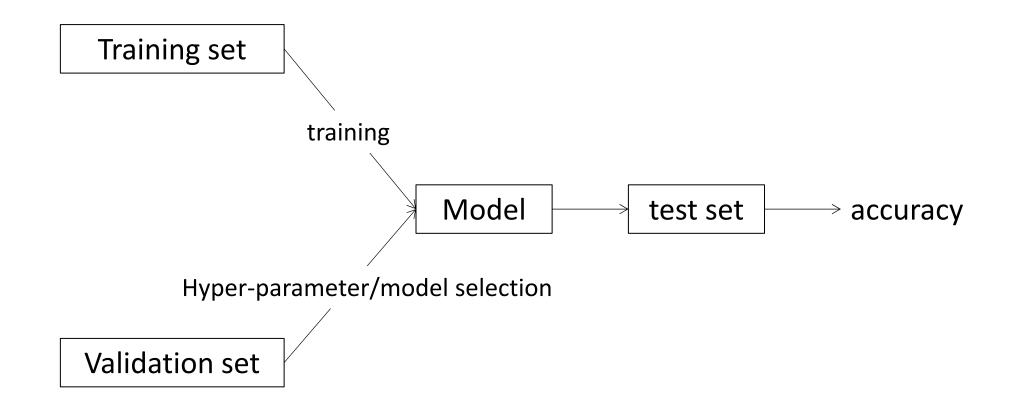
Data-centric Computer Vision

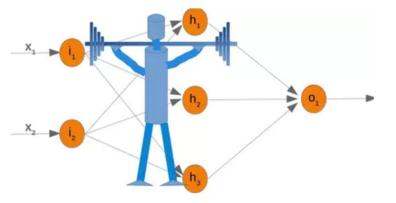
Liang Zheng Australian National University 20 February 2023

Pillars in machine learning



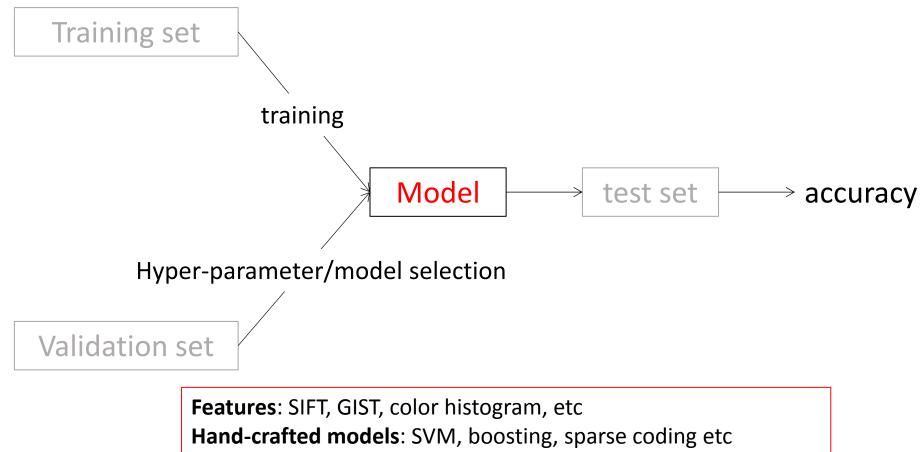
Now suppose you are a researcher working at Google. You probably spend

