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Motivation for lifelong learning



The brain learns incrementally

.. and retains acquired skills 
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We can limit compute ..

.. by reusing, adapting, transferring
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Unknown environments require 

generalization and adaptation 
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A broad definition

• Learn incrementally

• Retain acquired skills 

• Reuse / recycle / extend skills

Task 1

Task 2

Task 3

Task 5

Task 4
Task 6

Task 7

Lifelong learning
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Lifelong learning / Continual learning

Task 1

Task 2

Task 3

Task 5

Task 4
Task 6

Task 7

Task A Task B Task C

Lifelong learning
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Lifelong learning / Continual learning

Option 1:
Task A is only a starting point for Task B

Task 1

Task 2

Task 3

Task 5

Task 4
Task 6

Task 7

Task A Task B Task C

Lifelong learning
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Lifelong learning / Continual learning

Option 2: 
Task A is still relevant

Task 1

Task 2

Task 3

Task 5

Task 4
Task 6

Task 7

Task A Task B Task C

Lifelong learning

Main challenge

Catastrophic forgetting

[French@CognitiveScience99]
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Lifelong learning / Continual learning

Option 2: 
Task A is still relevant

Task 1

Task 2

Task 3

Task 5

Task 4
Task 6

Task 7

Task A Task B Task C

Lifelong learning
Rigidity

Plasticity
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Lifelong learning / Continual learning

Task A Task B Task C

++

Test time
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Continual learning

in the age of large pretrained models



[Deng@CVPR09]
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CNN Features off-the-shelf: 
an Astounding Baseline for Recognition

[Razavian@W_CVPR14]

[Krizhevsky@NeurIPS12]
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[Bommasani@Arxiv21]
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Pretraining

Transfer
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Let’s assume two phases
• Pretraining & Transfer

What comes next
• How can we pretrain a good model?

• Evaluating generalization capabilities

• Training visual features using data beyond images

• How should we transfer?
• From one pretrained model to a specific task

• From multiple pretrained models
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Pretraining strong models 



A “good” pretrained model

• Broad knowledge

• Robust to concept shifts

• Easily adapts to new tasks
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Lifelong learning

Task 1

Task 2

Task 3

Task 5

Task 4
Task 6

Task 7

?

We don’t know the target task

Task A
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Fully-Supervised Classification
 Images + labels

Proxy task

Target tasks

Image

Classification

Object

Detection

Image

Retrieval

Instance

Segmentation

Visual representationsModel

Reducing annotation cost
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Fully-Supervised
fine-grained annotations

expert knowledge

Self-supervised
annotation-free images

Eurasian finch

Brain coral

Ruddy 
turnstone

Dowitcher

Coral reef Coral fungus

Reducing annotation cost
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Fully-Supervised
fine-grained annotations

expert knowledge

Self-supervised
annotation-free images

Eurasian finch

Brain coral

Ruddy 
turnstone

Dowitcher

Coral reef Coral fungus

Reducing annotation cost

No supervision

labels
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Fully-Supervised
fine-grained annotations

expert knowledge

Self-supervised
annotation-free images

Eurasian finch

Brain coral

Ruddy 
turnstone

Dowitcher

Coral reef Coral fungus

Reducing annotation cost

DINOv2
[Oquab@TMLR24]

No supervision

labels
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Images

Proxy task
= Rotation prediction

labels

Target task = leaf classification

labels

Linear 

classifier
Encoder

Encoder Linear 

classifier

Leaf class 1

Leaf class 2

…

Class 1 Class 2

Class 3 Class 4

Visual representation

RotNet [Gidaris@ICRL18]

Diane Larlus – VISIGRAPP 2025



How well do those pretrained models 

generalize? 



Proxy task

Target tasks

Image

Classification

Object

Detection

Image

Retrieval

Instance

Segmentation

Visual representationsModel

Fully-supervised classification or

Self-supervised approaches, etc.
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Fully-supervised classification or

Self-supervised approaches, etc.

Proxy task

Target tasks

How well does the produced 

visual representation transfer?

Model

??

Visual representations
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Proxy task

Visual representationsModel

Measure performance on (many) other datasets

Fully-supervised classification or

Self-supervised approaches, etc.
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Proxy task

Target task
Generalization 

across concepts

Generalization 

Across tasks

Generalization 

across

domains
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Seen: Cats 

Unseen: Caticorns

When training a model on a set of seen concepts,

how well does it generalize to new, unseen concepts ?

