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Introduction

Introduction: trustworthy AI

Main requirements on trustworthy AI:
Privacy
Security
Explainability
Fairness
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Introduction

Introduction: trustworthy AI and the law

EU: GDPR, EU AI Act.
USA: Under Biden, Executive Order 14110, revoked by
Trump’s Executive Order 14179.
China: The State is protected from AI rather than the citizens.

=⇒ The EU is the lone vigilante, but the weakest bloc in IT
technology.
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Privacy Risks in Machine Learning: Truths and Myths
Introduction

Can the AI legal framework be more flexible?

The European Commission studies how to flexibilize the EU
AI Act to improve the EU competitiveness in AI1.
We will focus here on:

Privacy attacks and defenses
The tensions between privacy and security defenses
The real effectiveness of privacy attacks.

1April 9, 2025. https://www.politico.eu/article/
how-eu-did-full-180-artificial-intelligence-rules/
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Privacy attacks against machine learning and federated learning

Privacy attacks against ML and federated learning

Centralized ML requires centralizing all training data =⇒ no
privacy vs model manager. What about external attackers?
Federated learning (FL) and fully decentralized machine
learning (FDML) provide scalability and some client privacy
against model managers.
Privacy problem: Model updates sent by clients may allow
inferences on their local data.

For a survey, see 2.

2A. Blanco-Justicia, J. Domingo-Ferrer, S. Martínez, D. Sánchez, A.
Flanagan, and K. E. Tan, “Achieving security and privacy in federated learning
systems: survey, research challenges and future directions”, Engineering
Applications of Artificial Intelligence, 106:104468, 2021.
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Privacy attacks against machine learning and federated learning

Federated learning
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Privacy attacks against machine learning and federated learning

More on privacy attacks against ML/FL/FDML:
membership inference

Membership inference attacks (MIAs) aim to determine
whether a given data point was present in the training data
used to build a model.
Although this may not at first seem to pose a serious privacy
risk, the threat is clear in settings such as health analytics
where the distinction between case and control groups could
reveal an individual’s sensitive conditions.
In FL or FDML, MIA results in disclosure of the local data of
a client.
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Privacy attacks against machine learning and federated learning

More on privacy attacks against ML/FL/FDML:
attribute inference

In an attribute inference attack, the adversary uses a machine
learning model and incomplete information about a data point
to infer missing information.
For example, the adversary is given partial information about
an individual’s medical record and attempts to infer the
individual’s genotype by using a model trained on similar
medical records.
Can be obtained from successful MIAs.
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Privacy Risks in Machine Learning: Truths and Myths
Privacy attacks against machine learning and federated learning

More on privacy attacks against ML/FL/FDML:
reconstruction attacks

Reconstruction or model inversion attacks attempt to build
the whole training data set from the information leaked by the
trained model.
They can also be obtained from MIAs.
They often use generative adversarial networks (GANs).
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Privacy Risks in Machine Learning: Truths and Myths
Privacy attacks against machine learning and federated learning

More on privacy attacks against ML/FL/FDML:
relation to overfitting

Overfitting has been shown to predict the attacker’s
advantage (= max |tpr − fpr|).
In black-box attacks, prediction probabilities (for any
classifier) are used to determine membership.
Models, especially those overfit to the training data, behave
differently when confronted to previously seen data.
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Privacy attacks against machine learning and federated learning

More on privacy attacks against ML/FL/FDML:
relation to overfitting

Individual loss evolution without overfitting
Individual loss evolution with overfitting
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Privacy Risks in Machine Learning: Truths and Myths
Privacy attacks against machine learning and federated learning

Conflict between security and privacy defenses

Conflict between security and privacy defenses

Security defenses are based on the model manager detecting
outlying updates or assessing model degradation (to protect
against poisoning).
Privacy defenses are based on the workers securely
aggregating their updates (via MPC) or adding noise to them
(via differential privacy, DP).
Limitation: Security defenses are based on the manager seeing
updates, whereas privacy defenses either prevent it (MPC) or
cause accuracy loss (DP). Security-privacy-accuracy conflict!
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Privacy Risks in Machine Learning: Truths and Myths
Defenses: differential privacy