half your time configuring your network



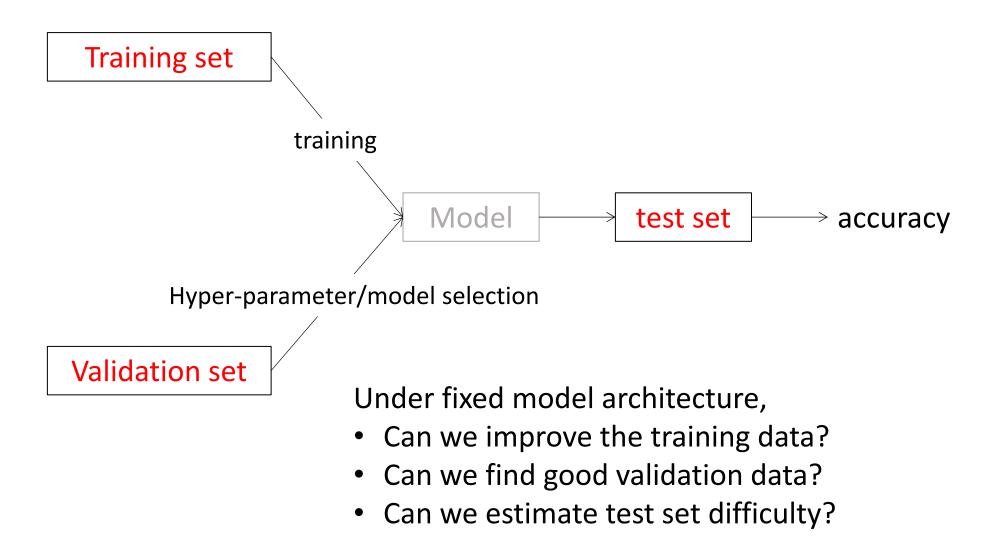
• the other half of your time collecting/cleaning data

What most works are studying algorithm-centric research



Deep models: ResNet, DenseNet, Transformers...

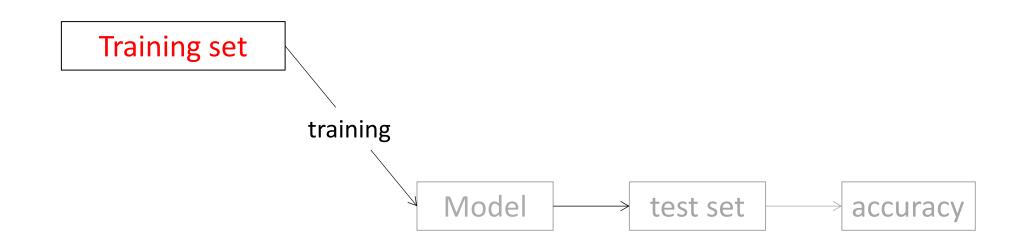
What I'm going to talk about data-centric research



Outline

- Training data optimization
- Validation data search
- Label-free model evaluation (estimate test set difficulty)

Training data optimization



Objective: Given a model and a test set, we want to create a training set that gives us possibly high accuracy.

Yao et al., Simulating content consistent vehicle datasets with attribute descent, ECCV 2020

Training (source) data optimization

source

target

domain gap? Style/feature alignment Content alignment

Training (source) data optimization idea

source

Objective: create a training set that has similar content with target data

We propose to use synthetic data

- + large-scale, quickly, accurately, cheaply Sun and Zheng, CVPR 2019
- + controllability and editability
- + challenging situation (danger forecast)
- + security and privacy issues
- + corner cases (heavy occlusion)
- different data distribution

We collected the VehicleX Dataset

- 1,209 vehicles
- ~350 types of vehicles
- Platform: Unity
- Editable attributes: lighting direction, lighting intensity, vehicle orientation, camera height, camera distance

