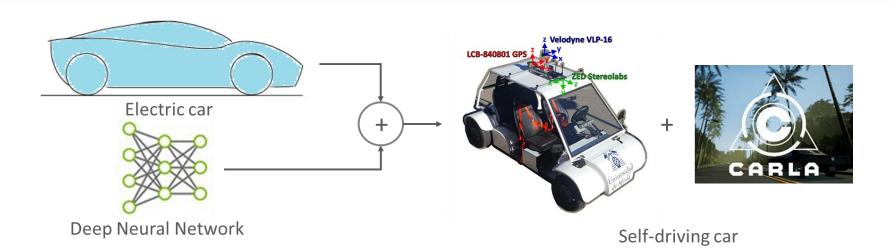
Beyond supervised Deep Learning for Autonomous Driving

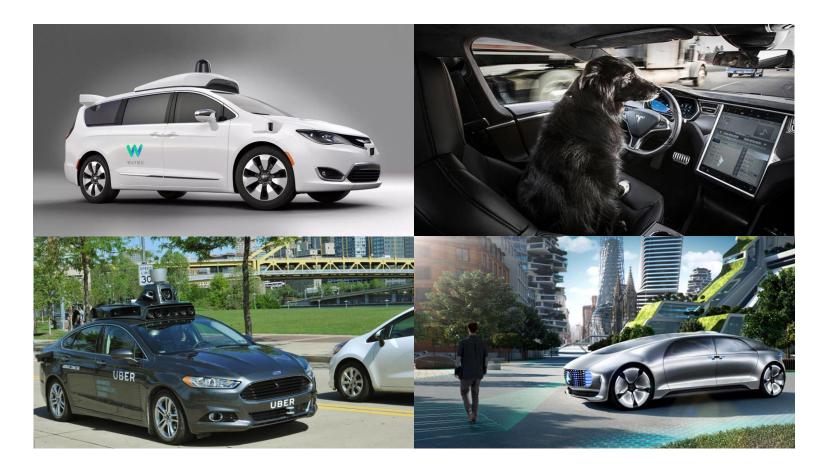
Luis M. Bergasa Robesafe Lab. University of Alcalá. Spain



VEHITS 2022

April 29, 2022

Self-driving cars: Safe lives, increase mobility and improve efficiency

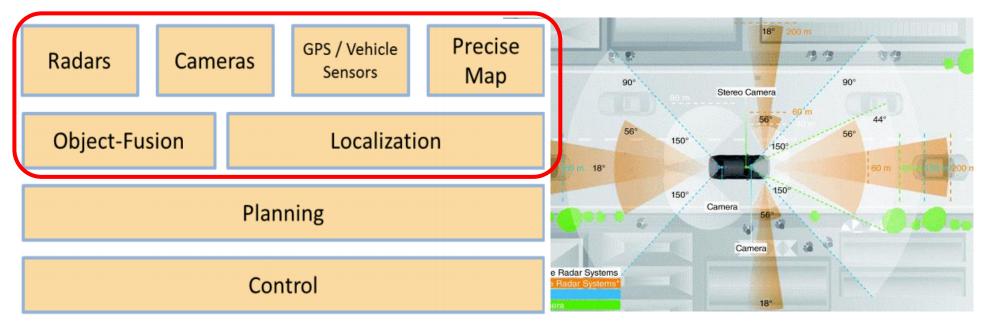


VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

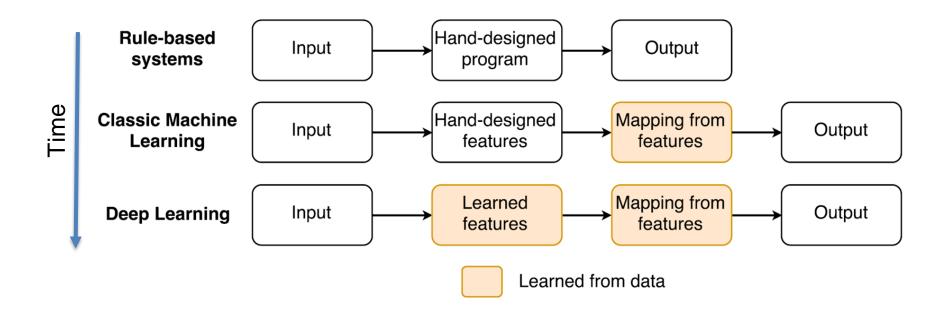
Autonomous Driving architecture

```
\begin{array}{c} \mathsf{Mapping} \to \mathsf{Perception} \to \mathsf{Localization} \to \mathsf{Planning} \to \mathsf{Control} \\ \uparrow \\ \mathsf{Decision} \ \mathsf{Making} \end{array}
```

Perception

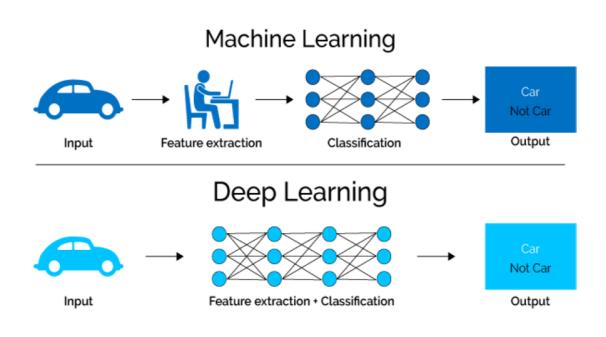


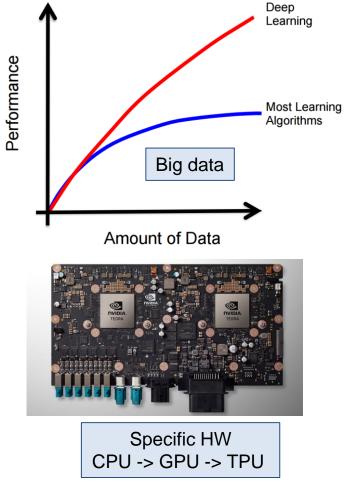
3 approaches for AD design in time:



