., 2016; Awad
et al., 2009; GroBlkopf, 2008) realize BPMN exten-
sions that are not compliant with the BPMN standard.

To summarize, some papers use the Stroppi Meth-
odology or the Braun Methodology, while others de-
velop a BPMN extension without a rigorous ap-
proach. There also exist approaches with a result that
is not compliant with the BPMN standard.

3 REQUIREMENTS

In the following, a BP for the change management of
vehicle parts (cf. Fig. 1) is used to explain the require-
ments that concern pre-modelling of flexibility. De-
tailed examples from practice are given in (Bauer,
2021). In addition, (Bauer, 2021) shows that these re-
quirements are not sufficiently covered by BPMN or
can only be realized by very complex process graphs.
The creation of such complex models, however, may
be too difficult for normal BP designers.

The main contribution of our whole approach is
that it becomes easy for BP designers to pre-model
flexibility, because they can use constructs offered by
the modelling tool, e.g. to specify an activity or edge
as optional (“opt.” in Fig. 1), to use special edge types

(from Act. C to D), to or define areas where dynamic
jumps are possible (in grey). At run-time, a user can
trigger this flexibility with little effort, since the cor-
responding properties were pre-modelled already at
build-time. The BP engine realizes the required run-
time behaviour, which is possible because there is a
fixed set of flexibility types (Bauer, 2021, 2020) that
can be implemented in a generic software product
(the PMS).

F:
Change
Approval

Figure 1: Simplified BP for Change Management.

3.1 Optional Activities and Edges

In the BP template of Fig. 1, Act. E is marked as op-
tional. That means, it can be omitted if this change
request is not relevant for prototyping (e.g. a change
in the product documentation or the colour of a part).
At run-time, this activity is offered to the potential ac-
tors in their worklists. One actor may perform it, or
decide to omit this activity. Omitting an optional ac-
tivity can also be useful at a lack of time. The require-
ments that concern optional activities are described in
(Bauer, 2021), in detail. In the following, we briefly
summarize the requirements that concern the BP
model, i.e. the data it must contain.

Requirement 1 for Optionality Op1: It must be
possible to store the information, that an activity is
marked as optional, in the BP template (i.e. in the pro-
cess model).

Op2: Such an activity is marked as optional in the
worklists. Furthermore, at BP modelling, it shall be
possible to define a text that explains when it is useful
or even necessary to omit it. The end users can also
see this explanation in their worklist.

Op3: Similar to actor assignments of activities
(resource assignments), rights can be modelled that
define who is allowed to omit this activity. As already
mentioned, this can be allowed for the potential actors
of this activity. However, it shall also be possible to
define that only an administrator of the BP instance
or the BP template is allowed to decide that the activ-
ity will be omitted.

Op4: It shall be possible to model a rule that de-
fines when an optional activity shall be omitted auto-
matically, e.g. because it is no longer necessary or
useful. Assume that the sole purpose of an Act. X is
to capture data that is only useful for Act. Y. Act. Y
is executed in parallel to Act. X and displays (among
others) information that was already captured by
Act. X. After Act. Y has finished, it is no longer

meaningful to execute Act. X. Therefore, it is omitted
automatically by the BP engine. Since not only the
potential actors of human tasks are able to omit an ac-
tivity (cf. Op3 and Op4), also automatic process steps
(e.g. service calls) and entire sub-processes can be
marked as optional.

In Fig. 1, the edge from Act. D to Act. E is marked
as optional, i.e. it defines the “normally desired” exe-
cution order. But it is also allowed to choose another
order, e.g. in exceptional cases. The optional edge en-
ables that Act. E is performed simultaneously with or
before Act. D. In this example, this makes sense since
the rating of the purchasing department can be helpful
for prototyping, but it is not really necessary. Both,
Act. D and E are offered to the potential actors in their
worklists, but Act. E is labelled as “actually not to be
performed yet”. Then, a user can decide to execute
this Act. E prematurely, e.g. because time must be
saved at the execution of this specific process in-
stance.

OpS: For each edge, it can be defined whether it
shall be Optional or Mandatory (the regular case). If
a sequence of activities 0, to o,, with optional edges
between them, is followed by an Act. m with a man-
datory edge between o, and m, Act. m only becomes
startable when all activities o, to 0, are completed.
However, in some scenarios, it may also make sense
that Act. m waits only for the completion of its di-
rectly preceding Act. o,. Then, Act. m can be started
before an Act. 0; € {01, ... on.1} has finished, i.e. its
succeeding Act. oi+; (that is connected with an op-
tional edge) was started prematurely. To realize such
a behaviour, an edge with the type Soft is modelled
from Act. o, to Act. m (Bauer, 2023b).