A Platform

 ${\bf B}$ Vehicle identities

Editable Attributes

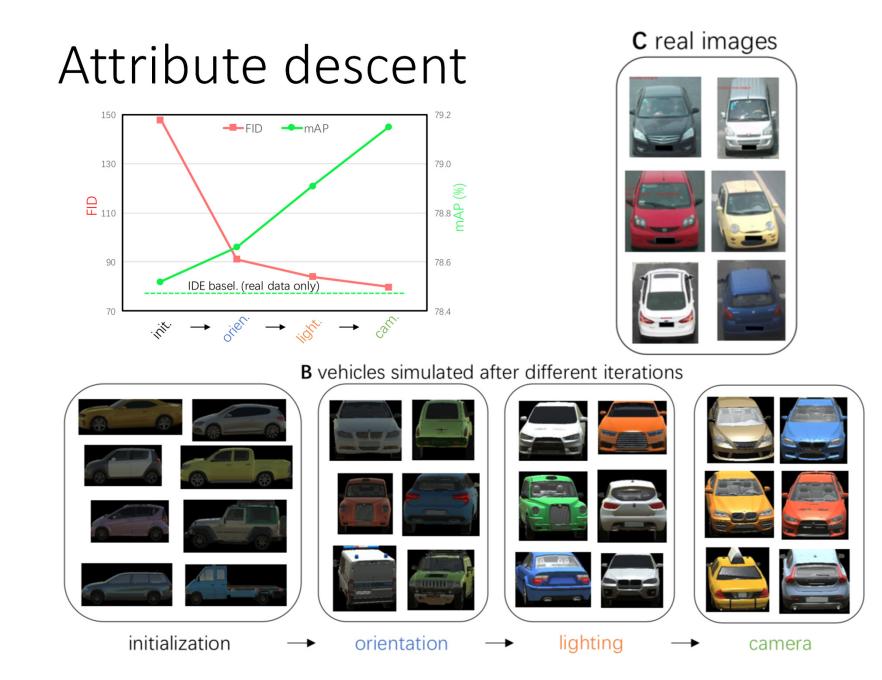
≁

light direction: East (0) → West (100)

camera height: low (0) → high (100)

light intensity: dark (0) \longrightarrow bright (100)

camera distance: near (0) — far (100)



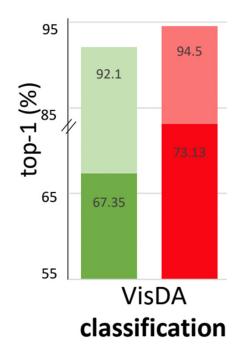
We optimize the value of each attributes successively

For a given attribute, we search (brute-force) for its optimum value such that FID is minimized

Experiment – statistical significance

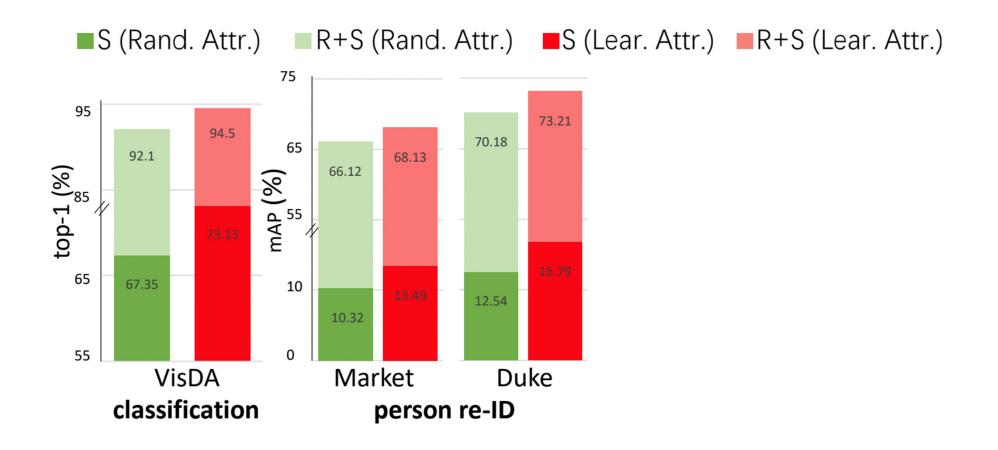
• Learned attribute vs. random attribute

■S (Rand. Attr.) ■R+S (Rand. Attr.) ■S (Lear. Attr.) ■R+S (Lear. Attr.)



