Simulation methods for improving healthcare services: how to choose the right method and to model a system right

Murat M. Günal, PhD

Founder, Associate Professor

Simarter Istanbul, Türkiye

Plan for this talk

- Healthcare area
- Economy of simulation
- What do we have in our toolbox?
- Personal experiences on
 - building models (and simulations) [how to choose the right method]
 - Increasing their validity [model a system right]
- Final words

Simulation in Healthcare

Training with/on physical objects is also called simulation, although I prefer them called "simulators"

We are not going to talk about them... Let's talk about "real" simulation...

Simulation in Healthcare

Epidemiology and diseases

Macroeconomy

Interventions

Strategy &planning

Equity

Biology

Performance in operations

Epidemiology and diseases

Spread of diseases

Agent-based

Agent Based Epidemic Model

Epidemiology and diseases

Compartmental

$$S-I-R$$

$$rac{dS}{dt} = -rac{eta IS}{N},$$
 $rac{dI}{dt} = rac{eta IS}{N} - \gamma I_{s}$ $rac{dR}{dt} = \gamma I_{s}$

Biology

Cell level models

dynamics of cells

npi | systems biology and applications

Explore content > About the journal > Publish with us >

nature > npj systems biology and applications > articles > article

Article | Open Access | Published: 17 February 2023

MorphoSim: an efficient and scalable phase-field framework for accurately simulating multicellular morphologies

npi Systems Biology and Applications 9, Article number: 6 (2023) | Cite this article

886 Accesses | 1 Citations | 1 Altmetric | Metrics

Abstract

The phase field model can accurately simulate the evolution of microstructures with complex morphologies, and it has been widely used for cell modeling in the last two decades. However,

Performance in operations

Flow of patients in a system related to healthcare

Hospitals, ER, departments...

Waiting time of patients, utilisation of doctors, nurses ...

Equity

Response

Home / Health topics / Health equity

Allocation of "money" with justice

Who will you treat first?

QALY, DALY ...

Overview Data and evidence

Equity is the absence of unfair, avoidable or remediable differences among groups of people, whether those groups are defined socially, economically, demographically, or geographically or by other dimensions of inequality (e.g. sex, gender, ethnicity, disability, or sexual orientation). Health is a fundamental human right. Health equity is achieved when everyone can attain their full potential for health and well-being.

Interventions, strategy& planning Macroeconomy

What if we have this treatment?

What must be the pricing strategy of this drug?

What is the long-term benefit of this treatment?

How much will that cost to the nation?

Mostly health
economics
terminology involved,
such as CEA, PSA,
ICER...

Healthcare Analytics Market Size

information resulting from the systematic analysis of data or statistics

The economy of "Simulation"...

The global **healthcare analytics market** size was estimated at USD 37.15 billion in 2022 and is expected to **reach over USD 121.1 billion by 2030** and poised to grow at a **CAGR of 15.9% from 2022 to 2030**. U.S. healthcare analytics market was valued at USD 24.8 billion in 2022.

https://www.precedenceresearch.com/healthcare-analytics-market

Our toolbox

methodologies and software Method

DES

SD

ABS

Markov

Micro

Hybrid...

COTS

SIMUL8

anylogic

Arena°

Simio

Excel

Language

COTS

Measure operational performance?

Behaviours affecting the problem?

Well... what is the problem?

Feedbacks are significant?

Molecule or cell level?

Health outcome vs. cost?

DES

ABS

SD

Markov

Micro

Hybrid...

DES High **ABS** Low SD Scarce Data availability Expert knowledge Markov Questionaries (PRO) Micro Clinical trials Medical literature Hybrid...

Individual **ABS** (not intelligent) Individual (intelligent) SD Cohort Markov Population (sub-populations)

Cell, organism...

DES

Micro

Hybrid...

Entity... (patient)

in the problem...

A hospital's operational performance

Get the client on board (client involvement)

Frame and scope the problem

Find a good level of detail

Specify a level of generality

Check the data validity

Be sure the results make sense

Get the client on board (client involvement)

Explain them using nontechnical language Tell them that "all models are wrong, but some are useful" (George Box)

Use visuals (face validity)

Find a good level of detail

Do we really need?

Simple is good...

Oversimplified is bad...

"Re-use" is dangerous. Be careful!

Specify a level of generality

Will I be able to do "everything" with my model? certainly not...

Be sure the results make sense

Back of envelope calculations... (check your results with fast and hand-made calculations)

Code	Name	# of Electives	# of Non- Electives	Forecasted bed occupancy rates (%)	Required #
1	General surgery	3,468	3,660	84.82	60
2	Trauma & Orthopaedics	3,276	1,536	84.72	47
3	General Medicine	1,469	9,004	84.81	115
4	Cardiology	972	1,224	83.62	31
5	Paediatrics	264	2,196	83.98	11
6	Gynaecology	1,553	2,147	81.33	15
7	Geriatric Medicine	-	7,692	84.72	150
8	Obstetrics	-	7,320	84.58	46
	Total	11,002	34,779	-	475

Thank you...

Murat M. Günal, PhD

Founder, Associate Professor

Simarter Istanbul, Türkiye