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“Fully Automated Train Operation” is a significant lever to reduce CO2-
Emissions because it supports the shift from individual to public transport

Reduction of unproductive times (paths from the train driver (TF)
to and from the vehicle)

Densification of the timetable, e.g., by splitting vehicles that would other-
wise run in multiple traction or additional connections in off-peak times

Increased flexibility in timetable design

Faster achievement of normal operation in the event of malfunctions,
as replacement vehicles are provided more rapidly

Overcoming the considerable shortage of train drivers
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Steps in the introduction of highly and fully automated driving

Driver drives completely manually

Automatic obstruction detection
(obstacle detection, platform protection)

Central or automatic train dispatching

Automatic train operation after driver
interaction Automatic train operation

Central monitoring or automation functions
for handling of train disturbances and
emergency situations

Provision of driving recommendations
for energy-optimized train runs

Highly automatic operation
Limited driver action

Manual operation
Supervision by driver

GoA 3
Automatic train operation
without driver
Driverless train operation (DTO)

GoA 4
Automatic train operation without staff
Unattended train operation (UTO)

GoA 2
Automatic train operation with driver
Semi-automated train operation
(STO)

GoA 1
Manual train operation with driver
Supervision and control train
operation (SCO)

Obstruction detection by driver

Manual train dispatching by
driver or train attendant

Train monitoring and intervention in emer-
gency situations by driver or train attendant

Fully automatic operation
No supervision by driver

GoA Grade of Automation acc. to IEC 62267
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Automation in the Railway Domain

More

Technical
Challenge

Less

1 GoA = Grade of Automation (acc. to IEC 62290) | 2 ODD = Operational Design Domain = Operation conditions under which an autonomous system is specifically designed to function

No product available today – R&D

ODD2

Metro Berlin High-speed:
PZB/LZB/ETCS

Metro Munich Thameslink
ATO over ETCS

Commute:
PZB/LZB/ETCS

Metro Sofia CBTC London Docklands LRT

Siemens Tram Assist BOStrab Tram Oper-
ation: “Driving by sight”

U-Bahn Nürnberg
Driverless

Metro Paris CBTC Rio Tinto AutoHaul
Australia: ATO over ETCS

Highly automated
Commute: BerDiBa

AST DemonstratorShuntingDepot: AStriD

Alstom “Real-labor” BS Thales R&DMireo2021

Narrow/
constrained

Wide/
unconstrained

Somewhat
constrainedGoA1
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Establishment of a system for GoA 3/4 operation

GoA 1

Objects

Trackside

Onboard

Operation
control
center

Operation
network

Doors

GoA 2 GoA 3/4

TCMS ETCS ATO
onboard

IPM OB RTO OB

Traction &
Brake

ETCS
trackside

ATO
Trackside

Remote
control
center

Technical key challenge: Obstacle/object detection in a natural environment

Perception

Incident
prevention
module
Track-side

Digital MAP

Up to GoA 2 components Added components for GoA 3/4
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Artificial Intelligence (AI) is required to enable object classification in open
environments, but it is a big challenge to build dependable systems

According to the current state of the art, we assume that e.g., obstacle detection can only be
implemented using the methods of ML (Machine Learning – a field of AI Artificial Intelligence).

AI is a
“black box”

Processes und tools

New:
European
AI ACT-
high-risk

application
No safety

standard for
AI-based

perception
system in

rail domain

No
established
tools and
processes

Dynamic
open

environ-
ment

Unclear
regarding

inter-
pretability,
robustnessSafety Standards

Legislation

Uncertainty

Interpretability

Requirements
for assessment
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What is safe.trAIn? 02

©safe.trAIn | Unrestricted | February 2025 Page 8



Safe.trAIn enables Safe Perception for Driverless Regional Trains

Project goalsChallenges of AI
in Railway

 No safety standard
for AI-based
perception in rail
domain

 Unclear requirements
for assessment of AI

 No established tools
and processes

Safe perception for automated trains

Safety-enabling
architecture
Exploration of
architecture
patterns involving
redundancy