Evaluation of visual representations – concept generalization

Hypothesis:  Semantic similarity between seen and unseen concepts matters for generalization
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Semantic distance between concepts

Lin similarity in the WordNet Graph

[Lin: Lin@ICML1998]

European wildcattiger cat

WordNet Graph
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[Lin: Lin@ICML1998]

Semantic distance between concepts
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Semantic distance between sets of concepts

ImageNet-1K

Level - 1 Level - 2 Level - 3 Level - 4 Level - 5
ImageNet-1K

1000
categories

[ImageNet: Deng@CVPR2009]

[CoG: Sariyildiz@ICCV21]
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ImageNet-1K

Increasingly difficult test sets (5 concept generalization levels)

Level - 1 Level - 2 Level - 3 Level - 4 Level - 5

Training set

ImageNet-1K
1000

categories

The CoG benchmark

[ImageNet: Deng@CVPR2009]

The Concept Generalization (CoG) benchmark

[CoG: Sariyildiz@ICCV21]
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The CoG benchmark
[CoG: Sariyildiz@ICCV21]

Observations

● It is harder to generalize to semantically distant concepts

Level - 1 Level - 2 Level - 3 Level - 4 Level - 5
ImageNet-1K

1000
categories

Increasing semantic distance to ImageNet-1K
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The CoG benchmark
[CoG: Sariyildiz@ICCV21]

Observations

● It is harder to generalize to semantically distant concepts

● Recent self-supervised approaches generalize better

● Label-based augmentations hurt concept generalization

Reference

Concept generalization in visual representation learning

Mert Bulent Sariyildiz, Yannis Kalantidis, Diane Larlus, Karteek Alahari 

ICCV 2021
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..  a good model should shine both on

• Training task

• Transfer tasks

… labels shouldn’t hurt

The CoG benchmark

Option 2: 
Task A is still relevant

Rigidity
Plasticity

Task A Task B

Observations

It is harder to generalize to semantically distant concepts

● Recent self-supervised approaches generalize better

Label-based augmentations hurt concept generalization

Yes, but ..
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Training

T
ra

n
s
fe

r

CoG

+

8 datasets

..  a good model should shine both on

• Training task

• Transfer tasks

… labels shouldn’t hurt
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For the Training task + every Transfer task

Train on ImageNet-1K

Linear 

classifier

Model

Model
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Training

T
ra

n
s
fe

r

CoG

+

8 datasets
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Training

T
ra

n
s
fe

r

supervised 

learning

[RSB = Wightman@CVPRW21]

[SupCon = Khosla@NeurIPS20]

[Look = Feng@ICLR22]
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self-supervised 

learning

[DINO = Caron@ICCV21]

[PAWS = Assran@ICCV21]
Training

T
ra

n
s
fe

r

supervised 

learning

semi-supervised 

learning
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Training

T
ra

n
s
fe

r
Goal

State of the art
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1. Multi-crop data augmentation

[SWAV = Caron@NeurIPS20]

[DINO = Caron@ICCV21]

Model
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1. Multi-crop data augmentation

2. Expendable projector head [MoCo = He@CVPR20]

[SimCLR = Chen@ICML20]

[MoChi = Kalantidis@NeurIPS20]

[DiNO = Caron@NeurIPS21]

[Wang@CVPR22]

Model Projector
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1. Multi-crop data augmentation

2. Expendable projector head

3. (optional) Replace class weights with class prototypes 

Nearest Class Means (NCM)

[NCM = Mensink@ECCV12]

[DeepNCM = Guerriero@W-ICLR18]

[T-Rex: Sariyildiz@ICLR22]

Model Projector
Class weights

or prototypes
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Previous
State of the art

Training

T
ra

n
s
fe

r
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Previous
State of the art

Training

T
ra

n
s
fe

r

[T-Rex: Sariyildiz@ICLR22]
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*
Previous

State of the art

New 
State of the art

Training

T
ra

n
s
fe

r

[T-Rex: Sariyildiz@ICLR22]
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T-ReXTake home message

There is no reason for no supervision!