Op6: As already mentioned, an activity is marked
in the worklists accordingly, if it is prematurely exe-
cutable. In addition, it shall be possible to define an
explanation text that informs the user in which cases
it makes sense to start it earlier.

3.2 Special Types of Sequence Edges

The normal behaviour of a sequence edge from
Act. X to Act. Y is that Act. Y can be started as soon
as Act. X has finished. This can be extended by al-
lowing to use the start and end events of activities ar-
bitrarily for the definition of sequence edges. In the
BP of Fig. 1, Act. D (rating by the purchasing depart-
ment) can start already when Act. C has been started.
Such a behaviour saves time (concurrent engineering)
and can be modelled with the edge type StartBefore-
Start. In addition, the end of Act. D is only allowed
after the end of Act. C (type EndBeforeEnd). The rea-
son for this additional condition is that the final output

data of the development department must be in-
spected before finishing Act. D. With the type Start-
BeforeEnd, the succeeding Act. Y can be finished as
soon as its preceding Act. X has been started. (Bauer,
2025, 2023a) introduces the following requirements
for advanced types of sequence edges:

Ed1: An edge has one of the 4 types (i.e. all pos-
sible combinations): EndBeforeStart (normal case),
StartBeforeStart, EndBeforeEnd, and StartBefore-
End.

Ed2: These edge types define that the specified
event of the target activity Y may occur (immedi-
ately) after the specified event of its start activity X.
For edges, it shall be additionally possible to define
time intervals that must be observed. For example, if
an adhesive (applied at Act. X) must dry for a suffi-
ciently long time, the next Act. Y may only be started
4 hours after the end of Act. X. For this purpose, it
shall be possible to mark an edge as a time edge.

Ed3: Both, minimum and maximum time inter-
vals, may be required. Therefore, a value minTime
and a value maxTime can be defined for each time
edge. However, one of these values can be omitted
(i.e. then there is no minimum or maximum time re-
striction).

Ed4: To be able to inform actors of such activities
appropriately (e.g. by email), an escalation text can be
modelled. This text is used if the desired time for
starting or finishing this activity has been exceeded.

3.3 Ciritical Section

During the development of a prototype part, the ac-
tivities X (harden part) and Y (customer demonstra-
tion) are processed in an arbitrary order, i.e. they are
located in different parallel branches of an AND-
Split. Assume that there exists only one instance of
the resource “prototype part”. Since it is required by
both activities, only one of the activities X and Y can
be performed at the same time. Such a mutual exclu-
sion is modelled by a critical section (Russell and
Hofstede, 2006). It is not necessary that the assigned
activities are located in a contiguous region of the
process graph, e.g. non-critical activities can be lo-
cated between the AND-Split and Act. X or Act. Y
(Bauer, 2023a).

CS1: Arbitrary activities can be assigned to a crit-
ical section.

CS2: An activity can be assigned to several criti-
cal sections, e.g. if several exclusively usable re-
sources are required at the execution of this activity.

CS3: The assignment of an activity to a critical
section can be marked as optional. This is useful if,

for certain process instances, a resource may be ex-
ceptionally not needed at all or is no longer used by
the activity (although it has not yet finished). As with
optional edges (Op6), the potential actors see a warn-
ing in their worklists that starting this activity is nor-
mally not desired, but is possible in principle.

CS4: Again, an explanation text can be modelled
that explains why an overlapping execution of these
activities is normally not desired.