Safety case
and testing
Quantitative
evaluation of all
approaches in
virtual test field

Metrics/KPIs for
(self)-evaluation
Performance
metrics for online
and offline
evaluation

Transfer to
standardization
Contributions to
national and
European
standardization
activities
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Consortium

Technology
Provider

Assessor/
Standardization

Enabler

User
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Person on track and passenger in train are the 2 safety objectives for
perception system
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The perception system will prevent harm
from passengers in the vehicle and persons
on the track

The perception system will detect heavy
obstacles on the tracks, a collision with which
can potentially cause injuries and fatalities for
passengers in the train

The perception system will detect persons
on the tracks, a collision with which can
potentially cause injuries and fatalities
for the person on the track

Heavy obstacles include, but are not limited to
trees, rocks, cars, trucks, other trains, flooding,
landslide…

Persons on the track include, but are not limited
to workers, trespassers, playing kids, …

Safety objectivesPassenger in train Person on track

Current safety objective of the rail operation acc.
to German regulations (e. g. DB RIL 408.2341)
The driver must prevent harm from the train.

Probably needed for public acceptance of
driverless train operation.
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It is challenging to match safety requirements with AI-related evidences
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Safety Requirements for a specific application
(Safety Functions with Safety Integrity Level)

Evidence from
Machine Learning specific properties, metrics, thresholds, …

Independent of technology,
i.e., whether AI is used or not

Is this really “evidence”?
For what?

How does that match?
To be demonstrated for the specific case, no generally accepted “recipe”
for AI fulfilling SIL exists in standards

ISO/IEC TR 29119-11:2020 Guideline on the testing of Al-based systems:
“The currently available Al frameworks and algorithms are not qualified for
use on the development of safety-related systems.”
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What did we
achieve in
safe.trAIn?

03
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According to CSM RA “comparison with reference system”

So
ur

ce
: W

ik
ip

ed
ia

The overall safety target relates to the concept of Recall

Safety target: “overall as good as driver”

Regional trains rarely encounter Obstacles

 Evaluate safety against Probability of Failure on Demand (PFD)
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PFD = 1%
 Based on ATO-Risk1 project and further analysis

 PFD is considered as equivalent to 1–recall, where recall =TP/(TP+FN)

 TP and FN to be evaluated against definition of safety functions

 Achieved PFD will be determined offline using validation data
with ground truth

 Recall to be evaluated on set of scenarios

1 https://www.dzsf.bund.de/SharedDocs/Downloads/DZSF/Veroeffentlichungen/Forschungsberichte/2023/ForBe_40_2023_ATO_Risk_Summary_EN.pdf?__blob=publicationFile&amp;v=5



Five Pillars of Safety Case Strategy address different aspects
and must be balanced for specific circumstances

Processes tailored
to applied
perception specifics

Analysis of non-
conventional
redundancies in
safety architecture

Demonstrate
sufficient
understanding
of causalities of
functional behavior

Testing with real
and simulated data
(in our virtual test
field)

Safety Monitoring
during Operation
(e.g., Out-of
Distribution
Detection, …)

Safety Case Strategy

System Definition and Requirements

The defined processes
needs to cover all
developmental aspects
considered important for
the final assurance of
correct behavior of the
system under
consideration.

In order to achieve a low-
enough false negative
rate, PFD, the architecture
of the system comprises
redundancies to cope with
faults and imperfection of
different perception
components.

Its goal is to demonstrate a
certain level of human
understanding as to why the
right results are given by
the system for the right
reasons.

Besides process reviews,
audits, checking all
documents, Q-Gates, etc.
tests according to an
acceptable coverage
criterion are required.

