Privacy Risks in Machine Learning: Truths and Myths

Josep Domingo-Ferrer

josep.domingo@urv.cat

Bilbo, June 12, 2025

(a)

Introduction

- 2 Privacy attacks against machine learning and federated learning
 - Conflict between security and privacy defenses

3 Defenses: differential privacy

- Applying DP to centralized ML
- Applying DP to decentralized ML
- Our empirical results

4 How effective are privacy attacks?

- Effectiveness of membership inference attacks
- On the effectiveness of other privacy attacks

Privacy Risks in Machine Learning: Truths and Myths Introduction

Introduction: trustworthy AI

Main requirements on trustworthy AI:

- Privacy
- Security
- Explainability
- Fairness

Privacy Risks in Machine Learning: Truths and Myths Introduction

Introduction: trustworthy AI and the law

- EU: GDPR, EU AI Act.
- USA: Under Biden, Executive Order 14110, revoked by Trump's Executive Order 14179.
- China: The State is protected from AI rather than the citizens.

 \Longrightarrow The EU is the lone vigilante, but the weakest bloc in IT technology.

Can the AI legal framework be more flexible?

- The European Commission studies how to flexibilize the EU AI Act to improve the EU competitiveness in AI¹.
- We will focus here on:
 - Privacy attacks and defenses
 - The tensions between privacy and security defenses
 - The real effectiveness of privacy attacks.

¹April 9, 2025. https://www.politico.eu/article/ how-eu-did-full-180-artificial-intelligence-rules∦ > < ≥ > < ≥ >

Privacy attacks against ML and federated learning

- Centralized ML requires centralizing all training data ⇒ no privacy vs model manager. What about external attackers?
- Federated learning (FL) and fully decentralized machine learning (FDML) provide scalability and some client privacy against model managers.
- Privacy problem: Model updates sent by clients may allow inferences on their local data.

For a survey, see 2 .

²A. Blanco-Justicia, J. Domingo-Ferrer, S. Martínez, D. Sánchez, A. Flanagan, and K. E. Tan, "Achieving security and privacy in federated learning systems: survey, research challenges and future directions", *Engineering Applications of Artificial Intelligence*, 106:104468, 2021

Federated learning

More on privacy attacks against ML/FL/FDML: membership inference

- Membership inference attacks (MIAs) aim to determine whether a given data point was present in the training data used to build a model.
- Although this may not at first seem to pose a serious privacy risk, the threat is clear in settings such as health analytics where the distinction between case and control groups could reveal an individual's sensitive conditions.
- In FL or FDML, MIA results in disclosure of the local data of a client.

More on privacy attacks against ML/FL/FDML: attribute inference

- In an attribute inference attack, the adversary uses a machine learning model and incomplete information about a data point to infer missing information.
- For example, the adversary is given partial information about an individual's medical record and attempts to infer the individual's genotype by using a model trained on similar medical records.
- Can be obtained from successful MIAs.

More on privacy attacks against ML/FL/FDML: reconstruction attacks

- Reconstruction or model inversion attacks attempt to build the whole training data set from the information leaked by the trained model.
- They can also be obtained from MIAs.
- They often use generative adversarial networks (GANs).

Original image

Reconstructed image

More on privacy attacks against ML/FL/FDML: relation to overfitting

- Overfitting has been shown to predict the attacker's advantage (= max |tpr fpr|).
- In black-box attacks, prediction probabilities (for any classifier) are used to determine membership.
- Models, especially those overfit to the training data, behave differently when confronted to previously seen data.

More on privacy attacks against ML/FL/FDML: relation to overfitting

Individual loss evolution without overfitting Individual loss evolution with overfitting

Privacy Risks in Machine Learning: Truths and Myths Privacy attacks against machine learning and federated learning Conflict between security and privacy defenses

Conflict between security and privacy defenses

- Security defenses are based on the model manager detecting outlying updates or assessing model degradation (to protect against poisoning).
- Privacy defenses are based on the workers securely aggregating their updates (via MPC) or adding noise to them (via differential privacy, DP).
- Limitation: Security defenses are based on the manager seeing updates, whereas privacy defenses either prevent it (MPC) or cause accuracy loss (DP). Security-privacy-accuracy conflict!