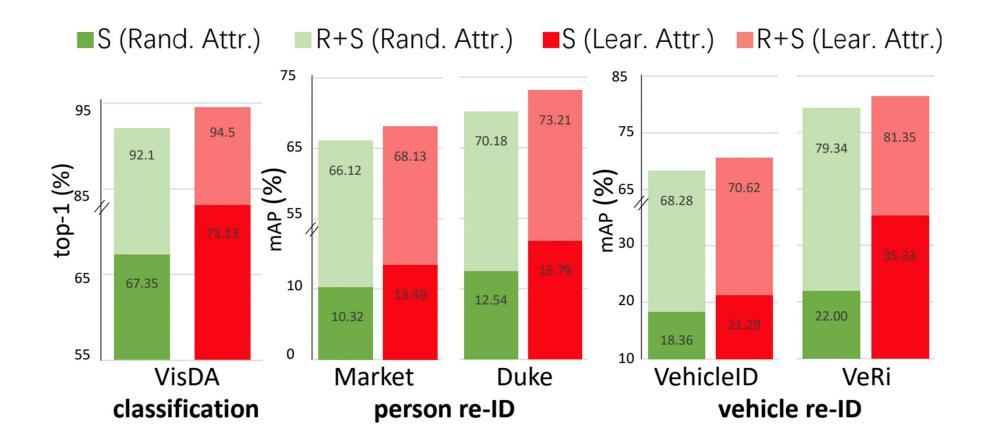
Experiment – statistical significance

• Learned attribute vs. random attribute



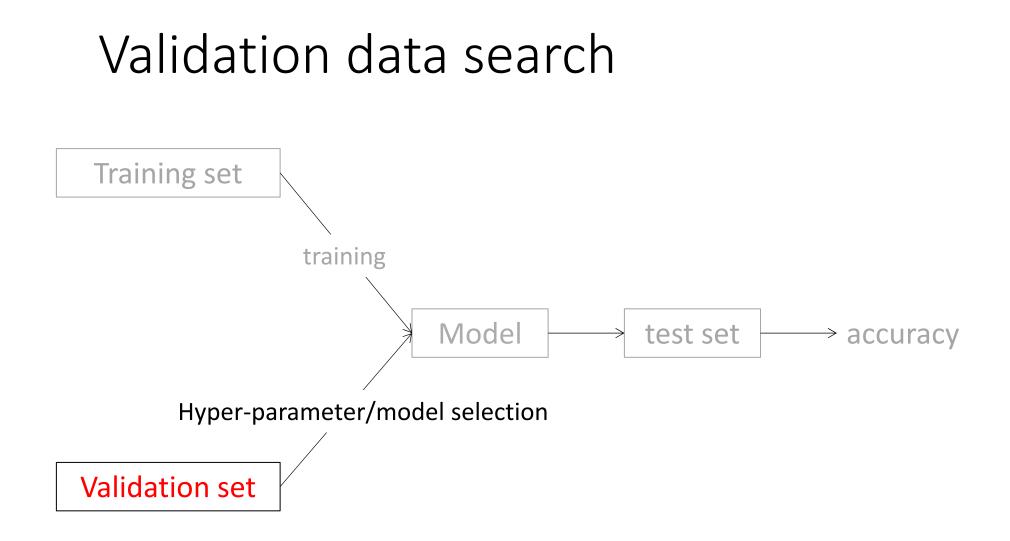
Experiment – statistical significance

• Learned attribute vs. random attribute



Outline

- Training data optimization
- Validation data search
- Label-free model evaluation (estimate test set difficulty)



We usually select models using a validation set

Training set

Models A, B, C, D, E

Model comparison

validation set

We will deploy **B** in testing

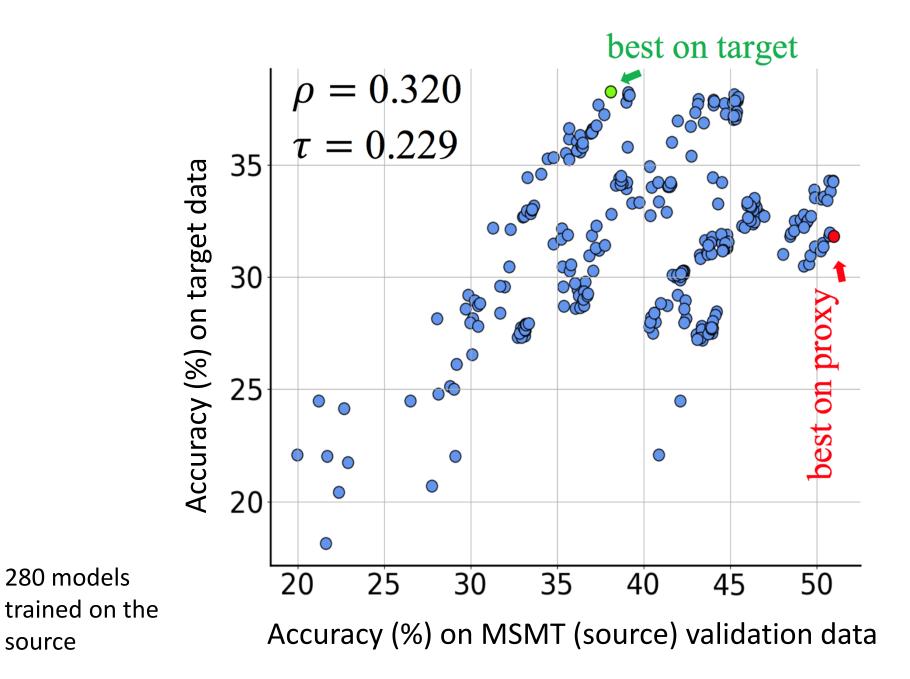
B > D > C > A > E

However, if we deploy the models to another domain...

