(Non-)reciprocity and nanotechnology: demonstration of a nonlinear optical diode **Olivier J.F. Martin Nanophotonics & Metrology Laboratory** Swiss Federal Institute of Technology Lausanne (EPFL) www.nanophotonics.ch

Using the entire alphabet

Set 1

Set 2

Using the entire alphabet

Using the entire electromagnetic alphabet

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial \mathbf{B}(\mathbf{r}, t)}{\partial t}$$
$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \frac{\partial \mathbf{D}(\mathbf{r}, t)}{\partial t} + \mathbf{J}(\mathbf{r}, t)$$
$$\nabla \cdot \mathbf{D}(\mathbf{r}, t) = \rho(\mathbf{r}, t)$$
$$\nabla \cdot \mathbf{B}(\mathbf{r}, t) = 0$$

$$\begin{pmatrix} \mathbf{p} \\ \mathbf{m} \end{pmatrix} = \begin{pmatrix} \underline{\boldsymbol{\alpha}}_{ee} & \underline{\boldsymbol{\alpha}}_{em} \\ \underline{\boldsymbol{\alpha}}_{me} & \underline{\boldsymbol{\alpha}}_{mm} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

magneto-electric coupling terms (bianisotropy)

www.nanophotonics.ch

K. Achouri, Advanced Photonics vol. 5, p. 046001 (2023)

Using the entire electromagnetic alphabet

- Strong bianisotropy requires breaking the symmetry of the system...
- ... including in the out-of-plane direction...
- ... which is very challenging for nanotechnology !
- It can also be achieved by using simple shapes built from different materials! www.nanophotonics.ch K. Achouri, Advanced Photonics vol. 5, p. 046001 (2023)

Outline

- Introduction
- Nonreciprocal devices
- Second harmonic generation in plasmonic systems
- Putting numerical techniques to good use
- Nanotechnologies
- Nonlinear optical diode
- Is it non-reciprocal?
- Summary

Nonreciprocal devices

- Allow the signal to pass only in one direction
- Are key for signal processing
- In optics, require an external time-odd bias, such as a magnetic field

www.nanophotonics.ch

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

Plasmonic dipole antenna

Focused ion beam fabrication:

- 40nm thick gold
- Length: 190...400nm
- Width: 45nm
- Gap: 20nm
- Glass substrate

F. Mühlschlegel et al. Science vol. 308, p. 1607 (2005)

Plasmonic dipole antenna – Nonlinear effects

F. Mühlschlegel et al. Science vol. 308, p. 1607 (2005)

Second order susceptibility tensor

$$P_{\alpha}(2\omega) = \varepsilon_0 \chi_{\alpha,\beta\gamma}^{(2)} E_{\beta}(\omega) E_{\gamma}(\omega)$$

- In the bulk: $\alpha, \beta, \gamma = x, y$ or z
- At an interface: $\alpha, \beta, \gamma = || \text{or} \bot$

Classical SHG requires phase matching between the waves at
and 2
and that travel together, which is complicated and requires an anisotropic
crystal and control of polarization:

$$P_{\alpha}(2\omega) = \chi^{(2)}_{\alpha,\beta\beta} E_{\beta}(\omega) E_{\beta}(\omega)$$

 $\chi^{(2)}_{\perp,\perp\parallel} \xrightarrow{2\omega} 2\omega \qquad 2\omega \qquad \chi^{(2)}_{\perp,\perp\perp}$

• This is (generally) not the case for SHG in plasmonic nanostructures ("zero phase matching")

www.nanophotonics.ch

J. Butet, ACS Nano vol. 9, p. 10545 (2015)

SHG: Surface vs bulk contributions

Measurement of bulk and surface contributions:

• For plasmonic metals the surface contributions dominate over the bulk; there are however specific experimental conditions, where $\chi^{(2)}_{\text{bulk}}$ cannot be neglected

www.nanophotonics.ch

F. X. Wang, Physical Review B vol. 80, p. 233402 (2009)

Double resonant antenna and second harmonic generation

• A plasmonic nanostructure with two resonances: at the fundamental and at the second harmonic frequency

K. Thyagarajan, Optics Express, vol. 20, p. 12860 (2012)

Double resonant antenna and second harmonic generation

- How does SHG work in such a structure?
- What is the role of the different parts in the antenna?

K. Thyagarajan, Optics Express, vol. 20, p. 12860 (2012)

Outline

- Introduction
- Nonreciprocal devices
- Second harmonic generation in plasmonic systems
- Putting numerical techniques to good use
- Nanotechnologies
- Nonlinear optical diode
- Is it non-reciprocal?
- Summary

Review on numerical methods for nanophotonics/plasmonics

Vol. 9 November 2015 www.lpr-journal.org LASER & PHOTONICS REVIEWS Numerical methods for nanophotonics: standard problems and future challenges Benjamin Gallinet, Jérémy Butet, and Olivier J. F. Martin WILEY-VCH

B. Gallinet, J. Butet, and O.J.F. Martin Laser & Photonics Reviews vol. 9, p. 577 (2015)

Surface integral equation (SIE) method – Linear regime

 Light scattered is computed by means of surface currents on the scatterers

www.nanophotonics.ch

A.M. Kern, J. Optical Soc. America A vol. 26, p. 732 (2009)

Modelling plasmonic structures accurately

- Finite elements surface integral formulation:
 - Fast
 - Versatile
 - Very accurate
 - Useful for comparison with experiments

A.M. Kern, J. Optical Soc. America A vol. 26, p. 732 (2009)

Modelling realistic nanostructures

• Sometimes the nanofabrication is not so perfect...