Differential privacy as a defense

(ϵ, δ)-Differential privacy [Dwork, 2006]
A randomized query function F gives (ϵ, δ)-differential privacy if,
for all data sets D1, D2 such that one can be obtained from the
other by modifying a single record, and all S ⊂ Range(F)

Pr(F(D1) ∈ S) ≤ exp(ϵ)× Pr(F(D2) ∈ S) + δ

Strong privacy guarantee for ϵ ≤ 1, independent of the
attacker’s background knowledge.
The DP condition is satisfied by adding noise to the query
output, inversely proportional to ϵ and directly proportional to
the sensitivity ∆f of query function f:

F(·) = f(·) + Noise(∆f, ϵ).
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Privacy Risks in Machine Learning: Truths and Myths
Defenses: differential privacy

Composability in DP

Sequential composition: if the outputs of queries κi, for
i = 1, . . . ,m, on non-independent data sets are individually
protected under ϵi-DP, then the output obtained by composing
all individual query outputs is protected under

∑m
i=1 ϵi.

Parallel composition: if m query outputs were computed on m
disjoint and independent data sets and protected under ϵ-DP,
then the composition of those outputs is still protected under
ϵ-DP.
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Privacy Risks in Machine Learning: Truths and Myths
Defenses: differential privacy

On the privacy budget ϵ

As ϵ grows, the privacy guarantee fades away. Values of
ϵ = 8, 14 or more (as used by Apple or Google) are pointless.
Due to sequential composition, when m queries are to be
answered:

If each query is ϵ-DP, the set of m answers is just mϵ-DP
(privacy decreases with m).
If one wants the set of answers to stay ϵ-DP, then each query
answer must be ϵ/m-private (which means more noise per
query, and hence utility decreasing with m).
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Privacy Risks in Machine Learning: Truths and Myths
Defenses: differential privacy

Fitting (or bending) DP for ML

DP is applied to gradients.
Since successive model training epochs are computed on the
same (or partly overlapping) data, ϵ grows with the number of
epochs due to sequential composition.
To deliver some privacy, the ϵ at each epoch must be very
small, which means a lot of noise.
This causes slower convergence and requires more epochs and
thus more noise (vicious circle!).
The final model is very inaccurate.
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Privacy Risks in Machine Learning: Truths and Myths
Defenses: differential privacy

Strategies to reduce noise

Gradient truncation. Gradients are truncated to reduce their
sensitivity.
Prior subsampling. Gradients are computed on a random
sample of the private data.
Use relaxations of strict ϵ-DP, like (ϵ, δ)-DP, concentrated DP,
Rényi-DP, etc.
Bound the cumulative growth of ϵ across epochs using the
moments accountant method.
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Defenses: differential privacy

Applying DP to centralized ML

Applying DP to centralized ML

In centralized ML, learning is managed by a single entity.
The manager may protect privacy by applying DP to:

the input of learning (training data or objective function);
intermediate results (successive model updates); or
the output of learning (the learned model).
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Defenses: differential privacy

Applying DP to centralized ML

Literature on DP in centralized ML

ϵ are single-digit (thanks to moments accountant), often
exceeding 8 (not safe).
Attacker’s advantage upper-bounded by eϵ − 1.
δ is close or larger than 1/n, thus strict DP is not satisfied
with non-negligible probability.
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Defenses: differential privacy

Applying DP to decentralized ML

Applying DP to decentralized ML

1 Local DP. DP is applied locally by each client to obtain
instance-level privacy by:

adding DP-noise to the updates; or
using DP stochastic gradient descent during local training.