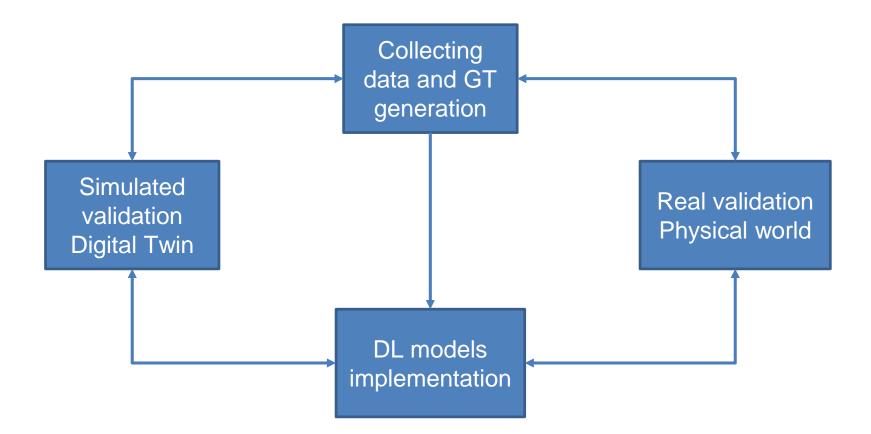
From Model-driven to Data-driven algorithms

Why Deep Learning? Scalable Machine Learning and Parallelizable processing





AD stack implementation pipeline in the context of DL

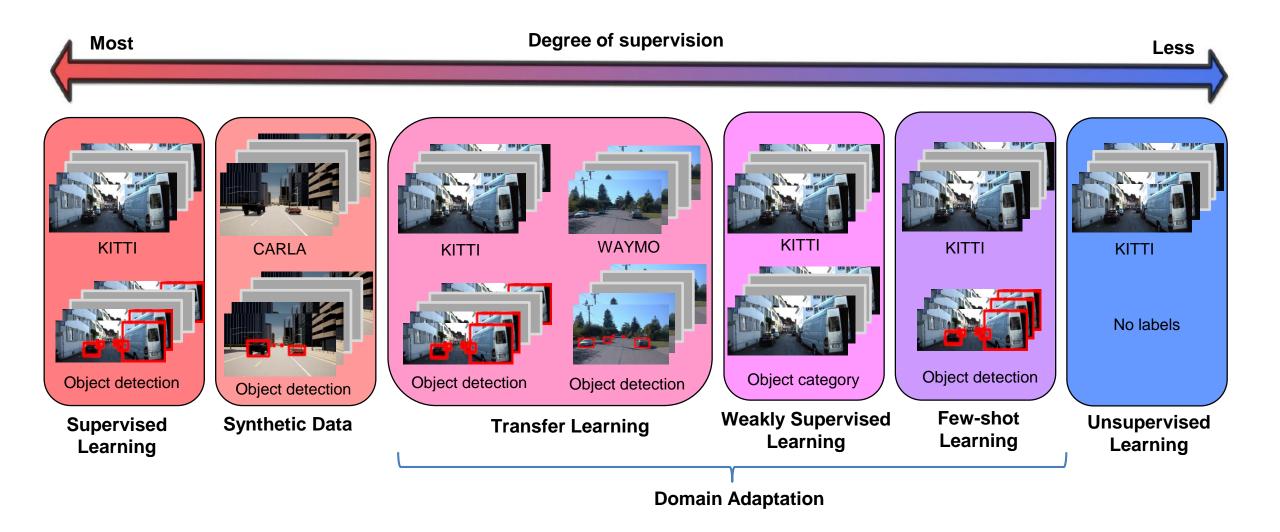


Supervised learning paradigm

Beyond supervised DL

- Supervised DL have led to the development of accurate and efficient models for AD tasks
- Supervised DL-based techniques for AD present important issues:
 - Require huge amounts of human-labeled data
 - Are unable to generalize to multiple domains and tasks
- There are a plethora of works to adapt models to label-scarce target dataset through unsupervised domain adaptation

Beyond supervised DL



Synthetic data

• Simulators can be used to construct synthetic data sets for AD

Advantages:

- 1. Exponentially larger than real-world data sets
- 2. Precise GT available for free and without human errors
- 3. Viewpoint, lighting and material properties can be easily configured
- 4. Challenging scenarios can be introduced in the dataset
 - Unsafety situations (e.g. head-on collisions)
 - Different weather conditions (e.g. sunny, rainy, foggy, ...)
 - Rare situations (e.g. unexpected pedestrian)

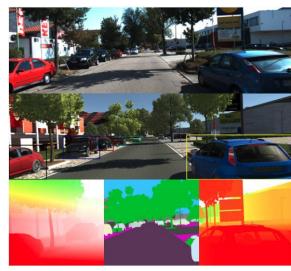
Features				Simula	tor		
		CARLA	AirSim	DeepDrive	LGSVL	NVIDIA Drive	rFpro
	Licence	Open Source	Open Source	Open Source	Open Source	Commercial	Commercial
General	Portability	Windows & Linux	Windows & Linux	Windows & Linux	Windows & Linux	Windows & Linux	Windows & Linux
General	Physics Engine	Unreal Engine	Unreal Engine & Unity	Unreal Engine	Unity	Unreal Engine	U
	Scripting Languages	Python	C++, Python, Java	C++, Python	Python	Python	U
	Urban Driving	Town	Town, City	Road Track	City	City, Harbor	Town, City, Road Track
D	Off- Road	Ν	Forest, Mountain	Ν	Ν	Ν	Ν
Environment	Actors - Human	Y	Ν	Ν	Υ	U	Y
	Actors - Cars	Υ	Υ	Y	Υ	U	Y
	Weather Conditions	Y	Y		Y	Y	Y
	RGB	Y	Y	Y	Y	Y	Y
	Depth	Y	Y	Y	Y	U	Y
Sensors	Thermal	Ν	Y	Ν	Ν	U	U
	LIDAR	Y	Y	Ν	Y	Y	Y
	RADAR	Υ	Ν	Ν	Υ	Y	Υ
0 · · · · · · ·	Semantic Segmentation	Y	Y	Ν	Y	Y	Y
Output Training	2D Bounding Box	Y	Ν	Ν	Y	Y	U
Labels	3D Bounding Box	Y	Ν	Y	Y	U	U

Table 4. Comparison of outonomous driving simulators

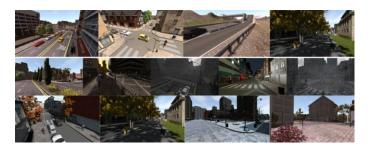
[Malik et al, 2022] Malik, Sumbal, Manzoor Ahmed Khan, and Hesham El-Sayed. "CARLA: Car Learning to Act—An Inside Out." Procedia Computer Science 198 (2022): 742-749.