Training (source) data

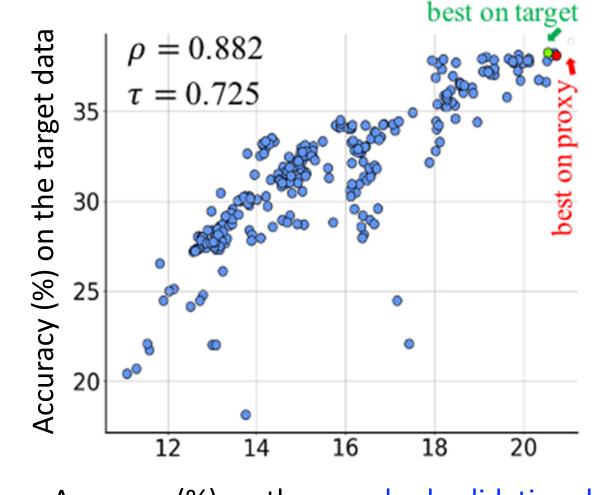
Target data

Will we still have B > D > C > A > E on this target domain?



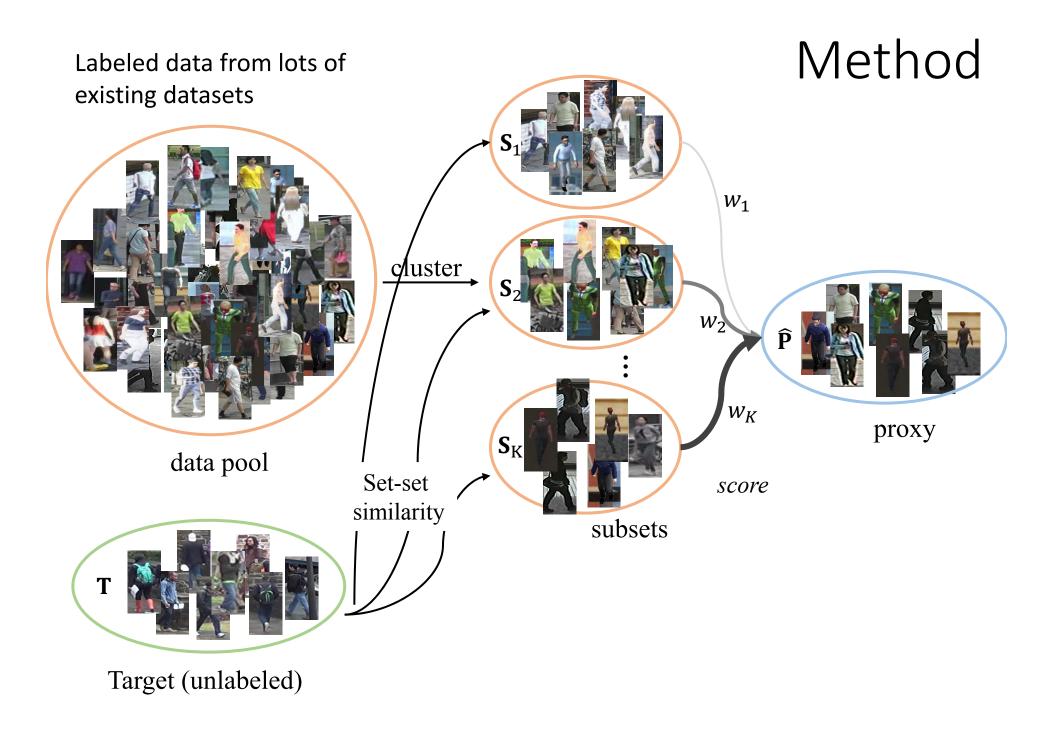
We want to search a validation set that

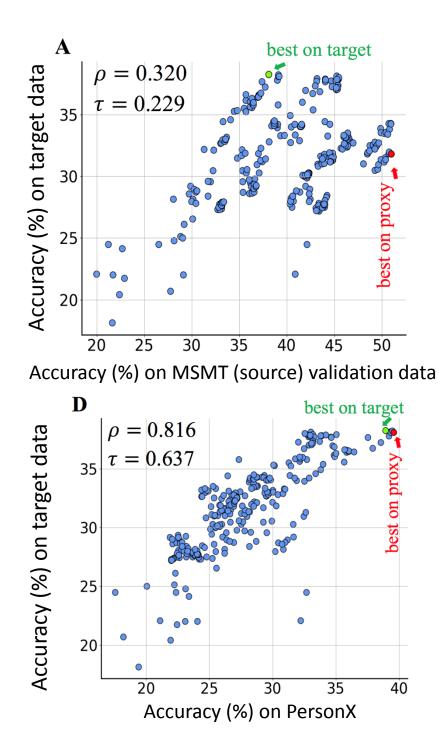
- is fully labeled
- has similar distributions with the target data

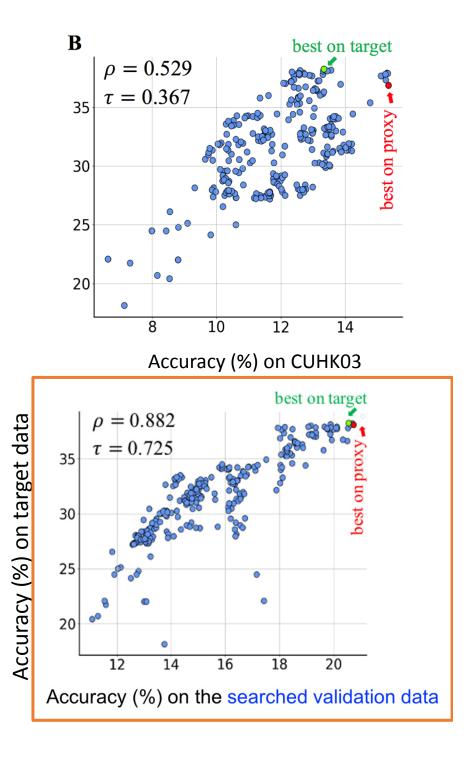


280 models trained on the source

Accuracy (%) on the searched validation data