3.4 Dynamic Jumps

In exceptional situations, the user shall be able to trig-
ger a jump forward and backward in the process
graph. This is necessary, for example, if process re-
gions have to be skipped due to lack of time, or have
to be repeated to correct data entered or actions per-
formed during the original execution of activities. In
Fig. 1, starting at one of the activities C, D, or E, a
dynamic jump to Act. F (approval) is possible at any
time. For instance, if a change is unavoidable (e.g.
due to new legal requirements), it is possible to jump
directly to the approval (Act. F) as soon as the request
has been detailed in Act. B. However, the rating by
the purchasing department (Act. D) must be caught
up, because the received offers from suppliers are re-
quired later in the BP. Regions of activities, where
dynamic jumps are allowed, are pre-modelled at
build-time. Thereby, the BP designer can specify the
exact behaviour of a specific jump with configuration
options (Bauer, 2024, 2022). Such sophisticated
jumps are not offered by classical BP metamodels
(Russell and Hofstede, 2006). Furthermore, commer-
cial BP engines offer only very limited possibilities
for jumps. For example, IBM Business Administra-
tion Workflow (IBM, 2022) does not allow jumps
into or out of regions with concurrently executed ac-
tivities. A reason for this may be that, in such cases,
the execution semantics (i.e. the intended behaviour)
is not clear.

Jp1: For each jump, it shall be possible to model
multiple potential source and target activities. At run-
time, when a dynamic jump is triggered, the set of po-
tential target activities is used by an actor to select its
concrete target activities (one per parallel branch). It
is not necessary that the source activities form a con-
tiguous region, because there may exist activities be-
tween them, during those execution a jump does not
make sense. Similarly, there may exist activities be-
tween the target activities where it does not make
sense to continue the BP after the jump.

Jp2: An activity can be defined as a default target
activity for a particular jump. This can reduce the ef-
fort for the end users for the selection of the concrete

target activities. Of course, the users can also select
other activities as jump targets. If the potential jump
targets are located in parallel branches, one target ac-
tivity can be marked as the default for each branch.

Jp3: An activity can be modelled as a source or a
target for several different jumps.

Jp4: A jump can have different directions (re-
garding the control flow). It is possible to model a for-
ward, a backward, or a jump into another XOR/OR
branch (sideward). Thereby, even jumps into and out
of regions with concurrently executed activities are
allowed.

JpS: For each activity, the desired behaviour at
the jump can be selected using configuration options.
They can be defined for the source and target activi-
ties of the jump, as well as for activities in between
and after them. The following configuration options
are offered:

= CatchUpMode determines whether an activ-
ity, that was skipped during a forward jump,
shall be caught up later. This can be useful, be-
cause the execution of its associated action or
its output data will be required later in the BP.
Catching up can concern activities that belong
to the source and target regions of the jump, as
well as to activities in between.

= RepeatMode defines for an Act. X, that is to
be executed again after a backward jump,
whether it shall be repeated in fact. This behav-
iour can be useful, e.g. because it will produce
different output data. Therefore, with Repeat-
Mode(X)=Discard, the output data of its first
execution are discarded. In case of Repeat-
Mode(X)=Control, the original data are kept,
and the actor must check whether they must be
adapted. For this purpose, at the forward exe-
cution after the jump, Act. X is started again
with its data fields already pre-filled with orig-
inal data. With RepeatMode(X)=Keep, the out-
put data of its first execution is always kept and
Akt. X is not executed again.

= ContinueMode defines for a backward jump
whether activities must be aborted or shall be
continued. The latter case is useful, for exam-
ple, for an Act. X where the repetition of the
other activities will never produce a different
result. Thus, by completing Act. X and keeping
its output data, time can be saved during the
subsequent forward process execution. This
configuration option can be used for the source
activities of the backward jump as well as for
their successors. ContinueMode(X)=Abort re-
sults in the cancellation of Act. X when the
jump is triggered. With Complete, a running

Act. X can be finished, but not started newly.
The latter is additionally allowed with
Start&Complete, so that further activities can
be executed.
Jp6: For each jump, it can be defined who is allowed
to trigger it. Again, the definition of these rights is
similar to an actor assignment. If no special rights are
defined for a jump, it can be triggered by any current
actor of one of its source activities.

4 EXTENSION OF BPMN

The requirements are realized as an extension that is
compliant with the BPMN standard. As described in
(Zarour et al., 2019), it is easy to integrate such an
extension into existing modelling tools. Furthermore,
the Stroppi Methodology is used to develop the ex-
tension, because this is a well-defined and rigorous
procedure. Additionally, the Braun Methodology is
used to determine, which elements are newly required
in fact, and for which it is sufficient to add attributes
or associations to existing BPMN elements.

4.1 Development of the CDME

Following the Stroppi Methodology, the first step is
to create the UML class diagram CDME shown in
Fig. 2. It describes all the classes, associations, and
attributes needed to implement the requirements de-
scribed in Section 3. The additionally used Braun
Methodology ensures that a new class is only intro-
duced if it is really necessary. Furthermore, always
the most suitable class for the extension is identified.
Therefore, in each case, we discuss which class from
the BPMN standard should be used for this purpose.