Differential privacy as a defense

(ϵ, δ) -Differential privacy [Dwork, 2006]

A randomized query function F gives (ϵ, δ) -differential privacy if, for all data sets D_1 , D_2 such that one can be obtained from the other by modifying a single record, and all $S \subset Range(F)$

 $\Pr(F(D_1) \in S) \le \exp(\epsilon) \times \Pr(F(D_2) \in S) + \delta$

- Strong privacy guarantee for $\epsilon \leq 1$, independent of the attacker's background knowledge.
- The DP condition is satisfied by adding noise to the query output, inversely proportional to ε and directly proportional to the sensitivity Δ_f of query function f:

$$F(\cdot) = f(\cdot) + Noise(\Delta_f, \epsilon).$$

Composability in DP

- Sequential composition: if the outputs of queries κ_i , for i = 1, ..., m, on non-independent data sets are individually protected under ϵ_i -DP, then the output obtained by composing all individual query outputs is protected under $\sum_{i=1}^{m} \epsilon_i$.
- Parallel composition: if *m* query outputs were computed on *m* disjoint and independent data sets and protected under ϵ -DP, then the composition of those outputs is still protected under ϵ -DP.

A D > A B > A B > A B >

On the privacy budget ϵ

- As ε grows, the privacy guarantee fades away. Values of ε = 8, 14 or more (as used by Apple or Google) are pointless.
- Due to sequential composition, when *m* queries are to be answered:
 - If each query is ε-DP, the set of m answers is just mε-DP (privacy decreases with m).
 - If one wants the set of answers to stay ε-DP, then each query answer must be ε/m-private (which means more noise per query, and hence utility decreasing with m).

Fitting (or bending) DP for ML

- DP is applied to gradients.
- Since successive model training epochs are computed on the same (or partly overlapping) data, ϵ grows with the number of epochs due to sequential composition.
- To deliver some privacy, the ϵ at each epoch must be very small, which means a lot of noise.
- This causes slower convergence and requires more epochs and thus more noise (vicious circle!).

17 / 42

• The final model is very inaccurate.

Strategies to reduce noise

- Gradient truncation. Gradients are truncated to reduce their sensitivity.
- Prior subsampling. Gradients are computed on a random sample of the private data.
- Use relaxations of strict ϵ -DP, like (ϵ, δ)-DP, concentrated DP, Rényi-DP, etc.
- Bound the cumulative growth of ϵ across epochs using the moments accountant method.

Privacy Risks in Machine Learning: Truths and Myths Defenses: differential privacy Applying DP to centralized ML

Applying DP to centralized ML

- In centralized ML, learning is managed by a single entity.
- The manager may protect privacy by applying DP to:
 - the input of learning (training data or objective function);

- intermediate results (successive model updates); or
- the output of learning (the learned model).

Applying DP to centralized ML

Literature on DP in centralized ML

Reference (cites)	Data set	Size	Original acc.	DP parameters	DP accuracy
Abadi et al. 2016 Abadi et al. (2016) (2,924)	CIFAR10	50,000	86%	$\epsilon = \{2, 4, 8\}; \delta = 10^{-5}$	{67%,70%,73%}
Abadi et al. 2016 [Abadi et al. (2016)] (2,924)	MNIST	60,000	98.3%	$\epsilon = \{0.5, 2, 8\}; \delta = 10^{-5}$	$\{90\%, 95\%, 97\%\}$
Papernot et al. 2017 [Papernot et al.(2017)] (657)	MNIST	60,000	99.18%	$\epsilon = \{2.04, 8.03\}; \delta = 10^{-5}$	{98%,98.1%}
Papernot et al. 2017 [Papernot et al.(2017)] (657)	SVHN	600,000	92.8%	$\epsilon = \{5.04, 8.19\}; \delta = 10^{-6}$	{82.7%,90.7%}
Hynes et al. 2018 Hynes et al.(2018) (68)	CIFAR10	50,000	92.4%	$\epsilon = 4; \delta = 10^{-5}$	90.8%
Rahman et al. 2018 [Rahman et al. (2018)] (142)	CIFAR10	50,000	73.7%	$\epsilon = \{1, 2, 4, 8\}; \delta = \delta = 10^{-5}$	$\{25.4\%, 45\%, 60.7\%, 68.1\%\}$
Rahman et al. 2018 [Rahman et al. (2018)] (142)	MNIST	60,000	97%	$\epsilon = \{1, 2, 4, 8\}; \delta = \delta = 10^{-5}$	$\{75.7\%, 87\%, 90.6\%, 93.2\%\}$
Papernot et al. 2021 Papernot et al. (2021) (53)	MNIST	60,000	99%	$\epsilon = 2.93; \delta = 10^{-5}$	98.1%
Papernot et al. 2021 [Papernot et al. (2021)] (53)	CIFAR10	50,000	76.6%	$\epsilon = 7.53; \delta = 10^{-5}$	66.2%
Huang et al. 2019 Huang et al. (2019) (82)	Adult	48,842	82%	$\epsilon = \{0.1, 0.5, 1.01, 2.1\}; \delta = 10^{-3}$	$\{55\%, 75\%, 76\%, 77\%\}$

- ϵ are single-digit (thanks to moments accountant), often exceeding 8 (not safe).
- Attacker's advantage upper-bounded by $e^{\epsilon} 1$.
- δ is close or larger than 1/n, thus strict DP is not satisfied with non-negligible probability.