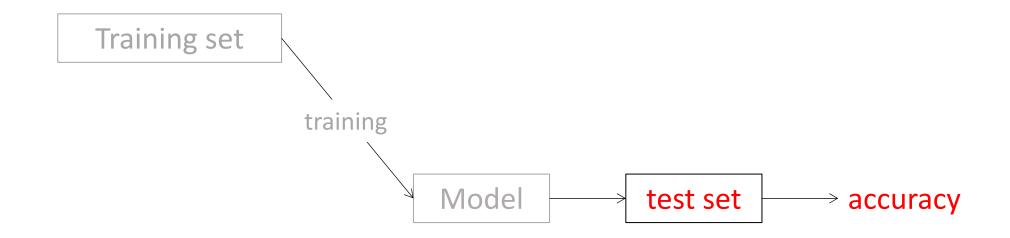






Outline

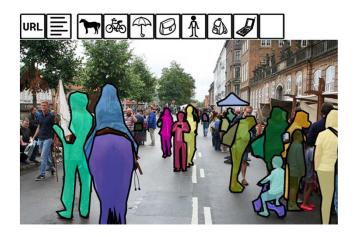
- Training data optimization
- Validation data search
- Label-free model evaluation (estimate test set difficulty)



W. Deng and L. Zheng, Are Labels Necessary for Classifier Accuracy Evaluation? CVPR, TPAMI, 2021

Our usual way of evaluating models

• Yes



ImageNet

MSCOCO

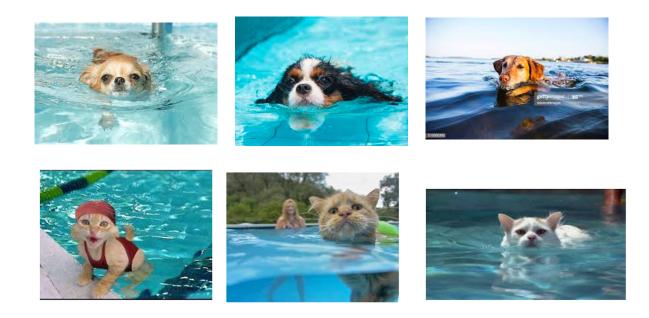
Ground truths provided

LFW

However,...

