

Last-Mile Logistics in Urban Areas

Tolga Bektaş

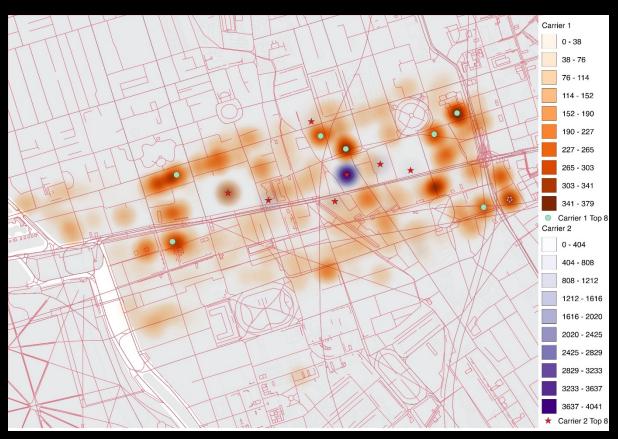
University of Liverpool Management School

9th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS)

2-4 May 2020

Freight Traffic Control 2050: Transforming Last-Mile Logistics (ran from Jan 2016 to July 2019)

Last mile parcel logistics

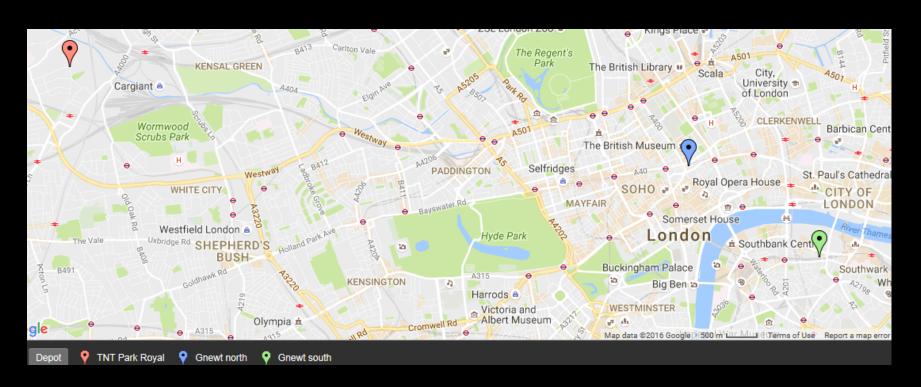

- Final stages of delivery logistics networks
- Small van traffic growing in urban areas
- Less-than-van loads increasing with 'sameday' delivery
- Competitive industry
- Lots of small players
- Lots of inefficiencies
- Pressure to reduce emissions
- Land use planning not accounting for new ecommerce trends

Evidence

Total number of deliveries around Oxford Street:

Carrier 1: 1st October 2016 – 7th February 2017 (129 days)

Carrier 2: 28th August 2016 – 5th November 2016 (69 days)



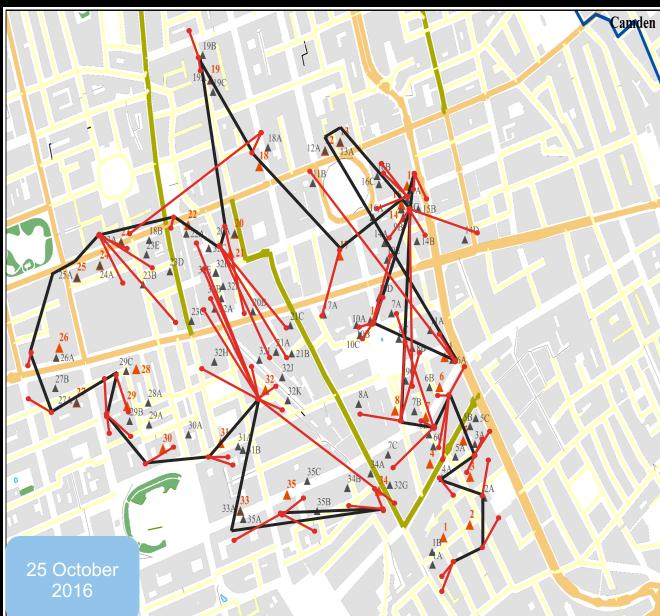
Evidence

	Number of deliveries - All 836 postcodes (Top 8 Postcodes)						
Activity (days)	Total	Average per postcode	Standard Deviation	Maximum			
Carrier 1 (129)	14009 (2348)	16.8 (293.5)	40 (56)	379			
Carrier 2 (69)	19218 (8637)	,	158 (140)	4041			
All Deliveries	33227 (9684)	39.8 (491)	169 (163)	4041			