Privacy Risks in Machine Learning: Truths and Myths Defenses: differential privacy Applying DP to decentralized ML

Applying DP to decentralized ML

- Local DP. DP is applied locally by each client to obtain instance-level privacy by:
 - adding DP-noise to the updates; or
 - using DP stochastic gradient descent during local training.
- Central DP. The model manager hides the presence/absence of any client (client-level privacy).
- Withheld local model. The client does not reveal the model to the manager, but collaborates in predictions (instance-level and client-level privacy).

A D F A B F A B F A B F

Privacy Risks in Machine Learning: Truths and Myths

Defenses: differential privacy

Applying DP to decentralized ML

Literature on DP in federated learning

Reference (cites)	Data set	-Clients $-$	Original accuracy	DP parameters	DP accuracy
Geyer et al. 2018 [Geyer et al.(2018)] (668) and					
Triastcyn & Faltings 2019 Triastcyn and Faltings(2019) (71)	MNIST (non-i.d.d.)	100	97%	$\epsilon = 8; \delta = 10^{-3}$	78%
Geyer et al. 2018 Geyer et al. (2018) (668) and					
Triastcyn & Faltings 2019 Triastcyn and Faltings(2019) (71)	MNIST (non-i.d.d.)	10,000	99%	$\epsilon = 8; \delta = 10^{-6}$	96%
Triastcyn & Faltings 2019 Triastcyn and Faltings(2019) (71)	MNIST (i.i.d.)	100	97%	$\epsilon = 8; \delta = 10^{-3}$	86%
Triastcyn & Faltings 2019 Triastcyn and Faltings(2019) (71)	MNIST (i.i.d.)	10,000	99%	$\epsilon = 8; \delta = 10^{-6}$	97%
Triastcyn & Faltings 2019 Triastcyn and Faltings(2019) (71)	APTOS 2019	100	70%	$\epsilon = 8; \delta = 10^{-3}$	60%
Triastcyn & Faltings 2019 Triastcyn and Faltings(2019) (71)	APTOS 2019	10,000	72%	$\epsilon = 8; \delta = 10^{-6}$	68%
Naseri et al. 2022 [Naseri et al.(2022)] (41)	MNIST	100	98%	$\epsilon = 3; \delta = 10^{-5}$	82%
Naseri et al. 2022 [Naseri et al.(2022)] (41)	CIFAR10	100	93%	$\epsilon = 3; \delta = 10^{-5}$	79%

- ϵ values are too big to be safe.
- If number of clients \leq 1000, significant impact on accuracy.
- For larger number of clients, no real privacy protection needed!
- Non-i.i.d. data is a challenge.

Our empirical results

- We evaluated the trade-off between privacy protection against membership inference attacks and test accuracy, using anti-overfitting and DP.
- Our results were computed for centralized ML, but they are also valid for FL.
- Data sets: Adult, MNIST, CIFAR10, CIFAR10-TL.
- More details³.

³Alberto Blanco-Justicia, David Sánchez, Josep Domingo-Ferrer and Krishnamurty Muralidhar, "A critical review on the use (and misuse) of differential privacy in machine learning", *ACM Computing Surveys*, vol. 55, no.

Anti-overfitting: dropout

(a) Standard Neural Net

(b) After applying dropout.

Anti-overfitting: L_2 -regularization

Add a quadratic term to the loss function to penalize overfitting:

$$L_2$$
-regularization = (loss function) + $\lambda \sum_{j=1}^{p} w_j^2$

Our empirical results: anti-overfitting against MIA

- Adult: 75% dropout and no L₂-regularization reduce attacker's advantage by 35% and improve test accuracy.
- MNIST: same parameters reduce advantage by 67% and improve test accuracy.
- CIFAR10: 25% dropout and L₂-regularization improve test accuracy by 4% and reduce advantage by 84%.
- CIFAR10+transfer learning: 25% dropout and L₂-regularization reduce test accuracy by 1% and advantage by 71%.

Our empirical results: DP against MIA

- Techniques: (ϵ, δ) -DP-SGD (stochastic gradient descent) using moments accountant, with $\delta = 10^{-6}$, so that $\delta \ll 1/n$. Various ϵ ranges: safe [0.1, 1], common in the literature [2, 8], and weak [8, 1000]. Gradients clipped at maximum norm 2.5.
- DP reduces attacker's advantage for all ϵ , like anti-overfitting.
- However, DP substantially reduces test accuracy much more than anti-overfitting, even for weak ϵ .
- Also, in DP-SGD it is hard to adjust hyperparameters to achieve a certain specific ϵ .
- Clipping gradients before noise addition eliminates the performance of using GPUs for processing training data in batches.

