Al-Driven Video Synthesis and its Implications

Visual Computing Group Prof. Matthias Nießner

Visual Computing Group @ TUM

Al-Driven Video

Photo-realistic Image Synthesis

The Rendering Equation [Kajiya 86]

$$L_{\mathrm{o}}(\mathbf{x},\,\omega_{\mathrm{o}},\,\lambda,\,t)\,=\,L_{e}(\mathbf{x},\,\omega_{\mathrm{o}},\,\lambda,\,t)\,+\,\int_{\Omega}f_{r}(\mathbf{x},\,\omega_{\mathrm{i}},\,\omega_{\mathrm{o}},\,\lambda,\,t)\,L_{\mathrm{i}}(\mathbf{x},\,\omega_{\mathrm{i}},\,\lambda,\,t)\,(\omega_{\mathrm{i}}\,\cdot\,\mathbf{n})\,\,\mathrm{d}\,\omega_{\mathrm{i}}$$

Need 3D Content for Rendering

Geometry

Textures

Material & Lighting

Computer Vision as Inverse Graphics

 $L_{\mathrm{o}}(\mathbf{x},\,\omega_{\mathrm{o}},\,\lambda,\,t)^{-1}$

Can we invert the Rendering Equation?

Computer Vision as Inverse Graphics

E(P) =

Priors: Parametric Face Model

[Blanz and Vetter 99] BlendShapes [Alexander et al. 09/10] Digital Emily [Chen et al. 14] FaceWarehouse

...

|P| = 6 + 80

Material / Reflection

$$\boldsymbol{P} = \begin{pmatrix} \boldsymbol{\Phi} \\ \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{pmatrix}$$

|P| = 6 + 80 + 80

Expression Parameters

$$\boldsymbol{P} = \begin{pmatrix} \boldsymbol{\Phi} \\ \boldsymbol{\alpha} \\ \boldsymbol{\beta} \\ \boldsymbol{\delta} \end{pmatrix}$$

|P| = 6 + 80 + 80 + 76

Lighting Parameters

$$\boldsymbol{P} = \begin{pmatrix} \boldsymbol{\Phi} \\ \boldsymbol{\alpha} \\ \boldsymbol{\beta} \\ \boldsymbol{\delta} \\ \boldsymbol{\gamma} \end{pmatrix}$$

|P| = 6 + 80 + 80 + 76 + 27

Fitting Parametric Model to RGB Image

E(P) =

Analysis-by-Synthesis

Given: Parametric Model *M*(*P*)

- 1. Render *M* with parameters P_k
- 2. Compute diff. between rendering and target; i.e., E(P)
- 3. Update $P_k \rightarrow P_{k+1}$; e.g., using differentiable renderer
- 4. If (diff > thresh) GOTO 1

E(P) =

$$E(P) = E_{col}(P)$$

Color Consistency

Distance in RGB Color Space

$$E(P) = E_{col}(P) + E_{mrk}(P)$$

Color Consistency Feature Similarity

$$E(P) = E_{col}(P) + E_{mrk}(P) + E_{reg}(P)$$
Color Feature Regularization
Consistency Similarity

- Coarse-to-fine Gauss-Newton optimization (IRLS)
- Gradients through differentiable rendering

3D Model + Image-based Rendering

3D Model + Image-based Rendering

Image-based mouth retrieval

3D Model + Image-based Rendering

Facial Expression Transfer

Face2Face

Source Actor

Reenacted Proxy

Reenacted Output

Source Actor

Reenacted Proxy

Reenacted Output

Source Actor

Reenacted Proxy

Reenacted Output

Source Actor

Reenacted Proxy

Reenacted Output

Analysis-by-Synthesis

Parametric model needs to be flexible -> there needs to be a P that re-creates captured RGB input

Optimizable -> Must be able to find good optimum in energy landscape E(P)

Incompleteness

-> Image-based tricks to fix 3D artifacts are unsatisfactory

Over-parameterized models -> can re-create input

Over-parameterized models -> can re-create input

Generator loss

 $J^{(G)} = -J^{(D)}$

GANs [Goodfellow et al. 14], Pix2Pix [Isola et al. 17], ProGAN [Karras et al. 18], ...