Data Collection

W1 – Mayfair, Soho, Oxford St., Fitzrovia, Marylebone
WC1 – British Museum, UCL, St. Pancras, Gray's Inn, High Holborn
WC2 – Covent Garden, Leicester Square, Somerset House, Charing Cross

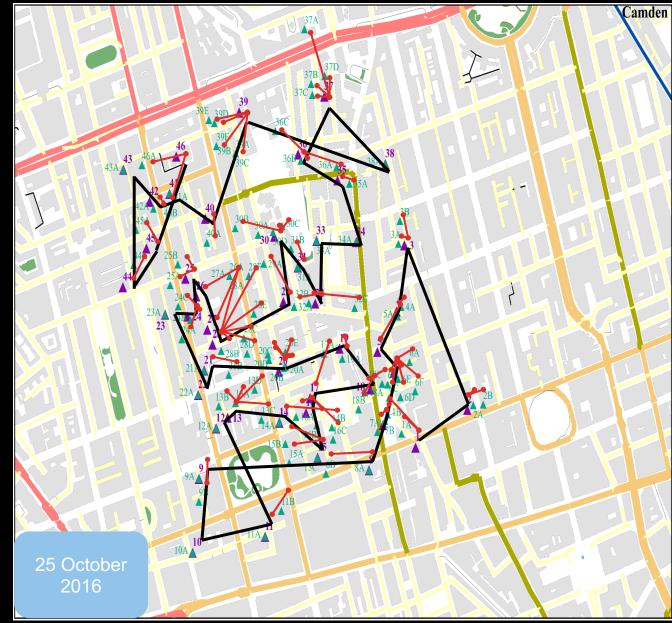
Data collection


Three days: Tue 25/10/16 to Thu 27/10/16

A total of 25 rounds over the three days

- GPS tracks from driver and the vehicle:
 - RouteTracker2 App (surveyor)
 - Qstarz trackers (driver + van)

Round distance: 14.8 kms Round duration: 7.82 hrs Total driving time: 1.77 hrs Total parking time: 6.05 hrs Average speed: 1.89 km/hr #parking stops: 35 #items delivered: 119 Efficiency: 0.06 hr/item

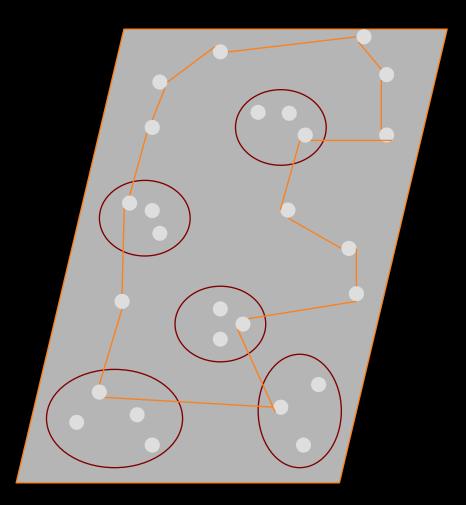


Round distance: 18.5 kms Round duration: 7.3 hrs Total driving time: 1.7 hrs Total parking time: 5.6 hrs Average vehicle speed: 2.53 km/hr Number of parking stops: 46 Number of items delivered: 131

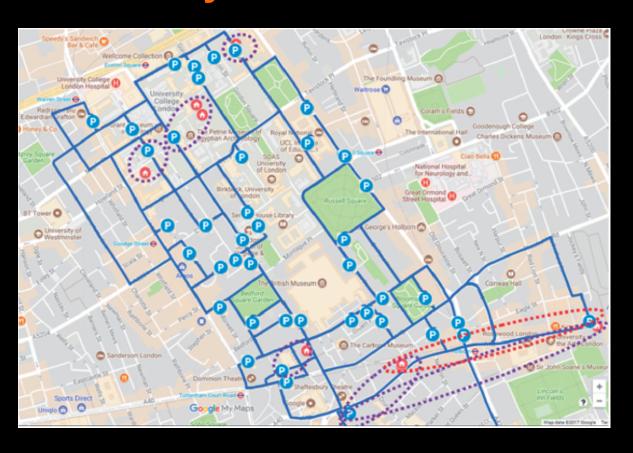
Efficiency: 0.05

hr/item

Time sensitivity?