Synthetic data

- Virtual KITTI is a photo-realistic synthetic video dataset designed to learn and evaluate computer vision models for several video understanding tasks
- SHYNTIA is a synthetic dataset that consists of 9400 multi-viewpoint photo-realistic frames rendered from a virtual city and interesting for semantic segmentation studies
- CARLA is an open-source simulator for autonomous driving research



Source: https://arxiv.org/pdf/1605.06457.pdf.



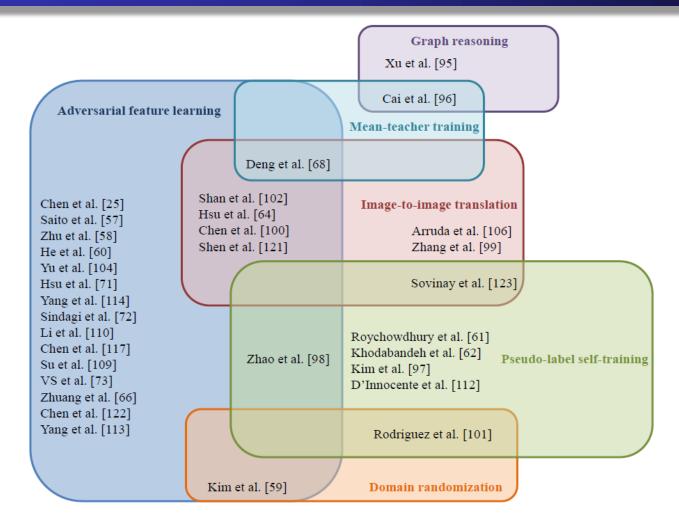
Source: https://synthia-dataset.net/.

Source: https://synthia-dataset.net/.

Challenge: domain gap between real and synthetic data sets

VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

Domain adaptation



[Oza et al, 2021] "Unsupervised domain adaptation of object detectors: A survey", Oza P, Sindagi VA, VS V, Patel VM. arXiv preprint arXiv:2105.13502. 2021 May 27.

Domain adaptation research directions

Comprehensive evaluation

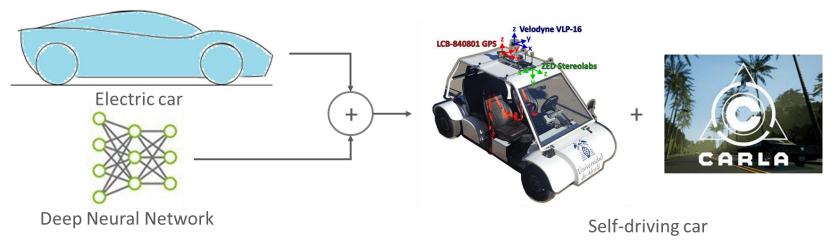
- Generalizing current approaches to other detection frameworks (YOLO, 3D detectors, etc.)
- Design complex real-world datasets (to build datasets reflecting real-world scenarios that enable a more rigorous and robust evaluation process)
- Consistent training and inference strategy (hyper-parameters related to the backbone net and resizing ratio of the input images) to perform a fair comparison of the methods

Domain adaptation research directions

- Improving generalization with real-world constraints
 - Weak/semi-supervised domain adaptation
 - It is important to explore further to bridge the performance gap between fully supervised and adaptive training
 - Few-shot domain adaptation
 - Is not yet explored in the domain adaptive detection literature
 - Multi-source domain adaptation
 - Training data are collected from multiple sources. Selective adaptation can be carried out where only relevant samples are considered
 - Continuous time adaptation
 - Adapting a pretrained model to dynamically changing environmental conditions

Our approach

To contribute as university researchers to apply DL techniques to special AVs in towns



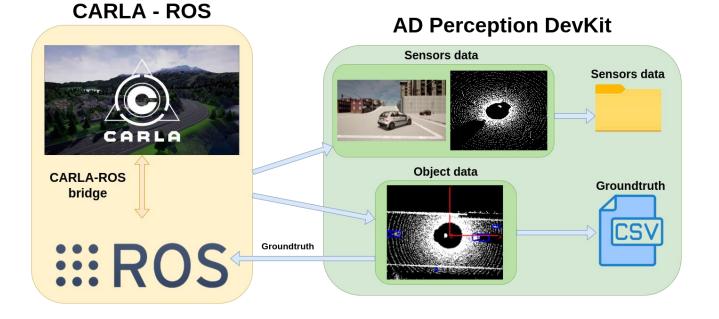
- Goals:
 - Take advantage of the open-source car chassis, datasets, frameworks, DL models and simulators to build a real AV
 - Implement a classic AD stack and progressively introduce DL in its modules
 - Validate our contributions in simulation and in our real car

Our contributions beyond SDL

	1	2	3	4	5
Contributions Research directions	AD Perception Development Kit	DA for 2D object detection	DA for 3D object detection	DA for SS	Autonomous Driving Stack validated in CARLA Leaderboard
Generalizing to other detection frameworks		x	x	X	x
Complex real-world datasets	X				X
Fair comparison	X	x	X	x	X
Few-shot domain adaptation		X	X	X	
Multi-source domain adaptation		X	X	x	
Continuous time adaptation					X

1. AD Perception Development Kit

- Based on CARLA simulator
- Able to generate an **infinite set of annotated data** referred to the ego-vehicle
- Recording virtual car sensors (camera, LiDAR, Radar) in virtual environments
- Dataset generated with this tool for some specific challenging scenarios