4.1.1 Optional Activities

The BPMN element Activity is extended, because (as
explained in Requirement Op4), in addition to user
tasks, among others, entire sub-processes may be op-
tional. Therefore, the BPMN element Task is not suit-
able. FlowNode is too general, since it includes gate-
ways, which cannot be omitted. According to the re-
quirements Opl to Op4 (cf. Section 3.1), Activity is
extended by the following attributes and associations
(see also Fig. 2):

Op1: optional The Boolean value true indicates
that an activity is optional.

Op2: explanation This string contains the expla-
nation text for the end users.

Op3: authorizedUsers This is a new association
of the element Activity. Its target element has the type

FlexibleControlFlow > FlowElement |1
\V R

<<enumeration>>

<<enumeration>>

OptionalMode JumpDirection
Mandatory Forward
>| FlowNode | SequenceFlow | CriticalSection | Jump Soft Backward
1 optional : OptionalMode 5 direction : JumpDirection Optional Sideward
explanation : strin concerne: =
Activit evgntOrder : Even%Order Activities autho source| |target |other <<enumeration>>
- AL timeEdge : boolean rized ~ Activil |Activi |Activi | __RepeatMode |
optional : boolean escalationText : string * Users lies| |ties ties Discard
explanation : string E - — 1.% 1.% 0.x Control
= minl Tmax xclusiveActivity —
1 skip time| |time | optional : boolean JumpActivity Keep
Rule activity | explanation : string default : boolean - Compensate
a.utrljo 0.1 0.1\ V0.1 catchupMode : boolean <<e€vuelpteor?ctilgp>> <<onumoration>s
rize i repeatMode : RepeatMode :
Users RormalExpression 0.1 R Rol 0.1 co%tinueMode: P EndBeforeStart ContinueMode
- EEeleEelE - ContinueMode | | | EndBeforeEnd Abort
StartBeforeStart || Complete
concernedNode StartBeforeEnd StartAndComplete]

Figure 2: Conceptual Domain Model of the Extension (CDME) for the Extensions Required to Pre-Model Flexibility.

ResourceRole (the same as actor assignments in
the BPMN standard). It can be omitted at process
modelling. Therefore, the cardinality O is allowed. In
this case, only the potential actors of the activity are
allowed to omit it (cf. Section 3.1).

Op4: skipRule This association can be used to as-
sign a FormalExpression. As soon as it evaluates to
true, the activity is omitted automatically. This asso-
ciation can be missing. Then, omitting is always trig-
gered manually by a user.

Similar as in (Stroppi et al., 2011), elements from
the BPMN standard have a grey colour in Fig. 2. At-
tributes already defined by the BPMN standard are
not repeated. Therefore, for example, no attributes are
shown for the class FlowNode. New classes have a
white background. The same applies to new attributes
of BPMN standard elements.

4.1.2 Optional Edges

Sequence edges are realized in BPMN by the element
type Sequence-Flow. Therefore, this type is extended
by the following attributes:

Op5: optional This attribute describes whether an
edge has the type Mandatory, Optional, or Soft (cf.
Section 3.1). These types are defined by the enumer-
ation OptionalMode.

Op6: explanation It contains the text that ex-
plains to the user, when a premature execution of the
target activity of this optional edge makes sense.

4.1.3 Special Types of Sequence Edges

Since these are also edges between activities, the re-
quired attributes and associations are added to the el-
ement SequenceFlow, as well.

Ed1: eventOrder This attribute describes the
type of the edge, i.e. whether a start or end event of
an activity is referenced. For this purpose, the enu-
meration EventOrder is introduced, which contains
the four possible values explained in Section 3.2.

Ed2: timeEdge It is a time edge if the Boolean
attribute is true.

Ed3: minTime, maxTime These are associations
to the BPMN element FormalExpression. It is used to
calculate the corresponding point in time. Such an ex-
pression can contain a pure time length, that, for ex-
ample, is added to the end time of the preceding ac-
tivity to calculate the earliest or latest start time. How-
ever, more complex expressions are possible as well,
e.g. “11:00 a.m. on the workday that starts at least 2
days later”. At both associations, the cardinality 0 is
also allowed, because the expression can be missing.
This means that the earliest or latest time is arbitrary.