Higher uncertainty in
functional decision and
behavior and possible
domain shifts needs to
be compensated by more
stringent field monitoring
compared to conventional
system.
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Operational Design Domain (ODD) as Central Element in the Development
Process
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Weiss G., Zeller, M., Schoenhaar H., et al. Approach for Argumenting Safety on Basis of an Operational Design Domain. In:
Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering - Software Engineering for AI (CAIN ‚24), 184–193
(2024). https://doi.org/10.1145/3644815.3644944



Pillar 1: To close the gap between assuring AI-based systems and conventional
software systems: All AI Safety Concerns need to be addressed
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AI Safety Concerns1

Inadequate
specification of
ODD

Inadequate
planning of
performance
requirements

Insufficient AI
development
documentation

Inappropriate
degree of
transparency to
stakeholders

AI-related
hardware issues

Choice of
untrustworthy data
source

Missing data
understanding

Insufficient data
representation

Discriminative
data bias

Inaccurate data
labels

Problems with
synthetic data
(Reality Gap)

Inappropriate data
splitting

Poor model design
choices

Over- and
underfitting

Lack of
explainability

Unreliability in
corner cases

Lack of
robustness

Uncertainty
concerns
(model)

Integration
issues

Operational
data issues

Data drift
(over time)

Concept drift

Definition of AI Safety Concerns: “AI-specific, underlying issues that may negatively impact the safety of a system.”
The AI Safety community has conducted comprehensive research on identifying AI Safety Concerns1,2,3:

1 Schnitzer, R., Hapfelmeier, A., Gaube, S., Zillner, S.: AI Hazard Management: A framework for the systematic management of root causes for AI risks. | 2 Houben, S., Abrecht, S., Akila, M., Bär, A., Brockherde, F., Feifel, P., et al.: Inspect,
Understand, Overcome: A Survey of Practical Methods for AI Safety. | 3 Willers, O., Sudholt, S., Raafatnia, S., Abrecht, S.: Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in SafetyCritical Perception Tasks
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AI Life Cycle

Goal k: Demonstrate the absence of AI-SC k

Pillar 1: Applying the Landscape of AI Safety Concerns consists of four steps
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Goal k.1: Goal k.n:

VR k.2.2VR k.1 VR k.2.1 VR k.n

M&M k.2.2M&M k.1 M&M k.2.1 ...

AI Safety Concerns

Goal k.2: ...

...

M&M k.n

Initiate for each AI-SC

orchestrates Provision of evi-
dence for the
absence of AI-SC

Use Case specific
decomposition
of AI-SC

Verifiable
Requirements

Metrics & Mitigation
Measures

More details: Schnitzer, R., Kilian, L., Roessner, S., Theodorou, K., & Zillner, S. (2024). Landscape of AI safety concerns-A methodology to support safety assurance
for AI-based autonomous systems. 8th International Conference on System Reliability and Safety (ICSRS) preprint available: https://arxiv.org/abs/2412.14020
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01
Initializing LAISC
Identification of relevant AI Safety Concerns

02
Decomposing the AI-SC
Use-case specific concretization
of AI Safety Concerns

03
Derivation of Verifiable Requirements
Establishing criteria for determining when
AI Safety concerns are considered absent

04

Application of Metrics and Mitigation
Measures along the AI life cycle
Generation of evidences along the whole
AI life cycle



Pillar 1: Landscape of AI Safety Concerns and safe MLOps Process
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Metrics &
Measures

❶ ❷ ❸ ❹ ❺
❶

❷ ❸ ❹

❺

AI safety
concerns

Zeller, M., Waschulzik, T., Schmid, R. et al. Toward a safe MLOps process for the continuous
development and safety assurance of ML-based systems in the railway domain. AI Ethics 4, 123–130
(2024). https://doi.org/10.1007/s43681-023-00392-4

In order to assure AI-based autonomous systems:
For each AI Safety Concern, evidence needs to be
derived along the whole AI life cycle that convincingly
demonstrates the sufficient mitigation of the respective
AI Safety Concern.

