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Pillars in machine learning
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Now suppose you are a researcher
working at Google. You probably spend

* half your time configuring your network
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 the other half of your time collecting/cleaning data




What most works are studying
algorithm-centric research
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Features: SIFT, GIST, color histogram, etc
Hand-crafted models: SVM, boosting, sparse coding etc
Deep models: ResNet, DenseNet, Transformers...
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What I’'m going to talk about

data-centric research

Training set
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Hyper-parameter/model selection

Validation set

Under fixed model architecture,

* Can we improve the training data?
* Can we find good validation data?

* Can we estimate test set difficulty?



Outline

* Training data optimization
e Validation data search

* Label-free model evaluation (estimate test set
difficulty)



Training data optimization

Training set
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Objective: Given a model and a test set, we want to create a
training set that gives us possibly high accuracy.

Yao et al., Simulating content consistent vehicle datasets with attribute descent, ECCV 2020



Training (source) data optimization

source

domain gap?
Style/feature alighment
Content alighment



Training (source) data

optimization
idea

source

Objective: create a training set that
has similar content with target data



We propose to use synthetic data

+ large-scale, quickly, accurately, cheaply Sun and zheng, CVPR 2019
+ controllability and editability

+ challenging situation (danger forecast)

+ security and privacy issues

+ corner cases (heavy occlusion)

- different data distribution



We collected the VehicleX Dataset

* 1,209 vehicles
* ~350 types of vehicles
* Platform: Unity

* Editable attributes: lighting direction, lighting
intensity, vehicle orientation, camera height,
camera distance

A Platform B Vehicle identities



Editable Attributes
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We optimize the value of each attributes successively
For a given attribute, we search (brute-force) for its optimum value such that FID is minimized



Experiment — statistical significance

e Learned attribute vs. random attribute
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Experiment — statistical significance

e Learned attribute vs. random attribute
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Experiment — statistical significance

e Learned attribute vs. random attribute
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Outline

* Training data optimization
e Validation data search

* Label-free model evaluation (estimate test set
difficulty)



Validation data search
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We usually select models using a
validation set

Training set

Model comparison
B>D>C>A>E -——mw—m——

validation set

We will deploy B in testing



owever, it we deploy the models
to another domain...

Ta rget data

Will we still have B =D >C >A >E on this target domain?



best on target
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We want to search a validation set that

e is fully labeled
* has similar distributions with the target data
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Labeled data from lots of _ M Et h Od

existing datasets

Set-set /'

similarity

score

subsets

Target (unlabeled)



A best on target
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Outline

* Training data optimization
e Validation data search

* Label-free model evaluation (estimate test set
difficulty)



Estimate test set difficulty (label-
free model evaluation)
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test set — accuracy

W. Deng and L. Zheng, Are Labels Necessary for Classifier Accuracy Evaluation? CVPR, TPAMI, 2021



Our usual way of evaluating models




However,...

We can’t calculate a classifier accuracy!!

Suppose we deploy a cat-dog classifier to a
swimming pool

Ground truths not provided



We encounter this problem too
many times in CV applications....

* Deploy a RelD model to a new community
* Deploy face recognition in an airport

* Deploy a 3D object detection system to a new city

We can’t quantitatively measure the performance of our
model like we usually do!!

Unless we annotate the test data..., but environment will
change over time.... We need to annotate test data again




Formally, we want to solve:

(b) unlabeled test set
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(a) labeled test set
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Given
- A training dataset We want to estimate:

- A classifier trained on this dataset ~ Classification accuracy on the
- A test set without labels test set



Our idea

Training set Testset 1 Test set 2 Test set 3
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Negative correlation between recognition accuracy and domain gap



Our idea

Known (from existing literature)

Larger domain gap -> lower recognition accuracy

Unknown

Can we quantify this relationship?

A regression problem!



Some experiments
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Qualitative examples
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Train GT: 71.07% GT:40.19% GT: 90.16%
ours: 75.39% ours: 38.43% ours: 89.68%

We are organising the DataCV challenge @ CVPR 2023, on this label-free model
evaluation problem.
https://sites.google.com/view/vdu-cvpr23/competition




Conclusions and insights

* We study data-centric computer vision problems

* Optimize the training set
* given the test set and model architect

* Search and compose a validation set
* Given the training set, a test set and models

 Estimate test set difficulty
* Given the training set, test set and model



Conclusions and insights

* What else problems are data-centric?

* Given a fine-tuning dataset, find a good pre-training
dataset

* Or the opposite
e Estimate the noise level of a dataset

* Key techniques
* Dataset representation
e attribute values, feature mean, covariance etc..

e Dataset-dataset similarity estimation
* Frechet distance etc.



Thank you! Any question?
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