Data from a major carrier (4–9 June 2018)

Dolinganthy	щ	From Donat 4	ш	From Donat 2	щ	From Donot 2
Delivery by	#	From Depot 1	#	From Depot 2	#	From Depot 3
09:00	178	2.1%	25	4.9%	213	1.6%
10:00	253	3.0%	22	4.3%	296	2.3%
12:00	663	7.8%	42	8.3%	933	7.2%
18:00	7352	87.0%	417	82.4%	11584	88.9%
Total	8446	100.0%	506	100.0%	13026	100.0%


Clustered routing strategies

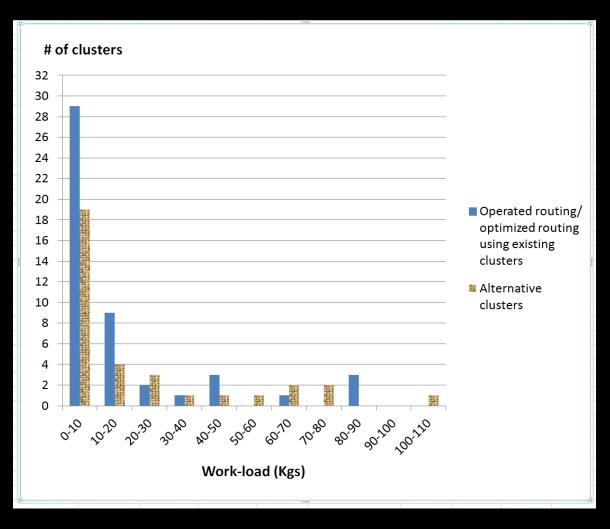
- Initial modelling focuses on one driver on a given patch
- A two level-distribution model:
 - Clusters of delivery points
 - Routing across the clusters
- The routing strategy within clusters may vary

Case study

Round on 27 October 2016:

- 57 delivery locations
- Suggesting 48 clusters
- Four hours of driving and an hour of walking in total

Alternative clusters



Optimisation using 34 clusters:

- About 60% reduction in total driving time compared to original
- Parking times reduced
- Overall delivery time reduced by about 2.5 hours to original

Change in workload (weight)

Portering solutions

Portering

- Scenario 1: Drop-and-drive
 - No porter facilities required
 - Carriage provision needed
 - Synchronisation may be needed
- Scenario 2: Reception points
 - Temporary (mobile?) depots
 - Greater coverage of catchment area

Simple analysis

Scenario 1

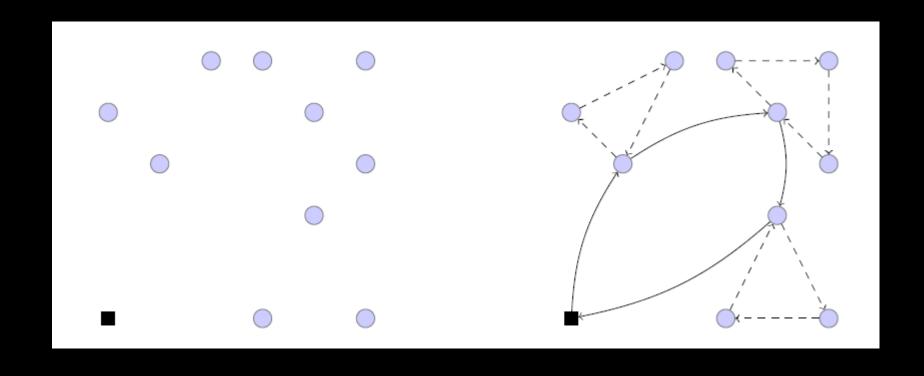
- Van covered 16.8km over 7.3 hours
- Partition into nine approx. equal size patches
- Shortest path assumed in each patch

Simple analysis

Delivery patch (no. consignees)	Parcels	Walking time (seconds)	Walking distance (m (yards))	Handover Time for driver to porter (seconds)	Collections (no. consignors)
1 (6)	54	602	849 (928)	586	0
2 (8)	10	527	741 (810)	133	0
3 (6)	15	559	790 (864)	185	0
4 (4)	4	475	662 (724)	71	3
5 (9)	15	792	1107 (1211)	185	2
6 (3)	6	445	627 (686)	92	0
7 (5)	13	458	647 (708)	164	0
8 (9)	11	565	791 (865)	143	1
9 (2)	3	31	44 (48)	61	0
Total (52)	131	4454	6.26km (3.89 miles)	1620	6