More details: Schnitzer, R., Kilian, L., Roessner, S., Theodorou, K., & Zillner, S. (2024). Landscape of AI safety concerns-A
methodology to support safety assurance for AI-based autonomous systems.
8th International Conference on System Reliability and Safety (ICSRS) preprint available: https://arxiv.org/abs/2412.14020



Non-conventional redundancies and Monitoring from Pillar 2 + Pillar 5
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Fusion

Non-AI Object Detector

AI based Object Detector

AI based Pedestrian/
Large Object Detector

Track Detector

Position Detector

Map

Obstacle
Determi-
nation &
Handler

Localization

LIDAR

LIDAR

Camera

Sensors

GNSS

Map data

Various system level Monitors

Uncertainty determination (detector) and evaluation (fusion)

 Different sensor modalities
 Different detectors using AI and non-AI

algorithms

Define dissimilar architecture elements
and data paths using

Uncertainty determination and propagation
partially implemented, e.g.,
by High Level fusion

 Safety measures realized in monitors
and components

Monitoring of system and components
at runtime
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Pillar 3: Sufficient Understanding of Causalities of Functional Behavior is
achieved by collaboration of AI and domain experts
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Process
1. For each component, observability at the

input and output interfaces proportionate to
its influence on safety must be implemented

2. For each component, appropriate methods
for explainability or interpretability are
implemented, if possible and meaningful

3. Detailed behavior validation by a domain
expert, supported by a perception system
expert, must show evidence of the system’s
suitability for use

This pillar focuses on leveraging both domain and perception system experts to review the system’s behavior
comprehensively, ensure – as much as possible – that the perception system does the right things for the right reason.

Approach
 Goal: provide transparency and trust in the system's decision-

making by demonstrating sufficient understanding of the causalities
behind the perception system's functional behavior
“Does it do the right things for the right reasons?”

 Focuses on analyzing why the perception system makes
certain decisions, rather than just which decisions it makes.
This includes – as far as possible – identifying potential biases
or confounding factors

 Limitation: While full end-to-end explainability is not feasible, this
pillar calls for providing appropriate levels of observability and
explainability at the component level, using techniques like TCAV,
Layer-wise Relevance Propagation (LRP) and Saliency Maps
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Pillar 3: Saliency Maps help identify importance of regions of interests
for the prediction
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Method
 Compute saliency map
 Threshold saliency map
 Compute intersection over union (IoU) between

ground truth and saliency map

Purpose
 Compute visual similarity measure
 Provide a baseline for the future development
 Spark discussion
 Give tangible ground for exploring the appli-

cations of explainability methods for safety
argumentation

Objective
Identify “What portion of the network's ‘attention’
goes to the track when performing a track-seg-
mentation task?”

Compute
saliency map

Threshold
the map

Compute
intersection
with GT

Compute
union with
GT
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Pillar 3: Concept-Based Explanations give insight into concept coverage
and relevance, providing global explainability
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Purpose: Even if the AI possess adequate performance, it must also be
assessed that relevant concepts, e.g., of the ODD have been intrinsically
encompassed by the system

Explain the model using high level human visual concepts  (images).
Concepts are both understandable and meaningful to humans

Globally explain the AI decision process with the underlying concepts,
rather than the individual data points or parameters used in the model.

TCAV1 score is calculated for each concept to know
how relevant it is for the target class

Mitigation: Retrain the model with images containing the missing concept (tested)

PROs
 Sole global method available
 increases transparency and trust

into the model for a certifying party
 visual approach easy to

comprehend by non data scientists

CONs
 Computationally very expensive
 Not all models support the

necessary computations
 Missing clear guidelines for

interpreting scores and setting
reasonable thresholds

Basic concepts example: What concepts are relevant for track classification?

Result
 All concepts have

been learned by
the model

High-level concepts example: Have concepts vehicle/human on rail be learned?

Result
 Both concepts for class “obstacle” in one of the layer s
 Both have identical scores → “obstacle” class is paying

attention to a common context

1 Kim et al 2022 “Quantitative Testing with Concept Activation Vectors (TCAV)”

Page 23



Pillar 4: Each test level focuses on a specific test object and test goal
and is supported by a corresponding test environment
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Train

TCS

AI Model V&V

SW Integration Test

SW System Test

IDE

Train Validation

Component Test
Safe MLOps

Pipeline

Virtual Test Field (VTF)

Data Quality

SW Sub-system B
(Perception)

Sub-system A
(e.g., Drive Control)

SW Unit Test

Component A
(Track Detector)