1. AD Perception Development Kit

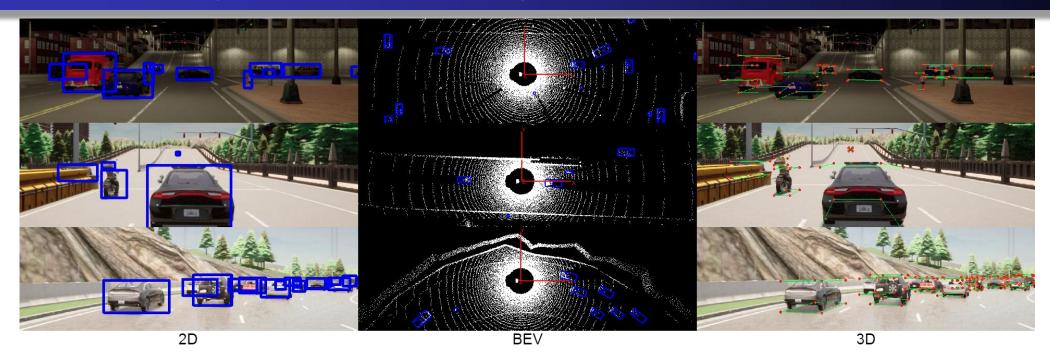
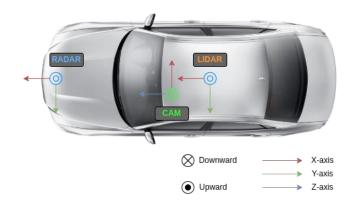


TABLE IV: Sensor data in the AD PerDevKit dataset.

Sensor	Brief Details
Camera	Front stereo camera at 20Hz, with a FoV of 85° and a resolution of 1280x720 generating RGB images.
Lidar	360° of visibility, a maximum range of 120m, 64 beams at 20Hz and a vertical FoV of 2° to -24.9°, generating 1,300,000 points per second.
Radar	Frontal radar at 20Hz with a horizontal FoV of 90°, vertical FoV of 18° and a maximum range of 150m, generating 9,000 points per second.



Universidad de Alcalá

1. AD Perception Development Kit

TABLE I: Comparison of cited datasets.

Dataset	Tipe of data	Cities	Annotated frames	Ground-truth 360°	Camera	LiDAR	Radar	Night/Rain	GT generation tool
KITTI	Real data	1	15k	×	✓	✓	×	×	×
nuScenes	Real data	2	40k	✓	~	~	1	1	×
AIODrive	Synthetic data	8	100k	✓	1	~	✓	1	×
AD DevKit	Synthetic data	5	21k	✓	✓	✓	1	✓	✓

TABLE III: Dataset information

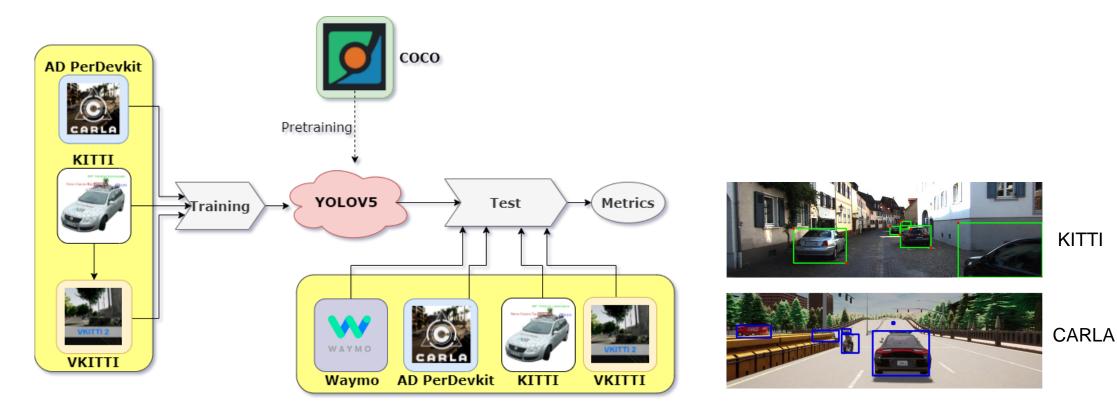
Town	Weather	Challenging scenarios	Frames	Objects per frames
03	Day Night	Intersection and roundabout	1708 1822	29.11 45.89
05	Day	Crowded intersections	3249	19.53
05	Day	Highway	2078	9.58
	Day	Entrance to highway	1413	8.21
06	Day	Crowded highway	1673	16.1
	Rain	Crowded highway	1487	15.86
07	Day	Small village	2738	10.89
07	Rain	Sman vinage	2560	9.78
10HD	Day	Crowded town	1587	77.9
TOHD	Night		1409	76.81

[Peña et al, 2022] "AD PerDevKit: An Autonomous Driving Perception Development Kit using CARLA simulator and ROS", J. de la Peña, L. M. Bergasa, M. Antunes, F. Arango, C. Gómez-Huélamo, and E. LópezGuillén, IEEE Conference on Intelligent Transportation Systems (ITSC) 2022, Macau, China, October 2022. In revision GitHub repository: https://github.com/Javier-DlaP/ad_perdevkit

VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

2. Domain adaptation for a 2D object detector

 Study domain adaptation in a 2D image detector trained with real world and synthetic data from multiple sources



[Antunes et al, 2022] "Including transfer learning and synthetic data in a training process of a 2D object detector for autonomous driving", M. Antunes, L. M. Bergasa, J. Araluce, R. Gutiérrez, F. Arango and M. Ocaña, IEEE Conference on Intelligent Transportation Systems (ITSC) 2022, Macau, China, October 2022. In revision

2. Domain adaptation for a 2D object detector

• Experiment 1:

- Detector trained on one particular dataset (source dataset) does not generalize well to a dataset that has a different distribution (target dataset)
- Applying a pre-training backbone and fine tuning the heads with the target domain obtains higher performance
- Synthetic data generalize worse over real images than using few-shot learning with 10% of target
 dataset
 Model Train Test P R mAP

Model	Train	Test	Р	R	mAP
		Kitti	0.924	0.869	0.943
	Kitti	Waymo	0.618	0.350	0.409
		Carla	0.276	0.198	0.154
		Kitti	0.078	0.077	0.038
Yolov5L	Carla	Waymo	0.023	0.023	0.013
		Carla	0.621	0.893	0.780
		Kitti	0.681	0.416	0.462
	VKitti	Waymo	0.048	0.047	0.017
		VKitti	0.982	0.941	0.984

