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1
Implicit Neural Representations



Traditional 3D Reconstruction Pipeline

Input Images Camera Poses Dense Correspondences

Depth MapsDepth Map Fusion3D Reconstruction
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3D Datasets and Repositories

[Newcombe et al., 2011] [Choi et al., 2011] [Dai et al., 2017]

[Wu et al., 2015] [Chang et al., 2015] [Chang et al., 2017]
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Can we learn 3D Reconstruction from data?

3D ReconstructionInput Images Neural Network
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What is a good output representation?



3D Representations

Voxels
[Maturana et al., IROS 2015]

Points
[Fan et al., CVPR 2017]

Meshes
[Groueix et al., CVPR 2018]
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Occupancy Networks
Key Idea:
I Do not represent 3D shape explicitly
I Instead, consider surface implicitly

as decision boundary of a non-linear classifier:

3D
Location

Occupancy
Probability

Condition
(eg, Image)

Remarks:
I The function fθ models an occupancy field

I Also possible: signed distance field [Park et al., 2019]

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 9
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Network Architecture

+

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 10



Training Objective

Occupancy Network:

L(θ, ψ) =
K∑
j=1

BCE(fθ(pij , zi), oij) +KL [qψ(z|(pij , oij)j=1:K) ‖ p0(z)]

I K : Randomly sampled 3D points (K = 2048)
I BCE: Cross-entropy loss

I qψ : Encoder

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 11



Training Objective

Variational Occupancy Encoder:
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Occupancy Networks

N times

marching cubesmark voxels subdivide voxels evaluate grid pointsevaluate grid points

Multiresolution IsoSurface Extraction (MISE):
I Build octree by incrementally querying the occupancy network
I Extract triangular mesh using marching cubes algorithm (1-3 seconds in total)

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 12



Results

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 13



Representing View-Dependent Appearance

Neural Network

View direction Light setting

3D Point

Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. 3DV, 2020. 14



Representing Motion

I Extending Occupancy Networks to 4D is hard (curse of dimensionality)
I Represent shape at t = 0 using a 3D Occupancy Network
I Represent motion by temporally and spatially continuous vector field
I Relationship between 3D trajectory s and velocity v given by (differentiable) ODE:

∂s(t)

∂t
= v(s(t), t)

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 15



Limitations
Structure of implicit neural representations:

Occupancy
Probability

1D
EncoderInput

Fully Connected
Network

Features

3D Location

I Global latent code⇒ no local information, overly smooth geometry
I Fully connected architecture⇒ does not exploit translation equivariance

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 16



Limitations
Implicit models work well for simple objects but poorly on complex scenes:

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 16



Convolutional Occupancy Networks

Trilinear
Interpolation

3D Feature Volume

Occupancy
Probability

3D Encoder
+ 3D ConvInput

Fully Connected
Network

Features

3D Location

Voxel Centers

Occupancy
Probability

1D
EncoderInput

Fully Connected
Network

Features

3D Location

Convolutional(Occupancy(Networks

Occupancy(Networks

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. ECCV, 2020. 17



2
Differentiable Volumetric Rendering



DVR: Differentiable Volumetric Rendering

+ +

Occupancy
Probability

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020. 19



Forward Pass
(Rendering)



DVR: Differentiable Volumetric Rendering

Forward Pass:
I For all pixels u

I Find surface point p̂ along ray w

via ray marching and root finding
(secant method)

I Evaluate texture field tθ(p̂) at p̂
I Insert color tθ(p̂) at pixel u

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020. 21



Backward Pass
(Differentiation)



DVR: Differentiable Volumetric Rendering
Backward Pass:
I Image Observation I

I Loss L(̂I, I) =
∑

u ‖Îu − Iu‖
I Gradient of loss function:

∂L
∂θ

=
∑
u

∂L
∂Îu
· ∂Îu
∂θ

∂Îu
∂θ

=
∂tθ(p̂)

∂θ
+
∂tθ(p̂)

∂p̂
· ∂p̂
∂θ

I Differentiation of fθ(p̂) = τ yields:

∂p̂

∂θ
= −w

(
∂fθ(p̂)

∂p̂
·w
)−1

∂fθ(p̂)

∂θ

⇒ Analytic solution and no need
for storing intermediate results

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020. 23



Results

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020. 24



3
Neural Radiance Fields



NeRF: Representing Scenes as Neural Radiance Fields

I Task: Given a set of images of a scene, render image from novel viewpoint
I Vanilla ReLU MLP that maps from location/view direction to color/density
I Conditioning on view direction allows for modeling view-dependent effects

Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi and Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV, 2020. 26



Volume Rendering

I Volume rendering works very similar to traditional ray tracing in graphics
I Shoot ray through scene, sample points, apply alpha composition to render pixel
I Fourier features improve visual fidelity (i.e., texture details) significantly

Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi and Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV, 2020. 27



NeRF Results

Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi and Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV, 2020. 28



KiloNeRF

Reiser, Peng, Liao and Geiger: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs. ICCV, 2021. 29



4
Generative Radiance Fields



GRAF: Generative Radiance Fields

RenderingSample

Radiance Field

I Generative model for radiance fields
I Train from unstructured and unposed 2D image collections
I Challenges: Can’t discriminate in 3D, but volumetric rendering is slow

Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020. 31



GRAF: Generative Radiance Fields

3D Point
Sampling

Ray

Volume Rendering

Conditional Radiance Field

3D Point

Ray

I A radiance field gθ maps a 3D point xir and viewing direction dr to color/density
I By sampling N points along the ray, we can render a pixel’s color cr

Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020. 32



GRAF: Generative Radiance Fields

3D Point
Sampling

Ray

Volume Rendering

Conditional Radiance Field

3D Point

Ray

I GRAF conditions the radiance field gθ on additional latent codes z

I Here, zs is a shape latent code and za is an appearance latent code

Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020. 32



GRAF: Generative Radiance Fields

3D Point
Sampling

Ray
Sampling

Patch Generator

Ray

Volume Rendering

Conditional Radiance Field

3D Point

Ray

I The generator repeats this process for R rays, sparsely sampled on a 2D grid
I The camera intrinsics K, extrinsics ξ and 2D grid ν are drawn randomly

Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020. 32



GRAF: Generative Radiance Fields

3D Point
Sampling

Ray
Sampling

Patch Generator

Predicted Patch

Ray

Volume Rendering

Conditional Radiance Field

3D Point

Ray

I This generates image patches of size 32 × 32 pixels
I The sampling pattern changes the location and stride (scale)

Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020. 32



GRAF: Generative Radiance Fields

3D Point
Sampling

Ray
Sampling

Pixel
Sampling

Patch Generator

Predicted Patch

Real
Patch

Ray

Volume Rendering

Conditional Radiance Field

3D Point

Ray

I Similarly to the generator, we can extract real patches of the same size
I Here I denotes a real image sampled from the data distribution pD

Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020. 32



GRAF: Generative Radiance Fields

3D Point
Sampling

Ray
Sampling
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Sampling

Patch Generator

Patch
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Predicted Patch

Real
Patch

Ray

Volume Rendering

Conditional Radiance Field
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Ray

I We can now compare both patches using a 2D discriminator
I GRAF implements the 2D discriminator as a simple 4 layer ConvNet

Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020. 32



GRAF: Generative Radiance Fields

Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020. 33



GIRAFFE: Compositional Generative Neural Feature Fields

Decoder
2D CNN

Camera

Implicit 3D Scene
Representation

Pose

Shape and
Appearance

Shape and
Appearance

Shape and
Appearance

Pose

Pose

Pose

Sampled
Feature Fields

Posed
Feature Fields

Volume Rendering
of Feature Image

Neural Rendering
of Output Image

Feature Image

Output Image

Niemeyer and Geiger: GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields. CVPR, 2021. Best Paper Award. 34



5
Further Applications



COIN: Compression with Implicit Neural representations

I Parameters of trained neural network act as compressed representation of data

Dupont, Golinski, Alizadeh, Teh and Doucet: COIN: COmpression with Implicit Neural representations. Arxiv, 2021. 36



SMD-Nets: Stereo Mixture Density Networks

I MLP decoder enables to query stereo disparity maps at arbitrary resolution

Tosi, Liao, Schmitt and Geiger: SMD-Nets: Stereo Mixture Density Networks. CVPR, 2021. 37



PointRend: Image Segmentation As Rendering

I MLP decoder allows for accurate instance segmentation in Mask R-CNN

Kirillov, Wu, He and Girshick: PointRend: Image Segmentation As Rendering. CVPR, 2020. 38



iLabel: Interactive Neural Scene Labelling

I Predicting geometry and semantics jointly enables efficient few-shot annotation

Zhi, Sucar, Mouton, Haughton, Laidlow and Davison: iLabel: Interactive Neural Scene Labelling. Arxiv, 2021. 39



LENS: Localization enhanced by NeRF synthesis

I NVS improves downstream tasks like localization via data augmentation

Moreau, Piasco, Tsishkou, Stanciulescu and Fortelle: LENS: Localization enhanced by NeRF synthesis. CoRL, 2021. 40



Neural Reflectance Fields for Appearance Acquisition

I Beyond light fields: modeling material properties using coordinate-based models

Bi et al.: Neural Reflectance Fields for Appearance Acquisition. Arxiv, 2020. 41



MeshfreeFlowNet: Deep continuous space-time super-resolution

I Space-time super-resolution of turbulent flows (Rayleigh-Bénard convection)

Chiyu et al.: MeshfreeFlowNet: a physics-constrained deep continuous space-time super-resolution framework. SC, 2020. 42



SNARF: Differentiable Forward Skinning for Animating Neural Shapes

I Learning articulated human shape representations (geometry and skinning)

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021. 43



DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

I Learning differentiable rigid-body dynamics (mass, friction) with implicit shapes

Michael Strecke, Joerg Stueckler: DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes. 3DV, 2021. 44



Neural Descriptor Fields

I Few-shot generalization of manipulation tasks by predicting spatial descriptors

Simeonov, Du, Tagliasacchi, Tenenbaum, Rodriguez, Agrawal and Sitzmann: Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation. Arxiv,
2021. 45



NEAT: Neural Attention Fields for End-to-End Autonomous Driving

I Continuous state representation and waypoint prediction for self-driving

Chitta, Prakash and Geiger: NEAT: Neural Attention Fields for End-to-End Autonomous Driving. ICCV, 2021. 46



Summary



Neural Networks as Continuous Representations
Occupancy Networks
[Mescheder et al. 2019]

Scene Representation Networks
[Sitzmann et al. 2019]

DeepSDF
[Park et al. 2019]

Differentiable Volumetric Rendering
[Niemeyer et al. 2020]

Neural Radiance Fields
[Mildenhall et al. 2020]

Generative Radiance Fields
[Schwarz et al. 2020]

48



Summary
Coordinate-Based Networks:
I Effective output representation for shape, appearance, material, motion
I No discretization, model arbitrary topology
I Can be learned from images via differentiable rendering
I Many applications: reconstruction, motion, view synthesis, robotics

However:
I Geometry must be extracted in post-processing step (1 sec for ONet)
I Extension to 4D not straightforward (curse of dimensionality)
I Fully connected architecture and global condition lead to oversmooth results
I Promising: Local features (ConvONet), Better input encoding (NeRF)
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Thank you!
http://autonomousvision.github.io

http://autonomousvision.github.io

