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“AUTOCITS Pilot in Lisbon perspectives, challenges 
and approaches” *

* C.Premebida, et al.

Pilots
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From 2018 to today: key achievements in IV
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Lidar Technology Advancements

Automated Delivery Vehicles
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Autonomous vehicles – “not only cars”

Reliable AI applied to perception systems in AVs  @C.Premebida

‘Robot vehicles’
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Intelligent (robotic) vehicles: 20+ years of history
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2004 2007 2010

Big players in 
AD & ADAS:

• W…
• N…
• M…
• P…
• . . .

Today

Sensors for perception system
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Perception systems
In automated-autonomous vehicles, or simply intelligent vehicles (IV), perception designates a system that endows the 
vehicle with the ability to perceive, comprehend, and reason about the surrounding environment. 

Perception relies strongly on 

1. sensory data (from onboard sensors and some from the infrastructure) and 

2. Software, algorithms, techniques: here AI/ML is the key element

Perception systems are designed to cope with environment/surrounding*  understanding and are crucial for decision-
making - sometimes in real-time – in tasks such as obstacle avoidance, lane detection, object detection, ADAS, and so on. 

(*) in real-world applications the surrounding / environment is subject to changes, disturbance, noise, interference – plus 
varying weather/environmental conditions (e.g., rain, dust, light, and son on).
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Perception systems -  sensory data
In advanced vehicles, typically the on-board sensor are:

• Cameras (visual data)

• LIDAR (Light Detection and Ranging) (3D spatial mapping)

• Radar (detecting distance, speed, and position of objects)
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Onboard sensory data can be complemented by infrastructure-based sensors:

Ther.CAM

CAM

LiDAR

Robot
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Data collected by the sensors should be processed in order to obtain a 
Representation i.e., data representation mapping.
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Perception systems -  sensory data

• Occupancy grid mapping (2D representation): Radar, LiDAR
• Bird-eye view (BEV): LiDAR
• Calibration of cameras: common ref. system
• 3D representation e.g, voxels

Appropriated representation and mapping 
depends on:

• Time alignment / synch.
• Spatial alignment i.e., calibration
• Common reference system

• Data fusion



LiDAR representation

D. Feng et al., "Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges," in IEEE Tran. ITS, 2021.
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J. Beltrán, C. Guindel, F. M. Moreno, D. Cruzado, F. García and A. De La Escalera, "BirdNet: A 3D Object Detection Framework from LiDAR Information," In Proc. IEEE ITSC, 2018.
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Perception: task-specific + AI approaches
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Perception systems for intelligent vehicles (including robotic-vehicles)

• (multisensory – multimodal) Object detection
• Detection and tracking objects
• 3D object detection
• Environment representation / mapping (2D, 2.5D, 3D representations)
• Sensor-fusion (e.g., camera + LiDAR + radar data)

Machine learning/AI (as a key-component in perception systems)

• Segmentation / clustering (i.e., unsupervised learning)
• Generative methods (based on conditional distribution e.g., BayesNN)
• Discriminative methods (e.g., RandForest, SVM, LDA, MLP)
• Deep learning (CNN-based architectures)
• Combination/mixture of AI-experts
• Reinforcement learning



Perception systems
Main goal: to extract meaningful information from the measurements (data) and/or info (higher-level data) from 
exteroceptive* sensors mounted on-board the robot and/or from the ‘infrastructure’.

* The so called proprioceptive sensors are, for example,: encoders, IMU, INSS.

How to model/characterize the uncertainties which are inherent to the sensors, data, 

and consequently the AI models ?

Uncertainty, Noise, Disturbances, ‘Attacks’

Real World
environment

Sensors
(data)

Representation
Pre-processing
Calib./Synch.

Perception

AI/ML
algorithms

Output
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Perception is not only about colour vision/camera systems and object detection…

Perception -  SW, algorithms, models, techniques
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… it is present in many applications:

Perception -  SW, algorithms, models, techniques

• ADAS (e.g.: lane detection, parking assist., traffic signal 
recognition)

• Mapping, SLAM, localization
• Place recognition
• Lane detection
• Agents' intention/interaction prediction
• Sophisticated ACC

• … besides cameras, other sensors modalities are involved.

@credits: Tiago Barros

Perception systems -> critical-safety applications -> reliable solutions
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Deep Learning-based Place Recognitions

Anchor

Positive
Negative

Place recognition is a perception-based global localization 
approach that finds revised places by matching descriptors 
instead of point clouds.