From scratch

Model	Train	Test	Р	R	mAP
		Kitti	0.953	0.910	0.969
	Kitti 100%	Waymo	0.776	0.582	0.674
		Carla	0.409	0.559	0.439
	Kitti 50%	Kitti	0.921	0.867	0.942
	Kitti 50%	Waymo	0.786	0.568	0.693
	Kitti 25%	Kitti	0.869	0.781	0.883
	Kitu 2570	Waymo	0.798	0.622	0.716
Yolov5L	Kitti 10%	Kitti	0.821	0.708	0.802
		Waymo	0.793	0.643	0.737
		Kitti	0.651	0.466	0.532
	Carla	Waymo	0.614	0.509	0.552
		Carla	0.710	0.842	0.793
		Kitti	0.797	0.622	0.656
	VKitti	Waymo	0.838	0.663	0.769
		VKitti	0.966	0.935	0.983

Pretrained with COCO

2. Domain adaptation for a 2D object detector

• Experiment 2:

- With pre-trained weights a mix with synthetic data does not achieve better results than training with a single real-world dataset (100%)
- A mix of synthetic data and 10% of target real world dataset generalize better that using only the 10% of real-world target dataset

Model	Train	Test	P	R	mAP
		Kitti	0.953	0.910	0.969
	Kitti 100%	Waymo	0.776	0.582	0.674
		Carla	0.409	0.559	0.439
	Kitti 50%	Kitti	0.921	0.867	0.942
	Kitti 50%	Waymo	0.786	0.568	0.693
	Kitti 25%	Kitti	0.869	0.781	0.883
		Waymo	0.798	0.622	0.716
Yolov5L	Kitti 10%	Kitti	0.821	0.708	0.802
		Waymo	0.793	0.643	0.737
		Kitti	0.651	0.466	0.532
	Carla	Waymo	0.614	0.509	0.552
		Carla	0.710	0.842	0.793
		Kitti	0.797	0.622	0.656
	VKitti	Waymo	0.838	0.663	0.769
		VKitti	0.966	0.935	0.983
	Dro	trained wi		<u>ר</u>	

Model	Train	Test	Р	R	mAP
	Kitti 100%+	Kitti	0.950	0.911	0.969
	Carla	Waymo	0.800	0.579	0.676
	Calla	Carla	0.745	0.760	0.829
	Kitti 50%+	Kitti	0.802	0.871	0.889
	Carla	Waymo	0.792	0.600	0.694
Yolov5L	Carra	Carla	0.610	0.901	0.800
1010/512	Kitti 25%+ Carla	Kitti	0.817	0.808	0.846
		Waymo	0.799	0.570	0.673
	Carra	Carla	0.702	0.731	0.776
	Kitti 10%+ Carla	Kitti	0.787	0.806	0.821
		Waymo	0.740	0.559	0.643
	Carra	Carla	0.644	0.813	0.760
Model	Train	Test	P	R	mAP
	Kitti 100%+	Kitti	0.949	0.915	0.967
	Vkitti	Waymo	0.770	0.597	0.683
	• KIUI	Vkitti	0.973	0.929	0.983

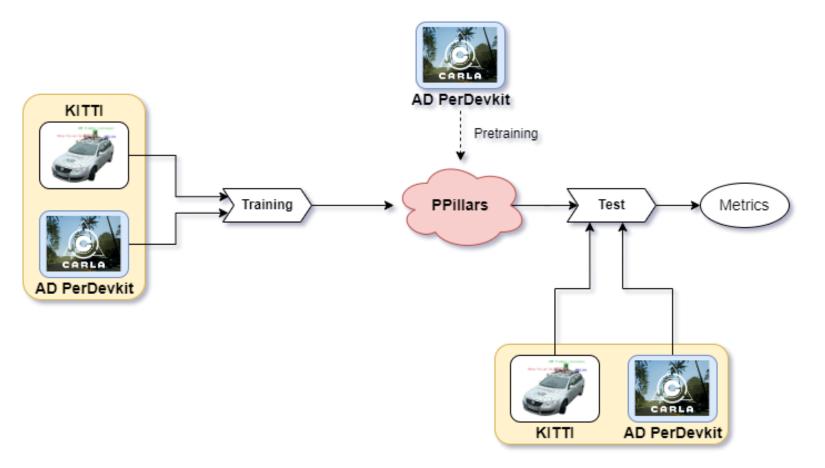
	Kitti 100%+	Kitti	0.949	0.915	0.967
	Vkitti	Waymo	0.770	0.597	0.083
	V KIUI	Vkitti	0.973	0.929	0.983
	Kitti 50%+	Kitti	0.938	0.882	0.955
	Vkitti	Waymo	0.779	0.597	0.682
Yolov5L	V KIUI	Vkitti	0.971	0.925	0.982
TOIOVJL	Kitti 25%+ Vkitti	Kitti	0.895	0.878	0.931
		Waymo	0.781	0.586	0.679
	V KIUI	Vkitti	0.979	0.930	0.984
	Kitti 10%+	Kitti	0.877	0.815	0.886
	Vkitti	Waymo	0.797	0.582	0.686
	V KIUI	Vkitti	0.964	0.939	0.983

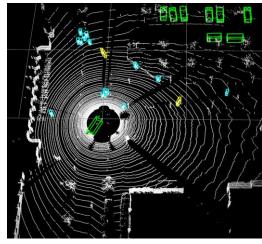
Pretrained with COCO

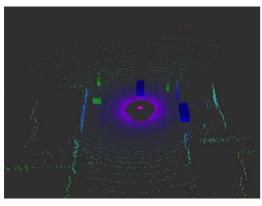
VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

3. Domain adaptation for a 3D object detector

 Study domain adaptation in a 3D point cloud detector trained with real world and synthetic data from multiple sources







3. Domain adaptation for a 3D object detector

- **Experiment 1**: 3D detector is capable of learning on both real and artificial data quite similarly but • validation on the opposite type of data set leads to unacceptable performance
- **Experiment 2**: Combining real and synthetic data into one data set shows no significant improvement in the real world
- **Experiment 3**: Fine-tunning a model trained with synthetic data with a 20% of the target dataset improves real-world performance

Network	Train set	Test set	Prec	Recall	F 1	mAP
	Kitti	Kitti	0.89	0.80	0.85	0.74
PPillars	KIUI	Carla	0.00	0.00	0.00	0.00
FFIIIdIS	Carla	Kitti	0.48	0.17	0.25	0.14
	Calla	Carla	0.96	0.66	0.78	0.62