2 Central DP. The model manager hides the presence/absence
of any client (client-level privacy).

3 Withheld local model. The client does not reveal the model to
the manager, but collaborates in predictions (instance-level
and client-level privacy).
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Defenses: differential privacy

Applying DP to decentralized ML

Literature on DP in federated learning

ϵ values are too big to be safe.
If number of clients ≤ 1000, significant impact on accuracy.
For larger number of clients, no real privacy protection needed!
Non-i.i.d. data is a challenge.
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Defenses: differential privacy

Our empirical results

Our empirical results

We evaluated the trade-off between privacy protection against
membership inference attacks and test accuracy, using
anti-overfitting and DP.
Our results were computed for centralized ML, but they are
also valid for FL.
Data sets: Adult, MNIST, CIFAR10, CIFAR10-TL.
More details3.

3Alberto Blanco-Justicia, David Sánchez, Josep Domingo-Ferrer and
Krishnamurty Muralidhar, “A critical review on the use (and misuse) of
differential privacy in machine learning”, ACM Computing Surveys, vol. 55, no.
8, pp. 1-16, 2023.
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Defenses: differential privacy

Our empirical results

Anti-overfitting: dropout

24 / 42



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
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Defenses: differential privacy

Our empirical results

Anti-overfitting: L2-regularization
Add a quadratic term to the loss function to penalize overfitting:

L2-regularization = (loss function) + λ

p∑
j=1

w2
j
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Defenses: differential privacy

Our empirical results

Our empirical results: anti-overfitting against MIA

Adult: 75% dropout and no L2-regularization reduce
attacker’s advantage by 35% and improve test accuracy.
MNIST: same parameters reduce advantage by 67% and
improve test accuracy.
CIFAR10: 25% dropout and L2-regularization improve test
accuracy by 4% and reduce advantage by 84%.
CIFAR10+transfer learning: 25% dropout and
L2-regularization reduce test accuracy by 1% and advantage
by 71%.
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Defenses: differential privacy

Our empirical results

Our empirical results: DP against MIA

Techniques: (ϵ, δ)-DP-SGD (stochastic gradient descent)
using moments accountant, with δ = 10−6, so that δ ≪ 1/n.
Various ϵ ranges: safe [0.1, 1], common in the literature [2, 8],
and weak [8, 1000]. Gradients clipped at maximum norm 2.5.
DP reduces attacker’s advantage for all ϵ, like anti-overfitting.
However, DP substantially reduces test accuracy much more
than anti-overfitting, even for weak ϵ.
Also, in DP-SGD it is hard to adjust hyperparameters to
achieve a certain specific ϵ.
Clipping gradients before noise addition eliminates the
performance of using GPUs for processing training data in
batches.
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Privacy Risks in Machine Learning: Truths and Myths
How effective are privacy attacks?

How effective are privacy attacks?

We will examine:
Membership inference attacks (MIAs)
Property inference attacks
Reconstruction attacks
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Privacy Risks in Machine Learning: Truths and Myths
How effective are privacy attacks?

Effectiveness of membership inference attacks

MIAs and disclosure risk

Identity disclosure, a.k.a. re-identification, associates a
released unidentified record with the subject to whom it
corresponds (typically via quasi-identifiers).
Attribute disclosure determines the value of a subject’s
confidential attribute.
Membership disclosure determines whether a record was part
of the training data (weakest form of disclosure).
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How effective are privacy attacks?

Effectiveness of membership inference attacks

Relationships between disclosure types

Identity disclosure and attribute disclosure can occur
independently from each other.
Membership disclosure might lead to attribute disclosure if all
individuals in a training data set share a confidential attribute
value (e.g., suffer from a certain disease).

30 / 42



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
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How effective are privacy attacks?

Effectiveness of membership inference attacks

Unequivocal attribute disclosure requires exhaustivity
(and thus trivial membership disclosure)

A necessary condition for unequivocal attribute disclosure is
that the training data be an exhaustive representation of a
population. Otherwise, there is plausible deniability.
But if the training data exhaustively represent a population
(e.g., country-level census), membership disclosure is trivial.
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How effective are privacy attacks?