NegativePositive Anchor

Training Phase

3D-LiDAR SLAM Framework

Decrease
Distance

Increase
Distance

Loops

BEV Projection

Spherical Projection 3D LiDAR Place Recognition

Trainable Functions

[1] Barros, Tiago, Ricardo Pereira, Luís Garrote, Cristiano Premebida, and Urbano J. Nunes. "Place recognition survey: An update on deep learning approaches." arXiv preprint arXiv:2106.10458 (2021).
[2] Barros, Tiago, Luís Garrote, Martin Aleksandrov, Cristiano Premebida, and Urbano J. Nunes. "TReR: A Lightweight Transformer Re-Ranking Approach for 3D LiDAR Place Recognition." In IEEE ITSC, pp. 2843-2849. 2023.
[3] T. Barros, L.Garrote, R.Pereira, C.Pemebida, U.J. Nunes. "Attdlnet: Attention-based deep network for 3d lidar place recognition." In Iberian Robotics conference, pp. 309-320. Cham: Springer International Publishing, 2022.
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Perception -  LiDAR having distinct resolution
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64-beam Laser 32-beam Laser 16-beam Laser
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Perception - LiDAR having distinct resolution
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What is the impact of 3D LiDAR resolution in SLAM algorithms and DL-based 

perception models?   

LiDAR128

LiDAR64
LiDAR128: 

437k ±3k

LiDAR64: 

232k ±6k

Number of Points per point cloud 
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Perception – agricultural vehicles-robots
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Cybonic/MISAgriculture



Page 19

Perception – UAV / drones
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Cybonic/DL_vineyard_segmentation_study
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Uncertainty calibration, Overconfidence – Reliable Deep architectures
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Reliable AI
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Reliable AI
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Trustworthy AI -> Intelligent Vehicles & Robotics

+ Explainable AI (XAI): methods and techniques for making AI systems more transparent and 
understandable to humans.

+ Safety and security in AI and autonomous systems: exploring the risks and challenges of AI 
and autonomous systems, and methods for mitigating them.

+ Ethical considerations in AI: addressing the ethical implications of AI, such as bias, privacy, 
and autonomy.
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XAI

[*] Plamen P. Angelov, E.A. Soares, R. Jiang, N. I. Arnold, and P. M. Atkinson. “Explainable articial intelligence: an analytical review.” WIREs Data Mining and Knowledge Discovery, 2021.

Accuracy vs. interpretability for different machine learning models, from [*].

• transparency and explainability of advanced 
AI and ML models

• interpretability tends to be low in most DL 
approaches

[**] R. Marcinkevics, Julia E. Vogt. “Interpretability and Explainability: A Machine Learning Zoo Mini-tour”. ArXiv, 2023.

From [**]
• Interpretability and explainability have escaped a clear universal definition
• Other terms that are synonymous to interpretability: intelligibility, and understandability
• More recently (XAI): is closely tied with interpretability; and many authors do not differentiate between the two
• [***] interpretable ML focuses on designing models that are inherently interpretable; whereas explainable ML tries to 

provide post hoc explanations for existing black box models

[***] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,” Nature Machine Intelligence, 2019.

Reliable AI applied to perception systems in AVs  @C.Premebida
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Machine learning – DL: undesirable aspects

• Lack of proper Uncertainty quantification

• Overconfidence problem in Deep Neural 
Networks (DNNs)

• The DNNs’ outputs are commonly 
“normalized scores” 

but it does not guarantee of 
being proper probabilities.

DNNs tend to be over-
confident in their 

predictions
… and in most cases, we do 

not know why.

Reliable AI applied to perception systems in AVs  @C.Premebida
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Machine learning – DL: undesirable aspects

Why probability is important in ML-based perception for IV / AD?

• Most of the modern deep learning (DL) algorithms, and available software packages, tend to 
lack explainability in terms of probability

• They might generalize in unforeseen and overconfident ways on out-of-training-distribution 
[*]. 

[*] “Hands-on Bayesian Neural Networks - a Tutorial for Deep Learning Users”
LV Jospin; et. al. – 2020
https://arxiv.org/abs/2007.06823

So, the presumable inability of ANNs to answer “I don’t know" 

… is problematic in fields where their predictions have critical 
implications, such autonomous driving, ADAS, robotics.
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Reliable ML applied to IV perception

Calibration of ML/DL models

[*]
P.Conde, C.Premebida (2022). “Adaptive-TTA: accuracy-consistent weighted test time augmentation method for the 
uncertainty calibration of deep learning classifiers”. In. Proc. 33rd British Machine Vision Conference (BMVC).

[*]
“Real-world applications of machine learning (ML) systems require a 
thorough look into the reliability of the learning models and consequently 
to their uncertainty calibration (also referred as confidence calibration or 
simply calibration). 