Experiment 1: Train on one database

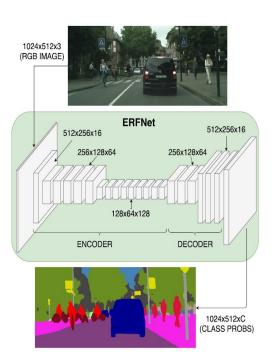
Experiment 2: Train on combined databases

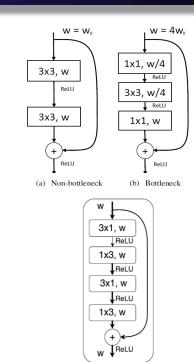
Network	Train set	Test set	Prec	Recall	F1	mAP
	Kitti 100%	Kitti	0.92	0.76	0.83	0.68
PPillars	+ Carla 100%	Carla	0.97	0.64	0.77	0.62
11111115	Kitti 100%	Kitti	0.94	0.74	0.83	0.69
	+ Carla 20%	Carla	0.94	0.53	0.67	0.52

Experiment 3: Test on CARLA, fine-tune & test on KITTI

Network	Tune set	Epoch	Prec	Recall	F1	mAP
PPillars	Kitti 20%	1	0.91	0.68	0.78	0.59
		5	0.90	0.73	0.80	0.66
		10	0.85	0.79	0.82	0.63
		15	0.83	0.81	0.82	0.70
		25	0.94	0.70	0.80	0.69
	Kitti 100%	1	0.91	0.70	0.79	0.67
		5	0.87	0.79	0.83	0.65

4. Domain adaptation for our SS ERFNet





- Residual layers
- Filter factorization (1D kernels)

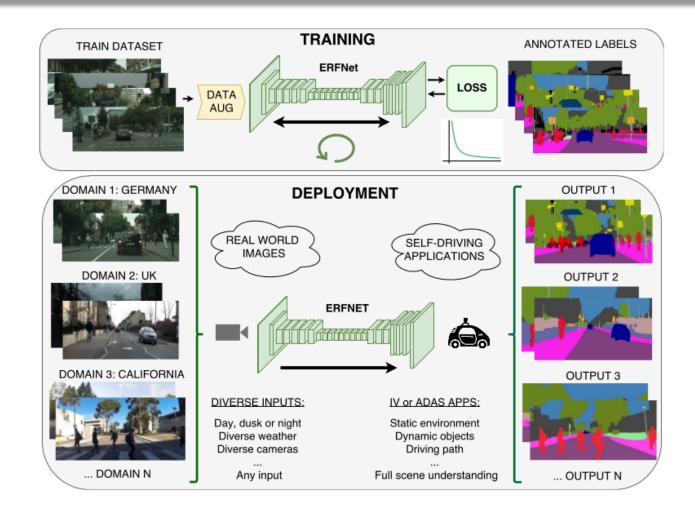
(a) Non-bottleneck-1D

[Romera et al, 2018a] "ERFNet: *Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation*", E. Romera, J. M. Álvarez, L. M. Bergasa and R. Arroyo, IEEE Transactions on Intelligent Transportation Systems (T-ITS), January 2018. [IEEE T ITS Main publication (GSM)]

GitHub repository: https://github.com/Eromera/erfnet

VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

4. Domain adaptation for our SS ERFNet



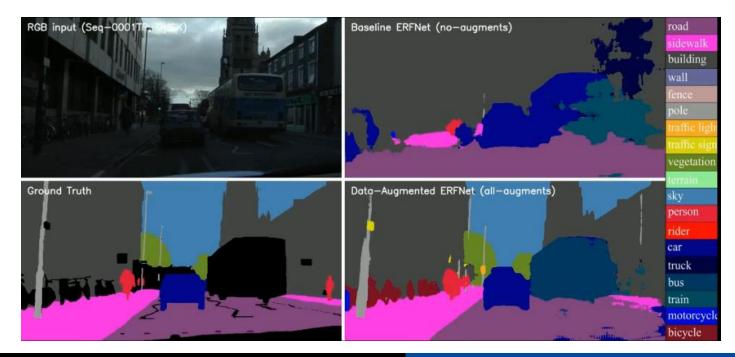
[Romera et al, 2018b] "Train Here, Deploy There: Robust Segmentation in Unseen Domains", E. Romera, L. M. Bergasa, J. M. Álvarez and M. Trivedi, IEEE Intelligent Vehicles Symposium (IV), Changshu, Suzhou, China, June 2018.

VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

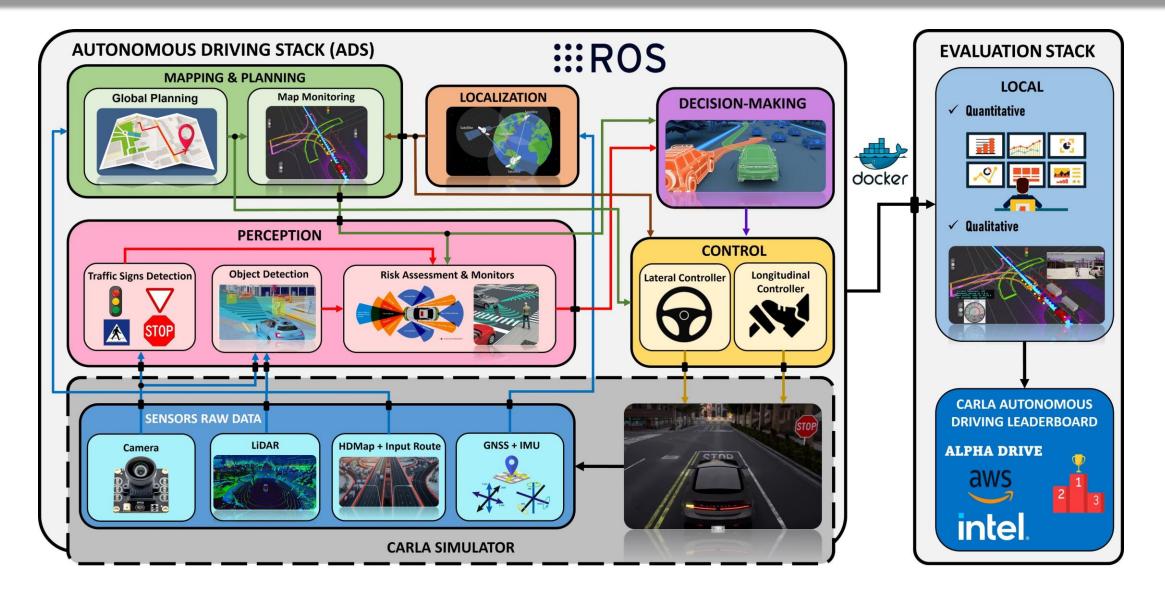
4. Domain adaptation for our SS ERFNet

3 Options to improve SS performance:

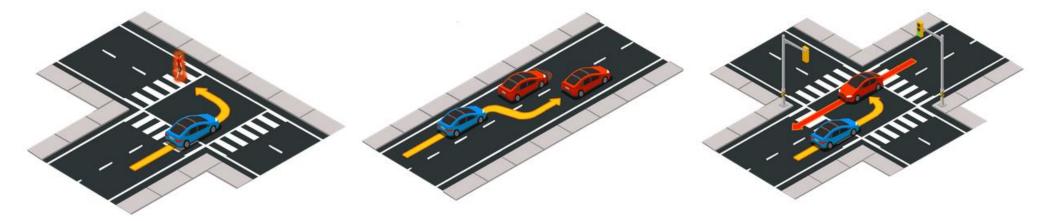
- **1. Increase data samples** \rightarrow Very time-expensive due to per-pixel annotations
- **2. Use synthetic data** \rightarrow SS model overfits the synthetic noise
- **3. Perform data augmentation** \rightarrow Simple techniques commonly used



5. Autonomous Driving Stack



- Evaluate the driving proficiency of autonomous agents in realistic traffic situations
- Open platform for the community to perform fair and reproducible evaluations
- Autonomous agents have to drive through a set of predefined routes facing multiple traffic situations based on the NHTSA typology



• Two participation modalities: **SENSORS** and **MAP**

VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

Metrics

• **Route Completion (RC)**: Percentage of route completed by the agent in a every route *i*, averaged across N routes

$$RC = \frac{1}{N} \sum_{i}^{N} R_{i}$$

• Infraction Penalty (IP): Geometric series of infraction penalty coefficients, p_i^j for every instance *i* of infraction *j* incurred by the agent during the route.

$$P_i = \prod_{j}^{ped,...,stop} (p_i^j)^{infractions(j)}$$

• **Driving Score (DS)**: Weighted average of the infraction penalty with route completion for each route.

$$DS = \frac{1}{N} \sum_{i}^{N} R_{i} P_{i}$$

• Results

TABLE III: Local experiment B: We compare our ADS against different End-to-End architectures, showing the μ and σ over 3 evaluations for each model. We bold the best results in **black** and the second best in **blue** for each metric

Method	Aux. Sup.	$DS \uparrow [\%]$	RC ↑ [%]	IP ↑ [0,1]
CIRLS [27]	Velocity	22.97±0.90	35.46±0.41	0.66±0.02
LBC [28]	BEV Sem	29.07±0.67	61.35±2.26	0.57±0.02
AIM [29]	None	51.25±0.17	70.04±2.31	0.73±0.03
	2D Sem	57.95±2.76	80.21±3.55	0.74 ± 0.02
AIM-MT	BEV Sem	60.62±2.33	77.93±3.06	0.78±0.01
	Dth+2D Sem	64.86±2.52	80.81±2.47	0.80±0.01
AIM-VA	2D Sem	60.94±0.79	75.40±1.53	0.79±0.02
NEAT [26]	BEV Sem	65.10±1.75	79.17±3.25	0.82±0.01
Ours	Modular	62.91±1.96	92.11±1.84	0.69±0.01

Local experiments setup

- 42 routes from 6 different CARLA towns (01 to 06)
- **3 repetitions** for each routes
- 7 weather conditions
- 6 daylight conditions

CARLA Leaderboard setup

- **100 routes evaluated in 2 secret CARLA towns** 10 routes x 2 weather conditions x 5 repetitions
- 173 km of driving experiences

TABLE IV: CARLA Autonomous Driving Leaderboard results (MAP track). We bold the best results in **black** and the second best in **blue** for each metric

Team	Submission	DS ↑	RC ↑	IP ↑
		[%]	[%]	[0,1]
Anonymous	GRI-based DRL [30]	33.78	57.44	0.57
RobeSafe	Techs4AgeCar (Ours)	18.75	75.11	0.28
ERDOS	Pylot [10]	16.70	48.63	0.50
LRM-B	CaRINA [2]	15.55	40.63	0.47
RobeSafe	SmartElderlyCar [4]	12.63	61.59	0.33

[Gómez-Huélamo et al, 2022] "How to build and validate a safe and reliable Autonomous Driving stack? A ROS based software modular architecture baseline", C. Gómez-Huélamo, A. Diaz-Diaz, J. Araluce, M.E. Ortiz, R. Gutiérrez, F. Arango, A. Llamazares and L.M. Bergasa, IEEE Intelligent Vehicles Symposium (IV) 2022, Aachen, Germany, June 2022. Accepted for publication

VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

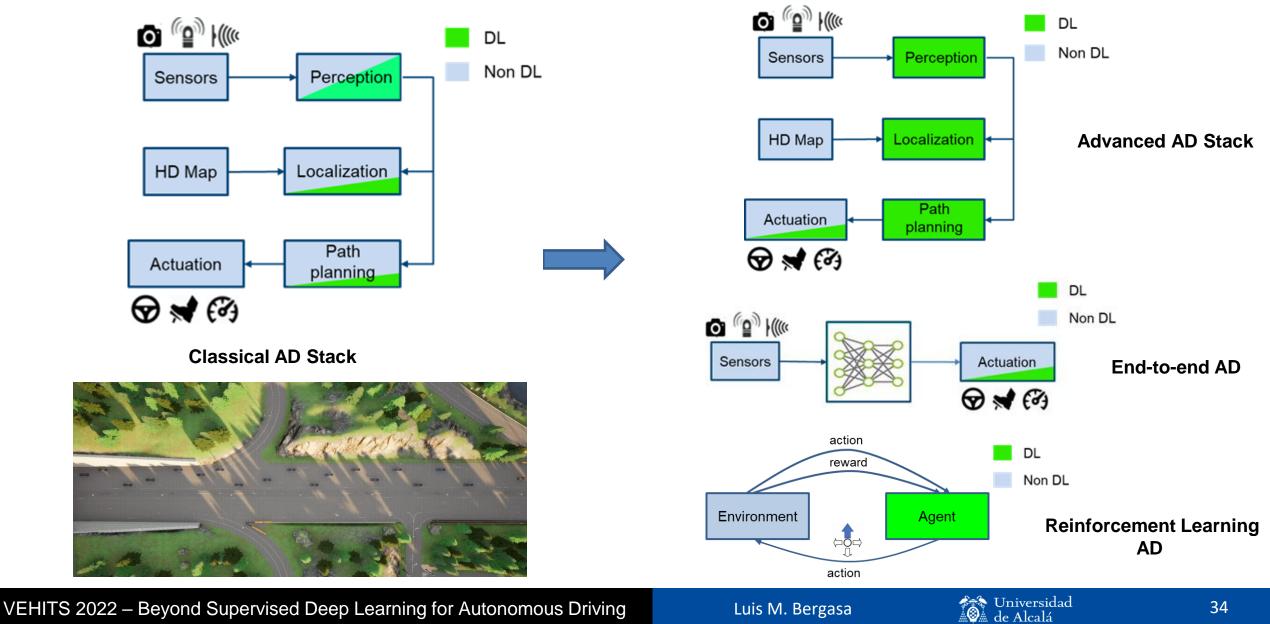
[Díaz-Díaz et al, 2022] "HD maps: Exploiting OpenDRIVE potential for Path Planning and Map Monitoring", A. Díaz-Díaz, M. Ocaña, A. Llamazares, C. Gómez-Huélamo, Pedro Revenga and L.M. Bergasa, IEEE Intelligent Vehicles Symposium (IV) 2022, Aachen, Germany, June 2022. Accepted for publication

VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

Conclusions

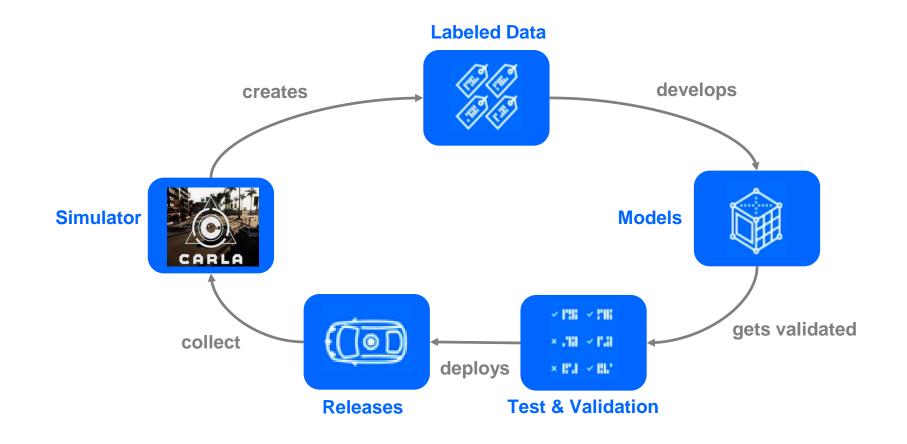
- CARLA simulator proves to be a valid source of artificial data for automotive industry
 - Synthetic data has a good potential for the training and validation of DL perception models
 - More sophisticated sensor models are needed
 - Useful for end-to-end and reinforcement learning model implementation
- CARLA is a good tool to evaluate driving proficiency of AD agents
 - Open Leaderboard
 - Fair and reproducible evaluations

Next Steps



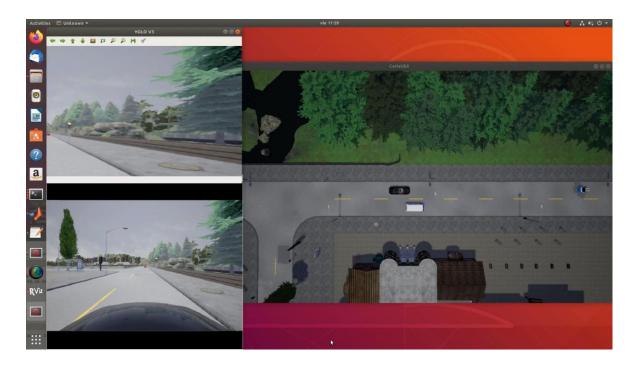
Next Steps

• Make CARLA become a factory for training and validating AD



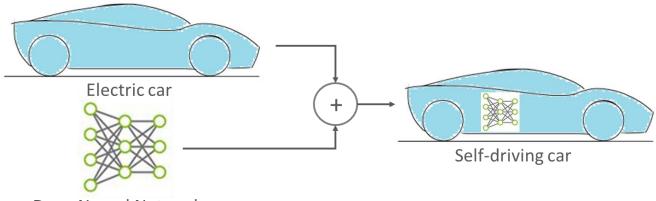
Next Steps

Improve simulation and large-scale testing

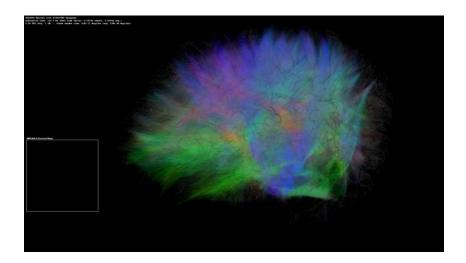


- More realistic sensors
- More realistic drivers and pedestrian behaviors
- Learn agent models from real world
- Use logs from driving and create variations (GAN, Transformers, etc.)
- Scale to different cities and different countries

Final conclusion



Deep Neural Network



"The future of the DL depends on some graduate student who is deeply suspicious of everything I have said."

Geoffrey Hinton "Godfather of Deep Learning"

VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

THANKS!

luism.bergasa@uah.es

www.robesafe.uah.es/personal/bergasa/

VEHITS 2022 – Beyond Supervised Deep Learning for Autonomous Driving