Effectiveness of membership inference attacks

Unequivocal attribute disclosure requires uniqueness
and plausibility

Uniqueness of confidential attribute values: there should not
be two or more records in the training data that:

1 Match the target subject’s attribute values known to the
attacker;

2 Have different values for the confidential attribute the attacker
wishes to infer.

The information known by the attacker on the target subject
must be plausible.
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How effective are privacy attacks?

Effectiveness of membership inference attacks

Proposed evaluation framework for MIAs

C1: Non-overfitted
model

C2: Competitive
model

Effective MIA

C0: Sensitive
disclosure potential

C3: Reliable
membership inference

C4: Computationally
feasible

Dangerous MIA
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How effective are privacy attacks?

Effectiveness of membership inference attacks

C0: Sensitive disclosure potential

This is a precondition agnostic of the precise design of the MIA
(without C0, a MIA cannot succeed):

1 The training data must be an exhaustive sample of a
population;

2 The confidential attribute values must be unique;
3 The assumed attacker’s knowledge must be plausible.
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How effective are privacy attacks?

Effectiveness of membership inference attacks

C1: Non-overfitted model

MIAs can trivially distinguish between members and
non-members if a model is overfitted to (has memorized) the
training data.
For it to be effective, a MIA must succeed against
non-overfitted models, which are the desirable ones for
production.
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How effective are privacy attacks?

Effectiveness of membership inference attacks

C2: Competitive model

For it to be meaningful, a MIA must target a model that
could realistically be deployed in real-world applications and
thus be accessible to potential attackers.
We define a competitive model as one whose test accuracy
falls within an adaptive threshold w.r.t. the state-of-the-art
benchmark for its dataset and task.
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C3: Reliable membership inference

1 A reliable MIA must achieve FPR near 0%.
2 The weighted precision

Prec =
p × TPR

p × TPR + (1 − p)× FPR

must be near perfect (≥ 95%): positive inferences must be
indeed true members, even for realistic low membership priors
p.
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C4: Computational feasibility

A MIA must be executable within the practical constraints of
computational resources of potential attackers:

1 The number of required additional models (shadow, distilled,
or reference) must be small (ideally ≤ 1).

2 The cost of the inference model must be small (rules or simple
classifiers rather than deep neural networks).

3 The number of necessary queries per target sample must be
small (e.g. ≤ 100).
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Our interim assessment on MIA effectiveness

We reviewed the 13 MIA attacks in the literature, selected by
number of citations and top-tier venue4.
None of them satisfies C0.
None of them simultaneously satisfies C1, C2, C3, and C4.
For pre-trained LLMs, MIAs have been shown to be little
better than random guessing5.

4N. Jebreel, D. Sánchez, and J. Domingo-Ferrer, “A critical review on the
effectiveness and privacy threats of membership inference attacks” (submitted
manuscript, 2025).

5M. Duan, A. Suri, N. Mireshghallah, S. Min, W. Shi, L. Zettlemoyer, Y.
Tsvetkov, Y. Choi, D. Evans, and H. Hajishirzi, “Do membership inference
attacks work on large language models?”, 2024.
https://arxiv.org/abs/2402.07841
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On the effectiveness of other privacy attacks

Property inference attacks aim at inferring general properties
of the training data set.
They are more useful to audit fairness than to attack privacy.
Reconstruction attacks require:

A guess strategy based on MIAs (expensive);
Model inversion that requires access to gradients (only feasible
with white-box access or in federated/decentralized learning).

If reconstruction is not unique (several reconstructions are
compatible), then it is plausibly deniable.
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Conclusions

The EU is committed to trustworthy AI.
However, its enforcement must be based on a realistic
assessment of risks, to avoid unnecessarily hampering the
competitiveness of our industry.
Privacy defenses are expensive, they often conflict with
security defenses and they take a toll on accuracy.
The current state of the art tends to overstate the
effectiveness of privacy attacks.
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Thank you for your attention!
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