Ed4: escalationText The escalation text that is
used to inform users.

4.1.4 Critical Section

It is realized by the new element CriticalSection,
since BPMN does not contain a suitable standard ele-
ment as a basis for an extension. CriticalSection is a
specialization of FlowElement, because it affects the
execution order of activities. Several attribute values
are modelled for each concerned activity (e.g. assign-
ment is optional). Since these values can be different
for each activity of a CriticalSection, we introduce the
element type ExclusiveActivity. This allows to create
a separate element of this type for each activity and,
therefore, to store different attribute values.

CS1: concernedActivities This association as-
signs multiple elements of the type ExclusiveActivity
to a CriticalSection. For each, the concerned activity
is identified by the association activity, which refers
to an element of type Activity. This element type was
chosen because any kind of elementary task (e.g. Us-
erTask, ServiceTask) can belong to a critical section,
as well as a whole sub-process that must use a re-
source exclusively.

CS2: activity This association even allows that an
activity is assigned to multiple critical sections (by as-
signing it to multiple elements of type ExclusiveActi-
vity).

CS3: optional The value true indicates that the
activity is assigned optionally.

CS4: explanation The explanation text for the
end users in case of an optional activity assignment.

4.1.5 Dynamic Jumps

The new element Jump defines a pre-modelled jump.
It is a specialization of FlowElement, because jumps
affect the execution order.! Several associations are
used to assign elements of type JumpActivity. Such
an element defines properties (e.g. configuration op-
tions) of an activity that is affected by the jump.
JumpActivity refers to an element of type FlowNode
since jumps may concern any type of activity as well
as gateways. The latter are relevant, because a jump
can start directly after a gateway, and a gateway may
be its target, e.g. since the condition of an XOR-Split
must be re-evaluated.

Jpl: sourceActivities, targetActivities, other-
Activities These associations refer to multiple ele-
ments of the type JumpActivity. Each JumpActivity
assigns properties to a referenced activity. The asso-
ciations sourceActivities and targetActivities must
contain at least one activity, since otherwise no source
or target of this jump is defined. The association oth-
erActivities is used, for example, to define the config-
uration options for activities that are located between
the source and target activities of the jump (cf. Re-
quirement Jp5).

Jp2: default true indicates that an activity is a de-
fault target of the jump.

Jp3: concernedNode An activity can be a source
or a target activity for an arbitrary number of jumps.
In such cases, it is assigned to multiple JumpActivity
elements with this association.

Jp4: direction Specifies the direction of the jump.
This value is contained in the element Jump because
it is valid for all activities of this jump. Its data type
is the enumeration JumpDirection that offers the val-
ues Forward, Backward, and Sideward.

Jp5: catchupMode, repeatMode, continue-
Mode They realize the configuration options and are
attributes of JumpActivity since the values may vary
for different activities of the same jump. The data
type of catchupMode is Boolean, because only two

! To realize a “jump edge” by extending the BPMN ele-
ment SequenceFlow is not appropriate because Se-
quenceFlow connects two FlowNodes. However, to
model jumps, elements of type JumpActivity are required

values are possible. For the other attributes, enumer-
ations are introduced that define appropriate values.

Jp6: authorizedUsers The BPMN eclement Re-
sourceRole is used to assign user rights for this jump
(as at Op3 for optional activities).

4.2 BPMN+X Model

Using the Stroppi Methodology, the CDME is trans-
formed into the BPMN+X Model FlexibleControl-
Flow shown in Fig. 3. Its stereotype is <<Extension-
Model>>. As described in (Stroppi et al., 2011), the
following transformation procedure was used:
= (lasses from the BPMN standard are adopted
as stereotype <<BPMNElement>> (e.g. Flow-
Element, Activity).
= [f additional attributes are needed for such a
class (e.g. for Activity), an additional class with
the stereotype <<ExtensionDefinition>> is cre-
ated. It contains these attributes (e.g. optional
and explanation for OptionalActivity).
= (lasses newly defined in CDME that are direct
subtypes of BPMN classes are treated analo-
gously, i.e. they have the stereotype <<Exten-
sionDefinition>> and the attributes are adopted
(e.g. class Jump with the attribute direction).
= If a new class only has relations to BPMN
standard classes, it gets the stereotype <<Ex-
tensionElement>>. Attributes are adopted as
well (e.g. JumpActivity with the attributes de-
fault, etc.).
= Enumerations result in the stereotype <<Exten-
sionEnum>> (e.g. OptionalMode).
= Generalizations between original elements of
the BPMN standard are preserved (e.g. be-
tween FlowNode and FlowElement).
= Generalizations with a newly created class as
subtype and a BPMN standard class as super-
type result in an association with stereotype
<<ExtensionRelationship>> (e.g. from Activ-
ity to OptionalActivity and from FlowElement
to Jump).
= All associations of newly created classes are
adopted. This applies to associations between
new classes (e.g. sourceActivities for the class
Jump) and to associations to BPMN standard
classes (e.g. authorizedUsers for Jump).
The corresponding XML Schema Extension Model
and the XML Schema document (cf. (Bauer, 2023c))
were created as described in (Stroppi et al., 2011).