A.M. Kern, Nano Letters vol. 11, p. 482 (2011)

www.nanophotonics.ch

Modelling realistic nanostructures

www.nanophotonics.ch

A.M. Kern, Nano Letters vol. 11, p. 482 (2011)

Surface integral equation (SIE) method – Computing SHG

- Compute electric and magnetic surface currents at ω
- For each mesh, compute the normal field component at ω inside the metal
- Use $P_n(2\omega) = \chi_{n,nn}^{(2)} E_n(\omega) E_n(\omega)$ to obtain the surface currents at

2ω

 Solve again the scattering problem with those currents to get the fields at 2 ω

J. Butet, Nano Letters vol. 13, p. 1787 (2013)

Double resonant antenna and second harmonic generation

- How does SHG work in such a structure?
- What is the role of the different parts in the antenna?

K. Thyagarajan, Optics Express, vol. 20, p. 12860 (2012)

• It looks like the short bar determines the SHG emission

www.nanophotonics.ch

K.Y. Yang, ACS Photonics vol. 4, p. 1522 (2017)

• It looks like the short bar determines the SHG emission...

K.Y. Yang, ACS Photonics vol. 4, p. 1522 (2017)

- It looks like the short bar determines the SHG emission...
- ... but things are more complicated!
 - The small bar tunes the structure
 - SHG comes from the large bar

K.Y. Yang, ACS Photonics vol. 4, p. 1522 (2017)

www.nanophotonics.ch

K.Y. Yang, ACS Photonics vol. 4, p. 1522 (2017)

Outline

- Introduction
- Nonreciprocal devices
- Second harmonic generation in plasmonic systems
- Putting numerical techniques to good use
- Nanotechnologies
- Nonlinear optical diode
- Is it non-reciprocal?
- Summary

Nanofabrication of plasmonic structures

• Lift-off (positive resist) vs. ion etching (negative resist)

B. Abasahl, Nanotechnology vol. 32, p. 475202 (2021)

Lift-off vs. ion etching (gold nanostructures)

Ion etching provides smaller features and better control

B. Abasahl, Nanotechnology vol. 32, p. 475202 (2021)

• Etching can fabricate quite thick nanostructures

www.nanophotonics.ch

D. Ray, Nano Letters vol. 20, p. 8752 (2020)

Hybrid nanostructures – Many degrees of freedom to tune the response

• Dielectric structures support a magnetic dipole that can hybridize with the electric dipole of a plasmonic structure to produce a very rich response

D. Ray, Optics Express vol. 29, p. 24056 (2021)

www.nanophotonics.ch

Outline

- Introduction
- Nonreciprocal devices
- Second harmonic generation in plasmonic systems
- Putting numerical techniques to good use
- Nanotechnologies
- Nonlinear optical diode
- Is it non-reciprocal?
- Summary

www.nanophotonics.ch

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

- T-shape plasmonic nanostructure
- Excitation polarization along the x-direction
- SHG produced along the y-direction

R. Czaplicki, Nano Letters vol. 15, p. 530 (2015)

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

• A T-shape provides independent control for the resonances at ω and 2ω

www.nanophotonics.ch

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

Backward

excitation¹

A BR

• A T-shape provides independent control for the resonances at ω and 2ω

www.nanophotonics.ch

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

Numerical simulations in the linear and nonlinear regimes

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

www.nanophotonics.ch

Nanofabrication

- Array of Al Ag meta-atoms (each 50 nm thick)
- L_x = 195 nm, L_y = 135 nm
- Square lattice with period Λ = 250 nm (avoid diffraction orders at ω and 2 ω)
- 25 nm SiO₂ spacer (n = 1.49)
- Embedded in SiO₂ (symmetric environment)

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

Strongly asymmetric SHG – Nanofabrication using ion etching (Ar)

• HSQ mask used for ion etching (Ar) the nanostructures

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023) B. Abasahl, Nanotechnology vol. 32, p. 475202 (2021)

Experimental characterization

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

- Different field distributions depending on the illumination direction
- Bianisotropy (magneto-electrique coupling), asymmetric absorption

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

• Induced linear and nonlinear polarizations

$$\mathbf{P}^{\omega} = \overline{\overline{\chi}}^{\omega}_{ee} \cdot \mathbf{E}^{\omega} + \overline{\overline{\chi}}^{\omega}_{em} \cdot \mathbf{H}^{\omega}$$

$$\mathbf{P}^{2\omega} = \overline{\overline{\chi}}_{ee}^{2\omega} \cdot \mathbf{E}^{2\omega} + \overline{\overline{\chi}}_{em}^{2\omega} \cdot \mathbf{H}^{2\omega} + \overline{\overline{\chi}}_{eee}^{\omega} : \mathbf{E}^{\omega} \mathbf{E}^{\omega} + \overline{\overline{\chi}}_{eem}^{\omega} : \mathbf{E}^{\omega} \mathbf{H}^{\omega} + \overline{\overline{\chi}}_{emm}^{\omega} : \mathbf{H}^{\omega} \mathbf{H}^{\omega}$$