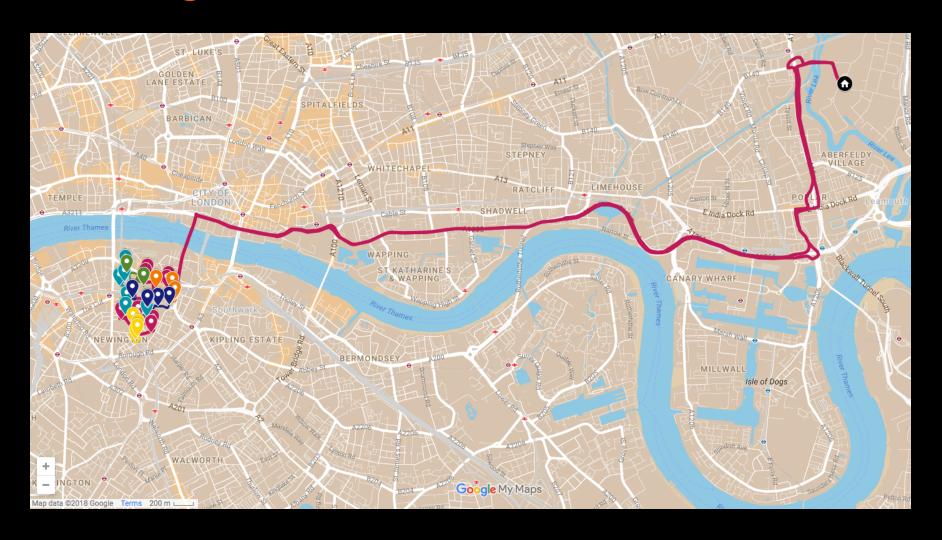
Potential benefits:

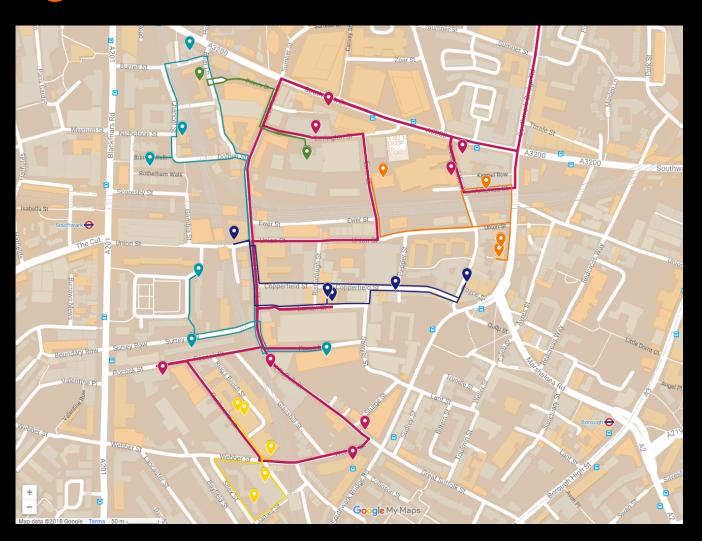
- Reduction of 14.6km in distance (86%)
- Reduction of about six hours (5.3h + 1h – 20min)
- But...



Optimisation challenges

- Clusters
 - Fixed vs unknown
 - Capacity limitations (two-dimensional)


- Porter routes
 - Open vs closed
 - Rendezvous points
 - Infrastructure



Portering solution

Portering solution

Working with Transport for London and with several universities as part of the FTC2050 research project, **Gnewt** has been trailing urban portering services to measure the impact of this new approach as a model for reducing the number of vans needed to fulfil deliveries and cut emissions. ***

https://www.gnewt.co.uk/news/ford-partners-with-delivery-company-gnewt-by-menzies-distribution-to-trial-new-digital-parcel-courier-service-designed-to-help-reduce-congestion-and-offer-faster-deliveries#

Issues in portering systems

Geographical Coverage

Location and Type of Portering Infrastructure

Financing and Operating the Portering Service

Thank you!

T.Bektas@liverpool.ac.uk

www.ftc2050.com

Thanks to my co-authors within the FTC2050 consortium.