o Multi-crop data augmentation helps

o Expendable projector controls Training / Transfer trade-off 

Reference

No Reason for No Supervision: Improved Generalization in Supervised Models

Mert Bulent Sariyildiz, Yannis Kalantidis, Karteek Alahari, Diane Larlus 

ICLR 2023
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Pretraining visual representations

from multimodal data .. or models



Fully-Supervised Classification
 Images + labels

Proxy task

Target tasks

Image

Classification

Object

Detection

Image

Retrieval

Instance

Segmentation

Visual representationsModel

Reducing annotation cost
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Fully-Supervised
fine-grained annotations

Self-supervised
annotation-free images

Eurasian finch

Brain coral

Ruddy 
turnstone

Dowitcher

Coral reef Coral fungus

Reducing annotation cost
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Fully-Supervised
fine-grained annotations

Self-supervised
annotation-free images

Caption-supervised
side information

Eurasian finch

Brain coral

Ruddy 
turnstone

Dowitcher

Coral reef Coral fungus

Reducing annotation cost

a statue of a man stands in front of an old red bus.
a big and red bus with many displays for people to watch.
a red double decker bus parked next to a statue.
the double decker bus is beside a statue near restaurant tables.
a view of a bus sitting in front a small wooden statue.

a busy street with cars and trucks down it
an intersection with a view that looks towards a small downtown area.
cars parked on the side of the street and traveling down the road
an intersection with a stop light on a city street.
a street filled with lots of traffic under a traffic light.
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Fully-Supervised
fine-grained annotations

Self-supervised
annotation-free images

Caption-supervised
side information

Eurasian finch

Brain coral

Ruddy 
turnstone

Dowitcher

Coral reef Coral fungus

a statue of a man stands in front of an old red bus.
a big and red bus with many displays for people to watch.
a red double decker bus parked next to a statue.
the double decker bus is beside a statue near restaurant tables.
a view of a bus sitting in front a small wooden statue.

a busy street with cars and trucks down it
an intersection with a view that looks towards a small downtown area.
cars parked on the side of the street and traveling down the road
an intersection with a stop light on a city street.
a street filled with lots of traffic under a traffic light.

Weak annotations

Reducing annotation cost
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Language Model 

Text

“Little girl holding red umbrella”

“Little girl holding red [MASK]”

Mask a token

[MASK] = Umbrella 

Mask a token

BERT model

[Delvin et al. 2018]
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Input: Image Caption

“Little girl holding red umbrella”

“Little girl holding red [MASK]”

Mask a token

[MASK] = Umbrella 

Mask a token
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Input: 

Multi-modal network =
Auxiliary modules

Image Caption

“Little girl holding red umbrella”

“Little girl holding red [MASK]”

Mask a token

[MASK] = Umbrella 

Mask a token

Visual representation

(learnt from scratch)

Textual representation

(frozen)

Image-Conditioned Masked Language Modeling Task (ICMLM)

[ICMLM = Sariyildiz@ECCV20] 

[VirTex = Desai@CVPR21] 
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Weak annotations

Reducing annotation cost

a statue of a man stands in front of an old red bus.
a big and red bus with many displays for people to watch.
a red double decker bus parked next to a statue.
the double decker bus is beside a statue near restaurant tables.
a view of a bus sitting in front a small wooden statue.

[ICMLM = Sariyildiz@ECCV20] 

[VirTex = Desai@CVPR21] 

Caption-supervised
side information

smaller sets 
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Weak annotations

Reducing annotation cost

Unfiltered
Image + Text

large scale

a statue of a man stands in front of an old red bus.
a big and red bus with many displays for people to watch.
a red double decker bus parked next to a statue.
the double decker bus is beside a statue near restaurant tables.
a view of a bus sitting in front a small wooden statue.

[ICMLM = Sariyildiz@ECCV20] 

[VirTex = Desai@CVPR21] 

[CLIP = Radford@ICLM21] 

D
a

ta
s
e
t 
s
c
a

le

Caption-supervised
side information

smaller sets 
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[CLIP = Radford@ICLM21] 
Unfiltered

Image + Text
large scale

[DALL-E = Ramesh@ICML21] 

[Stable diffusion = Rombach@CVPR22] 

[DALL-E2 = Saharia@NeurIPS21] 

Text-to-image generation

[DALL-E3 = Betker@TechReport23] 

[Stable diffusion 3 = Esser@Arxiv24] 
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cat

Do we still need actual images 

to (pre-)train visual representations?