to enable the assignment of additional attributes. In addi-
tion, SequenceFlow would contain the unnecessary attrib-
utes condition and isimmediate.

<F<]Ex_tbelng°nM0|('1:E|’|» <<BPMNElement>> <<ExtensionEnum>>||<<ExtensionEnum>>
exibleControlFlow FlowElement [~~---._<<ExtensionRelationship>> OptionalMode JumpDirection
/V <<Extensionl'-\j_§lationship>> ‘\‘“‘\.‘_‘_‘ lé/lgfr{datory ng\?vradrd
N <<BPMNElement>> <<BPMNElement>> |<<ExtensionDefinition>>] <<ExtensionDefinition>> Optional Sideward
{ .—__FlowNode L___SequenceFlow || _ CriticalSection | | Jump
ﬁﬁ W concerned || direction : JumpDirection <<ExtensionEnum>>||<<ExtensionEnum>>
Relationship>> Activities |autho Source| [target |other EventOrder RepeatMode
<<BPMNElement>> y rized Activi| |Activi |Activi| EndBeforeStart Discard
Activity <<ExtensionDefinition>> * Users 1tie§ ti1es, tgas* g?adnB;ef?é?eEsrgn (KZgg:)rol
" ExtendedEdge <<ExtensionElement>> = - -
i]\ R;Ta%ixc}ggﬁ:gL optional - Optiong]Mode ExclusiveActivity <<ExtensionEI§rnent>> StartBeforeEnd Compensate
v explanation : string optional : boolean JumpActivity
<<ExtensionDefinition>> gyﬁgé%gierg\gfg;grder explanation : string gg{gﬁgﬁhﬁggleeegoolean <<ExtensionEnum>>,
t.Opt'IO_n;IAICt'V'ty escalationText : string repeatMode : RepeatMode AbCrc;nt[nueMode
op ||ona - boolean - activity continueMode : o
explanation : string min| [max ContinueMode Complete
n Time| |Time StartAndComplete
sklpRuIeJ/
" 0.1 0.1 0.1 concerned
autfor " <<BPMNElement>> Node
Users Formal Expression <<BPMNElement>>
| 0..1 ResourceRole 0.1

Figure 3: BPMN Plus Extension (BPMN+X) Model

5 SUMMARY AND OUTLOOK

Based on scenarios for the pre-modelling of flexibil-
ity (which have already been explained in preliminary
work of the CoPMoF project in detail), this paper de-
rives concrete requirements for the extension of the
BP metamodel. Scientific literature was used to iden-
tify suitable methods for extending the BPMN stand-
ard. The chosen methodology results in an extension
that is compliant with the BPMN standard. Further-
more, it does not contain any elements that are redun-
dant to elements of this standard. The developed ex-
tension is a step towards being able to extend an ex-
isting BP modelling tool for the pre-modelling of
flexibility. Since several extensions of BPMN are de-
scribed in literature, a technical evaluation probably
will not result in any relevant insights. However, the
resulting tool can be used to explore the suitability of
different notations for constructs that allow pre-mod-
elling flexibility for the control-flow of BP (some
graphical visualizations have already been proposed
in preliminary work of CoPMoF).

So far, only for some flexibility aspects a formal
execution semantics has been developed. This seman-
tics is realized by execution rules, which extend and
modify the rules used by classical BP engines. How-
ever, such rules are necessary (i.e. they partially still
have to be developed) to extend a BP engine appro-
priately. Then, it is able to control workflows that in-
clude pre-modelled flexibility (e.g. optional sequence
edges). Based on such a BP engine, it can be analysed,
whether and to what extent, the CoPMoF approach
actually covers real-world requirements and how of-
ten these extensions are needed.