Privacy Risks in Machine Learning: Truths and Myths How effective are privacy attacks?

How effective are privacy attacks?

We will examine:

- Membership inference attacks (MIAs)
- Property inference attacks
- Reconstruction attacks

MIAs and disclosure risk

- *Identity disclosure*, a.k.a. re-identification, associates a released unidentified record with the subject to whom it corresponds (typically via quasi-identifiers).
- Attribute disclosure determines the value of a subject's confidential attribute.
- *Membership disclosure* determines whether a record was part of the training data (weakest form of disclosure).

Relationships between disclosure types

- Identity disclosure and attribute disclosure can occur independently from each other.
- Membership disclosure might lead to attribute disclosure if all individuals in a training data set share a confidential attribute value (*e.g.*, suffer from a certain disease).

Unequivocal attribute disclosure requires exhaustivity (and thus trivial membership disclosure)

- A necessary condition for unequivocal attribute disclosure is that the training data be an exhaustive representation of a population. Otherwise, there is plausible deniability.
- But if the training data exhaustively represent a population (*e.g.*, country-level census), membership disclosure is trivial.

Unequivocal attribute disclosure requires uniqueness and plausibility

- Uniqueness of confidential attribute values: there should not be two or more records in the training data that:
 - Match the target subject's attribute values known to the attacker;
 - Have different values for the confidential attribute the attacker wishes to infer.
- The information known by the attacker on the target subject must be plausible.

Proposed evaluation framework for MIAs

C0: Sensitive disclosure potential

This is a precondition agnostic of the precise design of the MIA (without C0, a MIA cannot succeed):

- The training data must be an exhaustive sample of a population;
- 2 The confidential attribute values must be unique;
- In the assumed attacker's knowledge must be plausible.

C1: Non-overfitted model

- MIAs can trivially distinguish between members and non-members if a model is overfitted to (has memorized) the training data.
- For it to be effective, a MIA must succeed against non-overfitted models, which are the desirable ones for production.

C2: Competitive model

- For it to be meaningful, a MIA must target a model that could realistically be deployed in real-world applications and thus be accessible to potential attackers.
- We define a competitive model as one whose test accuracy falls within an adaptive threshold w.r.t. the state-of-the-art benchmark for its dataset and task.

A D F A B F A B F A B F

C3: Reliable membership inference

- A reliable MIA must achieve FPR near 0%.
- 2 The weighted precision

$$\textit{Prec} = rac{p imes \textit{TPR}}{p imes \textit{TPR} + (1 - p) imes \textit{FPR}}$$

must be near perfect (\geq 95%): positive inferences must be indeed true members, even for realistic low membership priors *p*.

C4: Computational feasibility

A MIA must be executable within the practical constraints of computational resources of potential attackers:

- The number of required additional models (shadow, distilled, or reference) must be small (ideally ≤ 1).
- The cost of the inference model must be small (rules or simple classifiers rather than deep neural networks).
- The number of necessary queries per target sample must be small (e.g. \leq 100).

Our interim assessment on MIA effectiveness

- We reviewed the 13 MIA attacks in the literature, selected by number of citations and top-tier venue⁴.
- None of them satisfies C0.
- None of them simultaneously satisfies C1, C2, C3, and C4.
- For pre-trained LLMs, MIAs have been shown to be little better than random guessing⁵.

⁵M. Duan, A. Suri, N. Mireshghallah, S. Min, W. Shi, L. Zettlemoyer, Y. Tsvetkov, Y. Choi, D. Evans, and H. Hajishirzi, "Do membership inference attacks work on large language models?", 2024. https://arxiv.org/abs/2402.07841

⁴N. Jebreel, D. Sánchez, and J. Domingo-Ferrer, "A critical review on the effectiveness and privacy threats of membership inference attacks" (submitted manuscript, 2025).

Privacy Risks in Machine Learning: Truths and Myths How effective are privacy attacks? On the effectiveness of other privacy attacks

On the effectiveness of other privacy attacks

- Property inference attacks aim at inferring general properties of the training data set.
- They are more useful to audit fairness than to attack privacy.
- Reconstruction attacks require:
 - A guess strategy based on MIAs (expensive);
 - Model inversion that requires access to gradients (only feasible with white-box access or in federated/decentralized learning).

40 / 42

• If reconstruction is not unique (several reconstructions are compatible), then it is plausibly deniable.

Conclusions

- The EU is committed to trustworthy AI.
- However, its enforcement must be based on a realistic assessment of risks, to avoid unnecessarily hampering the competitiveness of our industry.
- Privacy defenses are expensive, they often conflict with security defenses and they take a toll on accuracy.
- The current state of the art tends to overstate the effectiveness of privacy attacks.

Privacy Risks in Machine Learning: Truths and Myths Conclusions

Thank you for your attention!