In addition to having highly accurate classification models, the user should 
be able to "trust" their predictions, specially when dealing with critical 
application domains, where wrong decisions can result in potentially 
dramatic consequences.”

Examples:
• Autonomous driving
• Robotics
• Medical diagnosis

Reliable AI applied to perception systems in AVs  @C.Premebida
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Reliable ML applied to IV perception
SOTA on object recognition and detection use deep architectures; DNNs provide normalized prediction scores (the outputs) 
via a SoftMax or Sigmoid layer i.e., the prediction values are in the interval of [0, 1]. 

Usually, such models/architectures are implemented through deterministic neural networks thus, the prediction itself does 
not consider uncertainty for the predict class of an object during the decision-making.

Therefore, evaluating the prediction confidence or uncertainty is crucial in decision-making whereas an erroneous decision 
may have severe implications.

Techniques to mitigate the overconfident problem:

• Calibration
• Regularization

Calibration acts directly in the network output prediction (post-hoc calibration*), while regularization aims at penalizing
network weights through a variety of methods, adding parameters or terms directly to the cost/loss function.

* “…adjusts the output logits of a pre-trained model…”
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Reliable ML – confidence calibration

[*] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). “On calibration of modern neural networks”. In ICML.

[*] “confidence calibration is the problem of predicting probability estimates representative of the true correctness likelihood”.

Intuitively, the idea of calibration can be formulated as follows: let ℎ to be a ML model  ℎ 𝑋 = ( ෠𝑌, ෠𝑃). 
Considering a distribution generated over the 𝐾 possible classes of the model for a given input 𝑋, where ෠𝑌 is the predicted 
class with an associated predicted confidence ෠𝑃.

The expression above can be better understood by a toy example [*]:

“given 100 predictions, each with confidence of 0.8, we expect that 80 should be correctly classified.” 

Thus, for every subset of predicted samples of a given class with score values equal to 𝑆, the proportion of samples that 
actually belongs to that class is 𝑆.

ℙ( ෠𝑌 = 𝑌| ෠𝑃 = 𝑝)  = 𝑝 , ∀ 𝑝 ∈ [0,1]
The perfect calibration is given by:
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Reliable ML – confidence calibration

[*] Liu, B., Ayed, I. B., Galdran, A., and Dolz, J. (2022). “The devil is in the margin: Margin-based label smoothing for network calibration”. In CVPR.

[*]
“perfectly calibrated models are those for which the predicted confidence for each sample is equal to the model 
accuracy” …

“an over-confident model tends to yield predicted confidences that are larger than its accuracy, 

whereas an underconfident model displays lower confidence than the model’s accuracy.”

The calibration algorithm is an approximation process that depends on a calibration measure, which 
can be obtained by separating the predictions into multiple bins, as Reliability Diagram.

The scores (predicted values) are grouped into M bins (histogram) in reliability diagrams. 
Each example (classification score of an object) is allocated within a bin according to the maximum prediction value 
(prediction confidence).
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Reliable ML – reliability and calibration errors

Reliability Diagram

[*] G Melotti, C Premebida, JJ Bird, DR Faria, N Gonçalves (2022). “Reducing Overconfidence Predictions in Autonomous 
Driving Perception”. IEEE Access.

[*] “Typically, post-calibration predictions are 
analysed in the form of reliability diagram 
representations, which illustrate the 
relationship of the model’s prediction scores 
regarding the true correctness 
likelihood/probability. 

Reliability diagrams show the expected 
accuracy of the samples as a function of 
confidence i.e., the maximum value of the 
prediction function.”

Reliable AI applied to perception systems in AVs  @C.Premebida



Page 30

Reliable ML – reliability and calibration errors
Reliability Diagram – toy example

[Partially @Credits] Xiang Jiang (2020); “A brief introduction to uncertainty calibration and reliability diagrams”, online:
https://towardsdatascience.com/introduction-to-reliability-diagrams-for-probability-calibration-ed785b3f5d44

𝑃 𝑦𝑖 = 0 𝑥𝑖

𝑃 𝑦𝑖 = 1 𝑥𝑖

i=0 1 2 3 4 5 6 7 8 9

0.1 0.8 0.3 0.6 0.2 0.9 0.8 0.2 0.5 0.1

0.9 0.2 0.7 0.4 0.8 0.1 0.2 0.8 0.5 0.9

Considering 𝑃 𝑦𝑖 = 1 𝑥𝑖 , the probabilities are then partitioned into K subsets, in 
which each subset represents a disjoint interval of probabilities between 0 and 1.