 Retrieved numerically – Homogenization procedure based on the generalized sheet transition conditions (GSTCs)

www.nanophotonics.ch

K. Achouri, New Journal of Physics vol. 24, p. 025006 (2022)

Induced linear and nonlinear polarizations

$$\mathbf{P}^{\omega} = \overline{\overline{\chi}}^{\omega}_{ee} \cdot \mathbf{E}^{\omega} + \overline{\overline{\chi}}^{\omega}_{em} \cdot \mathbf{H}^{\omega}$$

$$\mathbf{P}^{2\omega} = \overline{\overline{\chi}}_{ee}^{2\omega} \cdot \mathbf{E}^{2\omega} + \overline{\overline{\chi}}_{em}^{2\omega} \cdot \mathbf{H}^{2\omega} + \overline{\overline{\chi}}_{eee}^{\omega} : \mathbf{E}^{\omega} \mathbf{E}^{\omega} + \overline{\overline{\chi}}_{eem}^{\omega} : \mathbf{E}^{\omega} \mathbf{H}^{\omega} + \overline{\overline{\chi}}_{emm}^{\omega} : \mathbf{H}^{\omega} \mathbf{H}^{\omega}$$

- Linear regime: non negligible magneto-electric coupling term $\chi_{\scriptscriptstyle em}$
- Nonlinear susceptibilities dominated by magnetic/electric excitations along orthogonal directions χ_{eem}^{xyx} , χ_{mem}^{yyx}

www.nanophotonics.ch

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

PHYSICAL REVIEW APPLIED 10, 047001 (2018)

Review Article

Electromagnetic Nonreciprocity

Christophe Caloz,^{1,*} Andrea Alù,² Sergei Tretyakov,³ Dimitrios Sounas,⁴ Karim Achouri,⁵ and Zoé-Lise Deck-Léger¹

FIG. 1. Time-reversal symmetry (TRS) (red and blue curves) and broken time-reversal symmetry (red and green curves), or time-reversal asymmetry, as a general thought experiment and mathematical criterion for nonreciprocity.

K. Achouri, Physical Review B vol. 104, p. 165426 (2021)

Linear regime: 2-port system

- Reciprocity requires $\overline{\overline{S}} = \overline{\overline{S}}^{T}$
- No constrains on the reflection coefficients S_{11} , S_{22}

Fresnel coefficients

www.nanophotonics.ch

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

• Linear regime: 2-port system

- Reciprocity requires $\overline{\overline{\mathbf{S}}} = \overline{\overline{\mathbf{S}}}^{\mathrm{T}}$
- Equal transmission coefficients $S_{12} = S_{21}$
- No constrains on the reflection coefficients S_{11} , S_{22}

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

• Linear regime: 2-port system

- Reciprocity requires $\overline{\overline{\mathbf{S}}} = \overline{\overline{\mathbf{S}}}^{\mathrm{T}}$
- Equal transmission coefficients $S_{12} = S_{21}$
- No constrains on the reflection coefficients S₁₁, S₂₂

• Nonlinear regime: 4-port system

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

 Probing (non)reciprocity would require probing six (in)equalities:

• So far, we have only shown that

 $S_{21}^{\omega \to 2\omega} \neq S_{12}^{\omega \to 2\omega}$

(asymmetric nonlinear process)

• Nonlinear regime: 4-port system

S. Boroviks, Nano Letters, vol. 23, p. 3362 (2023)

Summary

Use numerical techniques to their full extent

- Model realistic systems
- Perform some numerical experiments that are not feasible in practice

Simple design with strong bianisotropy

- Easily tunable
- Al and Ag give strong SHG
- Their out-ofplane combination leads to a robust bianisotropy

Simple, versatile nanotechnology

- Dry etching provides very well-defined nanostructures
- It can be used with a diversity of materials

Strong, asymmetric nonlinear response

 16 dB difference in theory, 10 dB experimentally between forward and backward SHG

Summary

Simple design with strong bianisotropy

- Easily tunable
- Al and Ag give strong SHG
- Their out-ofplane combination leads to a robust bianisotropy

Simple, versatile nanotechnology

- Dry etching provides very well-defined nanostructures
- It can be used with a diversity of materials

Strong, asymmetric nonlinear response

 16 dB difference in theory, 10 dB experimentally between forward and backward SHG No, this is not nonreciprocal!

- The device is time-reversal asymmetric
- Sometimes mistaken with nonreciprocal...

Acknowledgements

Sergejs Boroviks

Karim Achouri

EPFL

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

— GEBERT RÜF STIFTUNG —

Several post-doc positions

Andrei Kiselev

Christian Santschi