We can't calculate a classifier accuracy!!

Suppose we deploy a cat-dog classifier to a swimming pool



Ground truths not provided

We encounter this problem too many times in CV applications....

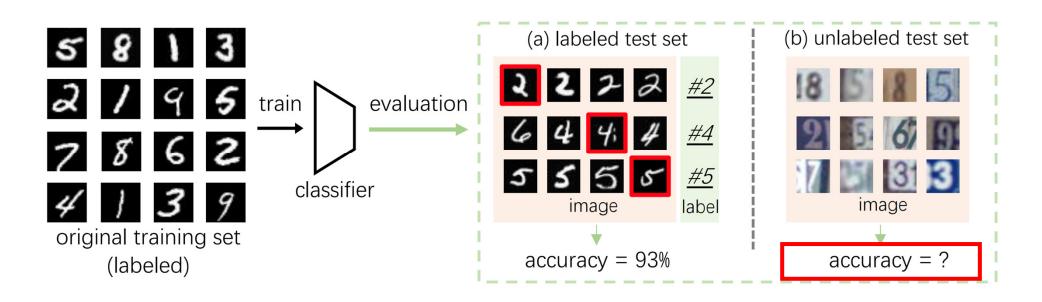
- Deploy a ReID model to a new community
- Deploy face recognition in an airport
- Deploy a 3D object detection system to a new city

•

We can't quantitatively measure the performance of our model like we usually do!!

Unless we annotate the test data..., but environment will change over time.... We need to annotate test data again

Formally, we want to solve:

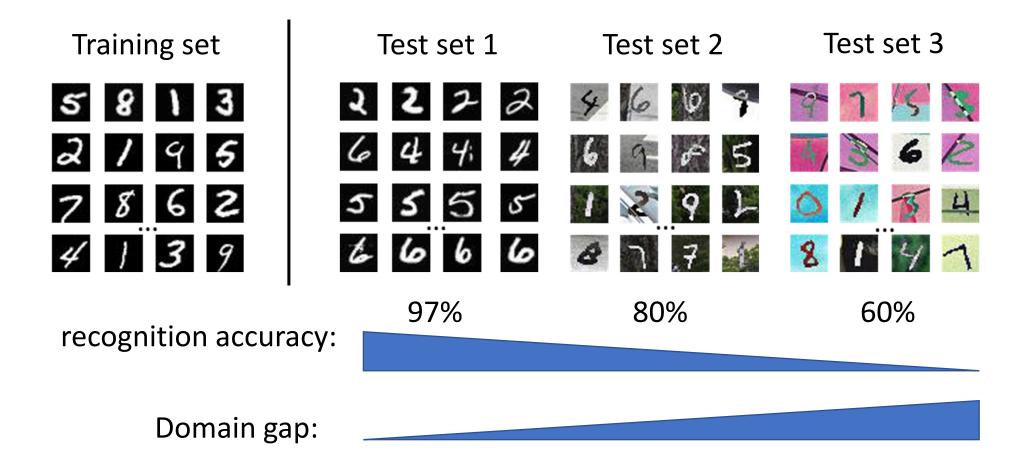


Given

- A training dataset
- A classifier trained on this dataset
- A test set without labels