H
W

/S
en

so
rs

Component B

AI Model

…

3D Mapping

…

TCS Integration Test

TCS System Test
out of scope

HW/SW Integration Test

DataOps Pipeline

SafAIre

Test Object (SUT) Test environmentTest Level
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Pillar 4: Test environments in safe.trAIn
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Git

System Under Test pipeline

Git

Safe MLOps Pipeline

Check
for

changes

Pull
datasets

Train
ML model

Evaluate
ML

model

Install
verification

library

Verify
ML model

Publish
package

(pre-trained
m

odel)

curated datasets

ai.store1

Publish
metadata

Metadata
store

PyPI

Package ready for ROS nodes

Build
package ML component

Message broker

Store data
points w

ith bad
predictions

Load data
points w

ith bad
predictions

Virtual Test Field

Git
Docker
registry

Virtual Test Field

Pull
code

Run
tests

Build
image

Publish
image

Verification Library

Git Data

DataOps Pipeline
Raw data

Git PyPI
Pull
code

Run
tests

Build
package

Publish
package

Pull
code

Run
tests

Build
dataset

Publish
dataset

Pull
data

Security
check

Trigger test
scenario

Subscribe to
all topics

Provision
infrastructure

Deploy
SUT

Run
tests

Run
XplAIner

Destroy
infrastructure
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Pillar 4: For analysis of test results the VTF inputs and outputs are visualized
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Pillar 5: Enhancing AI Safety through Runtime Monitoring
of Out-of-Distribution Objects

©safe.trAIn | Unrestricted | February 2025

 Prevent unreliable AI model outputs when inputs deviate from the training
distribution

 Ensure that the AI system adheres to specifications by monitoring
its operation in real-time

Objectives

Challenges
 Continuous monitoring introduces additional computational overhead,

potentially impacting performance
 Distinction between valid OOD objects and background

is challenging for widely varying sample distributions

Approach
PROWL: A prototype-based zero-shot unsupervised OOD detection
and segmentation framework

In-Distribution Samples Out-of-Distribution Samples

Decision
Boundary
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Pillar 5: How to Monitor Unknown
Out-of-Distribution Elements

ODD

Out-of-Distribution
Elements that are not defined in the ODD
are considered Out-of-Distribution (OOD).

PROWL | Prototype-based zero-shot unsupervised
OOD detection and segmentation
 Relies on creating a prototype feature bank for each ODD object.

 Utilizes generalized robust features based on zero-shot inference
with foundation model-based feature extractors

PROWL correctly detects OOD objects like the
shopping cart and the signal box which are not
considered part of ODD in this setup.

Whenever significant features of ODD elements are
not detected or visible, PROWL identifies them as
(additional) OOD elements.

Example: Shopping Cart/Signal Box Example: Person Pose

Sinhamahapatra, Poulami, et al. “Finding Dino: A plug-and-play framework for unsupervised detection of out-of-distribution
objects using prototypes.” arXiv preprint https://arxiv.org/abs/2404.07664 (2024)
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Summary &
Outlook 15
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Summary
safe.trAIn enables Safe Perception for Driverless Regional Trains

Safety
case and
testing

Safety-
enabling
architect-
ture

Metrics/KP
Is for
(Self)-
evaluation

Transfer to
Standardi-
zation

Safe perception for automated trains

Challenges of
AI in Railway

• No safety
standard for AI-
based perception
in rail domain

• Unclear
requirements for
assessment of AI

• No established
tools and
processes

• Safety target approx. 1% Probability of Failure on
Demand (PFD)

• 5 Pillars for safety assurance
1. Processes
2. Analysis of non-conventional redundancies
3. Sufficient understanding of causalities
4. Testing with real & simulated data
5. Safety monitoring during operation

• Balance between the 5 pillars and how they can
compensate for each other's weaknesses guides
the safety validation

• “Landscape of AI safety concerns“ guides
systematically the safety assurance

• Analyzing ML-specific safety concerns
• Find mitigating measures along the

development life-cycle

Project goals
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marc.zeller@siemens.com
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