If K=3, then we have 3 sets: [0.0 – 0.33), [0.33-0.66), [0.66 – 1.0] 

Partitioned sets

Set1 (𝑖 = 1, 5, 6) -> (0.2 , 0.1 , 0.2)

Set2 (𝑖 = 3, 8) -> (0.4 , 0.5)

Set3 (𝑖 = 0, 2, 4, 7, 9) -> (0.9 , 0.7, 0.8, 
0.8, 0.9)

Reliable AI applied to perception systems in AVs  @C.Premebida
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Reliable ML – reliability and calibration errors

Reliability Diagram – toy example
For each Kth subset, two estimates are computed: (a) average of the predicted probabilities, 
(b) the relative frequency of positive examples (i.e., Accuracy in ML applications).

Sets: 1 2 3

Average 
predictions

0.17 0.45 0.82

Relative Freq. 
of “1”

1/3 0.50 0.80

[@Credits] Xiang Jiang (2020); “A brief introduction to uncertainty calibration and reliability diagrams”, online:
https://towardsdatascience.com/introduction-to-reliability-diagrams-for-probability-calibration-ed785b3f5d44 

(i) when the average predictive probability is 0.17, about 33% 
of the predictions are positive; 

(ii) when the average predictive probability is 0.45, about 50% 
of the predictions are positive; 

(iii) when the average predictive probability is 0.82, 80% of the 
predictions are positive.

https://towardsdatascience.com/introduction-to-reliability-diagrams-for-probability-calibration-ed785b3f5d44
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Reliable ML –calibration errors

ECE – Expected Calibration Error
Expected Calibration Error, Overconfidence Error, Max. calib. Error, …

Notations
Predictions/probabilities from a model are grouped into M interval bins 
of equal size

Bₘ is the set of samples whose prediction scores fall into bin m

𝑦ᵢ and ො𝑦𝑖  are true label vector and prediction vector, respectively

Ƹ𝑝𝑖  is the confidence/“probability” (winning score) of sample i

n is the total number of samples in all the bins

The accuracy and confidence of Bₘ are defined as

Reliable AI applied to perception systems in AVs  @C.Premebida



ECE – Expected Calibration Error
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https://medium.com/@wolframalphav1.0/evaluate-the-performance-of-a-model-in-high-risk-applications-using-expected-calibration-error-and-dbc392c68318 

• conf(Bₘ) is just the average confidence/probability of 
predictions in that bin 

• acc(Bₘ) is the fraction of the correctly classified examples Bₘ

The Expected Calibration Error (ECE) is then defined as:

<Code> 

“Evaluate the performance of a model in high-risk applications using Expected Calibration Error and Overconfidence Error”

Overconfidence Error (OE)

penalizes predictions by the weight of the confidence but only 
when confidence exceeds accuracy ie, overconfident bins incur a 
high penalty.

Maximum Calibration Error (MCE):

https://medium.com/@wolframalphav1.0/evaluate-the-performance-of-a-model-in-high-risk-applications-using-expected-calibration-error-and-dbc392c68318


Post-hoc calibration techniques
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• Temperature scaling (an extension of the Platt scaling algorithm)
• Histogram binning 
• Isotonic regression

• Test Time Augmentation

P.Conde, C.Premebida. “Adaptive-TTA: accuracy-consistent weighted test time augmentation method for the uncertainty calibration of deep learning classifiers”. In. BMVC, 2022.

Post-hoc calibration techniques: designed 
to address uncertainty calibration without 
the need of retraining the DL models.

Reliable AI applied to perception systems in AVs  @C.Premebida
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Open problems, challenges, future perspectives

Reliable AI applied to perception systems in AVs  @C.Premebida

• AD, ADAS, AI-based perception for: buses, trains, ships, … military vehicles/systems

https://www.metromondego.pt/pt/metrobus 

https://railway-news.com/atc-3540-3750-computers-transport-intelligently/ 

https://www.europarl.europa.eu/topics/en/topic/artificial-intelligence 
Photo by the European Defence Agency

https://www.metromondego.pt/pt/metrobus
https://railway-news.com/atc-3540-3750-computers-transport-intelligently/
https://www.europarl.europa.eu/topics/en/topic/artificial-intelligence
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Open problems, challenges, future perspectives

Reliable AI applied to perception systems in AVs  @C.Premebida

• More and more data vs representativeness

• Heterogeneity of data source: cameras, LiDARs, Radars, V2X, and so on
• Distinct resolution, plus diverse functional operation and performance
• Difference in time acquisition / frame-rate
• Data representation

• Generalization to new/unseen conditions
• Distribution shift problem
• Continuous update of models

• AI + autonomous systems -> …
• AI/ML is evolving exponentially fast
• When combined (embodied) with vehicles-robots: several opportunities to explore
• Defence/military systems will be of concern?



Questions?

THANK YOU
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