The approach on which this work is based, i.e. to
pre-model flexibility, is obviously not suitable for all
scenarios and flexibility requirements. It can only be
used for changes that can be anticipated already at
build-time of the BP. As shown in previous work, in
practice, there are several such BP with predictable
flexibility requirements (e.g. in the change manage-
ment process of Fig. 1). However, even for such BP,
unexpected flexibility may be required, in addition.
Therefore, it must be possible to perform (com-
pletely) dynamic changes at run-time of the BP, as
well. Furthermore, there exist BP that require even
more flexibility for the end users. In this case, com-
pletely different approaches are required, such as case
handling.

REFERENCES

Abouzid, 1., Saidi, R., 2019. Proposal of BPMN Extensions
for Modelling Manufacturing Processes. Proc. Int.
Conf. on Optimization and Applications.

Arevalo, C., Escalona, M.J., Ramos, 1., Dominguez-Mufioz,
M., 2016. A Metamodel to Integrate Business Processes
Time Perspective in BPMN 2.0. Information and Soft-
ware Technology 77, 17-33.

Awad, A., Grosskopf, A., Meyer, A., Weske, M., 2009. En-
abling Resource Assignment Constraints in BPMN.
Hasso Plattner Institute, Potsdam.

Bauer, T., 2025. Behaviour and Execution Semantics of Ex-
tended Sequence Edges in Business Processes, in: Proc.
27th Int. Conf. on Enterprise Information Systems.
Porto.

Bauer, T., 2024. A Formal Execution Semantics for Sophis-
ticated Dynamic Jumps within Business Processes, in:
Proc. 26th Int. Conf. on Enterprise Information Sys-
tems. Angers, pp. 634—642.

Bauer, T., 2023a. Modelling of Advanced Dependencies
Between the Start and the End of Activities in Business
Processes, in: Proc. 25th Int. Conf. on Enterprise Infor-
mation Systems. Prague, pp. 457—465.

Bauer, T., 2023b. Behaviour and Execution Semantics of
Optional Edges in Business Processes in: Proc. In-
formatik 2023, Workshop ZuGPM, Berlin (in German).

Bauer, T., 2023c. BPMN-Erweiterungen zur Vormodellier-
ung von Flexibilitdt fiir den Kontrollfluss von Ges-
chéftsprozessen, in: Proc. 18th Int. Conf. on Wirt-
schaftsinformatik. Paderborn.

Bauer, T., 2022. Requirements for Dynamic Jumps at the
Execution of Business Processes, in: Proc. 12th Int.
Symposium on Business Modeling and Software De-
sign. Fribourg, pp. 35-53.

Bauer, T., 2021. Pre-modelled Flexibility for the Control-
Flow of Business Processes, in: Enterprise Information
Systems. Springer, pp. 833—857.

Bauer, T., 2020. Business Processes with Pre-designed
Flexibility for the Control-Flow, in: Proc. 22nd Int.
Conf. on Enterprise Information Systems. pp. 631-642.

Bauer, T., 2019. Pre-modelled Flexibility for Business Pro-
cesses, in: Proc. 21th Int. Conf. on Enterprise Infor-
mation Systems. Heraklion, pp. 547-555.

Ben Hassen, M., Keskes, M., Turki, M., Gargouri, F., 2017.
BPMN4KM: Design and Implementation of a BPMN
Extension for Modeling the Knowledge Perspective of
Sensitive Business Processes. Procedia Computer Sci-
ence 121, 1119-1134.

Betke, H., Seifert, M., 2017. BPMN for Disaster Response
Processes: A Methodical Extension. Proc. 47. Jahres-
tagung der Gesellschaft fiir Informatik 1311-1324.

Braun, R., Esswein, W., 2014. Classification of Domain-
Specific BPMN Extensions. Proc. 7th IFIP Working
Conf. on the Practice of Enterprise Modeling 42-57.

Braun, R., Schlieter, H., Burwitz, M., Esswein, W., 2016.
BPMN4CP Revised - Extending BPMN for Multi-per-
spective Modeling of Clinical Pathways. Proc. 49th Ha-
waii Int. Conf. on System Sciences 3249-3258.