Over-parameterized models -> can re-create input

No explicit no control -> struggle with videos

Discriminator loss $J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1 - D(G(\boldsymbol{z})))$ Generator loss $J^{(G)} = -J^{(D)}$

GANs [Goodfellow et al. 14], Pix2Pix [Isola et al. 17], ProGAN [Karras et al. 18], ...
Conditional GANs

Conditioning Input

Fully Controlled Output Video

Conditional GANs

Conditioning Input

Fully Controlled Output Video

Conditioning on Face Reconstruction

Source Sequence

Conditioning Images

Result

Neural Network converts synthetic data to realistic video

Conditioning on Face Reconstruction

Conditioning on Face Reconstruction

Video Editing

- cGANs work with different input
- Requires consistent input
 i.e., accurate tracking

- cGANs work with different input
- Requires consistent input
 i.e., accurate tracking

[Chan et al. 18] Everybody Dance Now

- cGANs work with different input
- Requires consistent input
 i.e., accurate tracking

[Chan et al. 18] Everybody Dance Now

- cGANs work with different input
- Requires consistent input
 i.e., accurate tracking
- Network has no explicit 3D notion

[Chan et al. 18] Everybody Dance Now

Videos still challenging for cGANs...

DeepVoxels: Explicit 3D Features

Simplified overview for novel view synthesis

CVPR'19 (Oral) [Sitzmann et al.]: DeepVoxels

DeepVoxels: Explicit 3D Features

3D Geometry

Neural Texture

Novel View-Point Synthesis

Novel View-Point Synthesis

Geometry Editing

Sequenc

Input

Scene Editing

Scene Editing

Animation Synthesis

Deferred Neural Rendering

Animation Synthesis

Deferred Neural Rendering

Animation Synthesis

Conditioning on Audio: Neural Voice Puppetry

Audio to Video

German News Video

English Audio

Person-specific Blendshape Expression Model

Audio2Expression Training
Neural Voice Puppetry

[Thies et al. 19]: Neural Voice Puppetry

Neural Voice Puppetry: Audio to Video

[Thies et al. 19]: Neural Voice Puppetry

Many Real-World Applications

Synthesia: Lip Sync

synthesia

https://www.synthesia.io/

Victor Riparbelli CEO, Co-founder

Prof. Matthias Niessner Co-founder

Prof. Lourdes Agapito Co-founder

Steffen Tjerrild COO/CFO, Co-founder

Jason Lovell

VP Global Partnerships

Dr. Jonathan Starck CTO

Qi Liu Yin

Research Engineer

Lead Al-Researcher

Dr. Karel Lebeda **Research Engineer**

Research Engineer

Dr. Corneliu Ilisescu Research Engineer

Synthesia: Lip Sync

https://www.synthesia.io/

Synthesia: Lip Sync

https://www.synthesia.io/

Synthesia Dubbing

https://www.malariamustdie.com/

Synthesia Dubbing

https://www.malariamustdie.com/

My Virtual Avatar

https://www.synthesia.io/

My Virtual Avatar

https://www.synthesia.io/

Video Editing is Popular

Video Editing is Popular

Video Editing is very Popular

IMU2Face

IMU2Face

Voice

NeuralVoicePuppetry

Voice

NeuralVoicePuppetry

Need to think about ethics and possible counter measures!

Study with over 200 participants

Al for Detection: FaceForensics

FaceForensics: Dataset

Source: 1,000 Videos (510,529 frames)

Methods	Train	Validation	Test
Pristine	366,847	68,511	73,770
DeepFakes	366,835	68,506	73,768
Face2Face	366,843	68,511	73,770
FaceSwap	291,434	54,618	59,640
NeuralTextures	291,834	54,630	59,672

- Publicly available!

- Over 2 million manipulated frames
- Three compression levels for each manipulated frame
- Over 1500 research groups

FaceForensics: Deep Detection Dataset

- Over 3000 manipulated videos
- From 28 actors
- Variety of scenes
- Provided by Google & JigSaw

FaceForensics: Supervised Detection

Unsupervised / Self-Supervised Forensics

Major challenges

- Self-supervised Learning
- Transfer Learning
- Unsupervised Learning

[Cozzolino et al. 19]: ForensicTransfer

Conclusion

Professor

PostDocs

Prof. Dr. Matthias Nießner **PhD Students**

Dr. Justus Thies

Angel X. Chang Visiting Professor: Hans Fischer Fellow **Princeton University**

Leonidas Guibas

Aljaž Božič

Norman Müller

Andreas Rössler

Yawar Siddiqui

Armen Avetisyan

Ji Hou

Dejan Azinović

Manuel Dahnert

Dave Zhenyu Chen

Thank You!

Thank You!