[Stable Diffusion = Rombach@CVPR22]
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Fully-Supervised Classification
 Images + labels

Proxy task

Target tasks

Image

Classification

Object

Detection

Image

Retrieval

Instance

Segmentation

Visual representationsModel

Synthetic Images:

ImageNet-SD
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prompt = class name

“pirate ship” class in ImageNet“papillon” class in ImageNet

Synthetic Image

papillon lorikeet pirate ship

Semantic errors Lack of diversity Domain issues

Diane Larlus – VISIGRAPP 2025



prompt = class name

prompt = class name, hypernym*

*  from Wordnet lexical database

prompt = class name, description*

prompt = class name, hypernym inside background**

prompt = class name, description (+ reduce guidance scale)

class class +  
hypernym

class + 
description

class 
inside bg

class + descri 
(scale2)

Performance on ImageNet-100-Val

                     (Top-1 acc - real images)

**  from Places 365 dataset

How well does each model 

perform when classiying real images?

[ImageNetSD = Sariyildiz@CVPR23] 
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prompt = class name

prompt = class name, hypernym*

*  from Wordnet lexical database

prompt = class name, description*

prompt = class name, hypernym inside background**

prompt = class name, description (+ reduce guidance scale)

class class +  
hypernym

class + 
description

class 
inside bg

class + descri 
(scale2)

**  from Places 365 dataset

real 

images

Performance on ImageNet-100-Val

                     (Top-1 acc - real images)

[ImageNetSD = Sariyildiz@CVPR23] 
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Reference

Fake it till you make it: Learning transferable representations from synthetic ImageNet clones

Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, Yannis Kalantidis 

CVPR 2023

• Promising results on the ImageNet variants

• Strong transfer results

Do we still need actual images 

to pretrain visual representations?
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Once we’ve pretrained, what do we do?



Specific task
Distillation

Adapting to new tasks

[Hinton@W_NeurIPS15] 
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Adapting to new tasks from DINOv2

DINOv2

Specific task
Distillation

How can we most effectively leverage those large models 

to train a smaller architecture, for a specialized task?
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Step 1: reduce the teacher to the target architecture using distillation 

Step 2: use this model to initialize the student
[Sun@EMNLP19] 

[Touvron@ICML21] 

[Beyer@CVPR22] 

Initialization

Task-agnostic distillation

DINOv2
Distillation

Teacher
Student

Model
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What should the teacher look like?

Task-specific distillation

Student
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Standard strategy: fine-tune the teacher for the task
Issues

• Cost

• Not necessarily optimal[Huang@CVPR23] 

Task-specific distillation

Fine-tuned

Teacher

Student
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Task-specific distillation

[Marrie@TMLR24] 

Student

Probed

Teacher

Proposed strategy: probe the teacher to the task
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Task-specific distillation

[Marrie@TMLR24] 

Student

Probed

Teacher
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Adapting to new tasks from DINOv2

Observations

• Probing the teacher > Fine-tuning it

• Task-specific distillation complements Task-agnostic distillation

• Drastic model size changes are possible

[Marrie@TMLR24] 

Specific task

DistillationDINOv2
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Do we have enough data

to distill from?

Specific task

DistillationDINOv2

Adapting to new tasks from DINOv2
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Specific task

DistillationDINOv2

Adapting to new tasks from DINOv2

Potential solution: synthetic data

• Use text-to-image generation

Issues
• Requires to know the class names

• Challenging beyond classification

Stable Diffusion [Rombach@CVPR22] 

cat
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Specific task

DistillationDINOv2

Adapting to new tasks from DINOv2

Potential solution: synthetic data

• Simply combining existing data

Advantages
• Class-agnostic

• Can merge across classes

ImageMixer [Pinkney22] 
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Final distillation pipeline

Reference

On Good Practices for Task-Specific Distillation of Large Pretrained Visual Models

Juliette Marrie, Michael Arbel, Julien Mairal, Diane Larlus 

TMLR 2024
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What if there are several complementary 

pretrained models to start from? 
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Multi-teacher distillation

How do we merge models 

into a unified pretrained model?