Domingos, D., Respicio, A., Martinho, R., 2016. Reliability
of IoT-Aware BPMN Healthcare Processes, in: Reis,
Maximiano (Eds.): Internet of Things and Advanced
Application in Healthcare. IGI Global, pp. 793-821.

Dorndorfer, J., Seel, C., 2017. A Meta Model Based Exten-
sion of BPMN 2.0 for Mobile Context Sensitive Busi-
ness Processes and Applications. Proc. 13th Int. Conf.
Wirtschaftsinformatik 301-315.

Dukaric, R., Juric, M.B., 2018. BPMN Extensions for Au-
tomating Cloud Environments using a Two-layer Or-
chestration Approach. Journal of Visual Languages &
Computing 47, 31-43.

GroBkopf, A., 2008. An Extended Resource Information
Layer for BPMN. Hasso-Plattner-Institute for IT Sys-
tems Engineering, Potsdam.

Heguy, X., Zacharewicz, G., Ducq, Y., Tazi, S., Vallespir,
B., 2019. A Performance Measurement Extension for
BPMN. Enterprise Interoperability VIII, Proc. I-ESA
Conferences 333-345.

IBM, 2022. Business Automation Workflow 22.x. URL
https://www.ibm.com/docs/en/baw/22.x (accessed:
2025/01/17).

Jankovic, M., Ljubicic, M., Anicic, N., Marjanovic, Z.,
2015. Enhancing BPMN 2.0 Informational Perspective
to Support Interoperability for Cross-Organizational
Business Processes. Computer Science and Information
Systems 12, 1101-1120.

Kumar, K., Narasipuram, M.M., 2006. Defining Require-
ments for Business Process Flexibility. Workshop on
Business Process Modeling, Design and Support, Proc.
of CAISE06 Workshops Luxemburg, 137—148.

Mandal, S., Weidlich, M., Weske, M., 2017. Events in
Business Process Implementation. Proc. Int. Conf. on
Business Process Management 141-159.

Martinho, R., Domingos, D., Varajdo, J., 2015. CF4ABPMN:
A BPMN Extension for Controlled Flexibility in Busi-
ness Processes. Procedia Computer Science 64, 1232—
1239.

Neumann, J., Franke, S., Rockstroh, M., Kasparick, M.,
Neumuth, T., 2019. Extending BPMN 2.0 for Intraoper-
ative Workflow Modeling with IEEE 11073 SDC for
Description and Orchestration of Interoperable, Net-
worked Medical Devices. Int. Journal of Computer As-
sisted Radiology and Surgery 1403—-1413.

OMG, 2013. Object Management Group - Business Process
Model and Notation (BPMN) 2.0.2.

Onggo, B.S.S., Proudlove, N.C., D’Ambrogio, S.A., Cala-
brese, A., Bisogno, S., Levialdi Ghiron, N., 2018. A
BPMN Extension to Support Discrete-event Simulation
for Healthcare Applications. Journal of the Operational
Research Society 69, 788—802.

Reichert, M., Weber, B., 2012. Enabling Flexibility in Pro-
cess-Aware Information Systems. Springer.

Russell, N., Hofstede, A.H.M., 2006. Workflow Control-
Flow Patterns: A Revised View. BPM Center Report.

Schonenberg, M.H., Mans, R.S., Russell, N.C., Mulyar,
N.A., Aalst, W.M.P. van der, 2007. Towards a Taxon-
omy of Process Flexibility (Extended Version). Univer-
sity of Technology, Eindhoven.

Stroppi, L.J.R., Chiotti, O., Villarreal, P.D., 2015. Defining
the Resource Perspective in the Development of Pro-
cesses-aware Information Systems. Information and
Software Technology 59, 86—108.

Stroppi, L.J.R., Chiotti, O., Villarreal, P.D., 2011. Extend-
ing BPMN 2.0: Method and Tool Support. Proc. Int.
Workshop on Business Process Model and Notation
59-73.

Yousfi, A., Bauer, C., Saidi, R., Dey, A.K., 2016. uBPMN:
A BPMN Extension for Modeling Ubiquitous Business
Processes. Information and Software Technology 74,
55-68.

Zarour, K., Benmerzoug, D., Guermouche, N., Drira, K.,
2019. A Systematic Literature Review on BPMN Ex-
tensions. Business Process Management Journal. 26,
1473-1503.