We want to estimate: Classification accuracy on the test set

Our idea



Negative correlation between recognition accuracy and domain gap

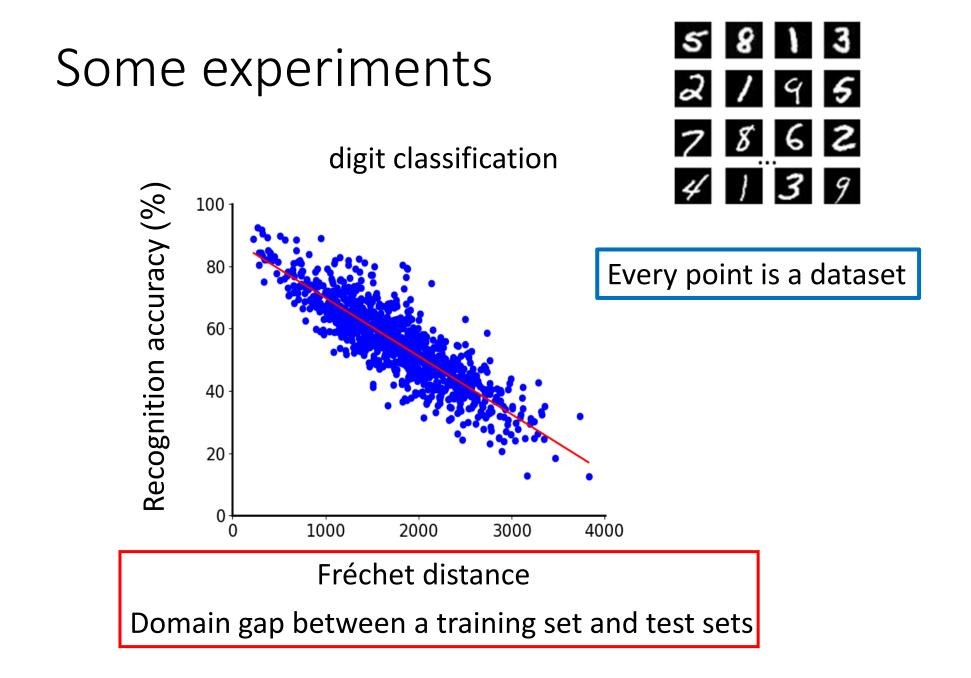
Our idea

Known (from existing literature) Larger domain gap -> lower recognition accuracy

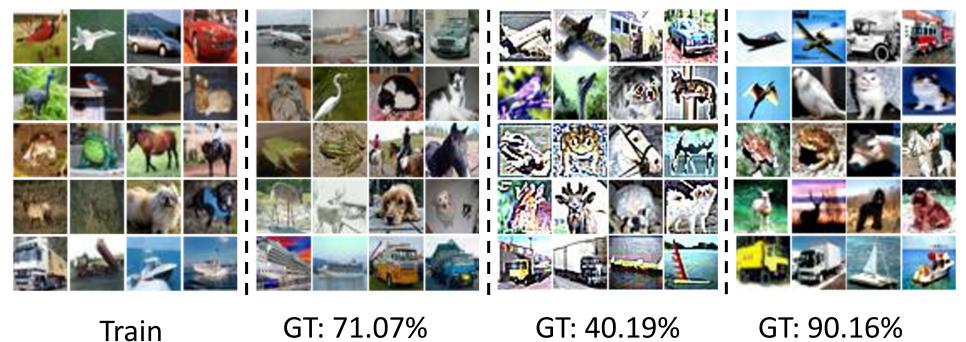
Unknown

Can we quantify this relationship?

A regression problem!



Qualitative examples



ours: 75.39% ours: 38.43% ours: 89.68%

We are organising the DataCV challenge @ CVPR 2023, on this label-free model evaluation problem.

https://sites.google.com/view/vdu-cvpr23/competition

Conclusions and insights

- We study data-centric computer vision problems
- Optimize the training set
 - given the test set and model architect
- Search and compose a validation set
 - Given the training set, a test set and models
- Estimate test set difficulty
 - Given the training set, test set and model

Conclusions and insights

- What else problems are data-centric?
 - Given a fine-tuning dataset, find a good pre-training dataset
 - Or the opposite
 - Estimate the noise level of a dataset
 - ...
- Key techniques
 - Dataset representation
 - attribute values, feature mean, covariance etc..
 - Dataset-dataset similarity estimation
 - Frechet distance etc.

Thank you! Any question?

Collaborators

Xiaoxiao Sun ANU

Stephen Gould ANU

Yue Yao ANU

Milind Naphade NVIDIA

Yunzhong Hou ANU

Tom Gedeon ANU

Weijian Deng ANU

Hongdong Li ANU

Xiaodong Yang NVIDIA