Diane Larlus – VISIGRAPP 2025



Multi-teacher distillation

AM-RADIO [Ranzinger@CVPR24]

UNIC [Sariyildiz@ECCV24] 

A basic setup

• Sum across teacher losses

• Teacher-specific expendable projectors

Diane Larlus – VISIGRAPP 2025



Multi-teacher distillation

AM-RADIO [Ranzinger@CVPR24]

UNIC [Sariyildiz@ECCV24] 

A basic setup

• Sum across teacher losses

• Teacher-specific expendable projectors

Improvements

• Feature standardization across teachers
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Multi-teacher distillation

UNIC [Sariyildiz@ECCV24] 

A basic setup

• Sum across teacher losses

• Teacher-specific expendable projectors

Improvements

• Feature standardization across teachers
• Ladder of projectors: get input from intermediate layers
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+

Multi-teacher distillation

UNIC [Sariyildiz@ECCV24] 

A basic setup

• Sum across teacher losses

• Teacher-specific expendable projectors

Improvements

• Feature standardization across teachers
• Ladder of projectors: get input from intermediate layers

• Loss-based teacher dropping
UNIC 

A UNIversal model for Classification
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UNIC [Sariyildiz@ECCV24] 

Experiments

CoG benchmark

ImageNet-R

ImageNet-Sketch
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4 Teachers
• DINO

• iBoT

• DeiT-III

• dBoT-ft

UNIC [Sariyildiz@ECCV24] 

[Caron@ICCV21] 

[Shou@ICLR22] 

[Touvron@ECCV22] 

[Liu@ICLR22] 

Setup
• ImageNet-1K

• ViT-Base + linear probing

Experiments

Diane Larlus – VISIGRAPP 2025



UNIC [Sariyildiz@ECCV24] 

4 Teachers
• DINO

• iBoT

• DeiT-III

• dBoT-ft

[Caron@ICCV21] 

[Shou@ICLR22] 

[Touvron@ECCV22] 

[Liu@ICLR22] 

Experiments
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UNIC [Sariyildiz@ECCV24] 

4 Teachers
• DINO

• iBoT

• DeiT-III

• dBoT-ft

[Caron@ICCV21] 

[Shou@ICLR22] 

[Touvron@ECCV22] 

[Liu@ICLR22] 

Experiments
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UNIC [Sariyildiz@ECCV24] 

4 Teachers
• DINO

• iBoT

• DeiT-III

• dBoT-ft

[Caron@ICCV21] 

[Shou@ICLR22] 

[Touvron@ECCV22] 

[Liu@ICLR22] 

Experiments
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Take home message

Multi-teacher distillation 

• combines models with complementary strengths

UNIC is strong at image-level classification

Reference

UNIC: Universal Classification Models via Multi-Teacher Distillation

Mert Bülent Sariyildiz, Philippe Weinzaepfel, Thomas Lucas, Diane Larlus, Yannis Kalantidis

ECCV 2024
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Conclusion & References



A few ideas to bring home

Lifelong learning is extremely relevant in computer vision …
 ... and most likely beyond as well

Yet, it should be revisited in the light of large pretrained models

Large pretrained models
➢If you would like to train one from scratch

• Use everything you can (labels, text, etc.)
• Beyond vision and language, more modalities could play a role

➢If you would rather not
• Mix, match, reuse existing model
• Distillation is a powerful tool

Diane Larlus – VISIGRAPP 2025



Thanks!

Concept generalization in visual representation learning

Mert Bülent Sariyildiz, Yannis Kalantidis, Diane Larlus, Karteek Alahari 
International Conference in Computer Vision (ICCV) 2021

Credit icons: https://www.flaticon.com/free-icons

No Reason for No Supervision: Improved Generalization in Supervised Models

Mert Bülent Sariyildiz, Yannis Kalantidis, Karteek Alahari, Diane Larlus 
International Conference in Representation Learning (ICLR) 2023

Joint work with ..

Bülent 

Sariyildiz

Yannis 

Kalantidis

Karteek 

Alahari

Fake it till you make it: Learning transferable representations from synthetic ImageNet clones

Mert Bülent Sariyildiz, Karteek Alahari, Diane Larlus, Yannis Kalantidis 
Conference in Computer Vision and Pattern Recognition (CVPR) 2023

On Good Practices for Task-Specific Distillation of Large Pretrained Visual Models

Juliette Marrie, Michael Arbel, Julien Mairal, Diane Larlus 
Transactions on Machine Learning Research (TMLR) 2024

UNIC: Universal Classification Models via Multi-Teacher Distillation

Mert Bülent Sariyildiz, Philippe Weinzaepfel, Thomas Lucas, Diane Larlus, Yannis Kalantidis
European Conference on Computer Vision (ECCV) 2024

Juliette

Marrie

Michael

Arbel

Julien

Mairal

Philippe

Weinzaepfel

Thomas

Lucas
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Thanks!
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