
Model Execution: From a
Retrospective on Code Generation to
a Perspective on Model Compilation

Federico Ciccozzi
federico.ciccozzi@mdu.se

3

Models

4

Models

Models

• Models can be found in any scientific discipline
• We need to be precise and specific on WHAT a model is

Models

• Models can be found in any scientific discipline
• We need to be precise and specific on WHAT a model is

“A model is an abstract representation of a specific part,
problem, solution, or feature of a specific domain”

Software models (some definitions)
“Software models are ways of expressing a software design”

“Software models are representations of software systems
made to understand, analyze, and design such systems”

“A software model is a collection of representations whose
contents depend on the languages and tools used”

“Software models are formal methods for handling the process
of creating software”

Software models in our context

A (software) model
• is a blue-print of a software application,

Software models in our context

A (software) model
• is a blue-print of a software application,
• can be itself executable, and

Software models in our context

A (software) model
• is a blue-print of a software application,
• can be itself executable, and
• is directly usable for automating the development process

Model execution

• Process of partly or fully running a computational model in a
software environment

Model execution

• Process of partly or fully running a computational model in a
software environment
• Simulation for prediction/monitoring based on specific inputs

and configurations

Model execution

• Process of partly or fully running a computational model in a
software environment
• Simulation for prediction/monitoring based on specific inputs

and configurations
• Pivotal to understand complex systems

Model execution

• Process of partly or fully running a computational model in a
software environment
• Simulation for prediction/monitoring based on specific inputs

and configurations
• Pivotal to understand complex systems
• Pivotal to forecast outcomes related to criticality aspects

(e.g., time, safety, security)

Model execution

• Process of partly or fully running a computational model in a
software environment
• Simulation for prediction/monitoring based on specific inputs

and configurations
• Pivotal to understand complex systems
• Pivotal to forecast outcomes related to criticality aspects

(e.g., time, safety, security)
• Essential in domains like data science, AI, machine learning

Model execution strategies

execution

model 3GL
code

3GL compiler
model

translator

Translational low-level
code

Model execution strategies

execution

model 3GL
code

3GL compiler
model

translator

Translational low-level
code

Model execution strategies

execution

model 3GL
code

3GL
interpreter

model
translator

Translational

Model execution strategies

execution

model 3GL
code

3GL
interpreter

model
translator

Translational

Model execution strategies

execution

model 3GL
code

3GL compiler

3GL
interpreter

model
translator

Translational low-level
code

Model execution strategies

model

execution

model
interpreter

Interpretive

model 3GL
code

3GL compiler

3GL
interpreter

model
translator

Translational low-level
code

UML execution

• Systematic review of research and practice
• Research articles
• Tools

• Investigated >5400 items
• Included 63 articles and 19 tools
• Systematic search and data extraction

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

Classification of UML execution solutions

About executability..
• Execution strategy

• 85% based on translation to 3GLs (mostly Java and C++)
• 50% use Java as model transformation/translation language

• 17% based on interpretation, only for simulation/analysis purposes

• Execution semantics
• 15% based on fUML

• Action languages
• 34% based on UML actions
• Only 10% based on Alf

• Support for simulation
• 59%

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

About executability..
• Execution strategy

• 85% based on translation to 3GLs (mostly Java and C++)
• 50% use Java as model transformation/translation language

• 17% based on interpretation, only for simulation/analysis purposes

• Execution semantics
• 15% based on fUML

• Action languages
• 34% based on UML actions
• Only 10% based on Alf

• Support for simulation
• 59%

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

About executability..
• Execution strategy

• 85% based on translation to 3GLs (mostly Java and C++)
• 50% use Java as model transformation/translation language

• 17% based on interpretation, only for simulation/analysis purposes

• Execution semantics
• 15% based on fUML

• Action languages
• 34% based on UML actions
• Only 10% based on Alf

• Support for simulation
• 59%

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

About executability..
• Execution strategy

• 85% based on translation to 3GLs (mostly Java and C++)
• 50% use Java as model transformation/translation language

• 17% based on interpretation, only for simulation/analysis purposes

• Execution semantics
• 15% based on fUML

• Action languages
• 34% based on UML actions
• Only 10% based on Alf

• Support for simulation
• 59%

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

About executability..
• Execution strategy

• 85% based on translation to 3GLs (mostly Java and C++)
• 50% use Java as model transformation/translation language

• 17% based on interpretation, only for simulation/analysis purposes

• Execution semantics
• 15% based on fUML

• Action languages
• >90% use 3GLs
• Only 10% based on Alf

• Support for simulation
• 59%

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

About executability..
• Execution strategy

• 85% based on translation to 3GLs (mostly Java and C++)
• 50% use Java as model transformation/translation language

• 17% based on interpretation, only for simulation/analysis purposes

• Execution semantics
• 15% based on fUML

• Action languages
• >90% use 3GLs
• Only 10% based on Alf

• Support for simulation
• 59% provide some simulation feature

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

Other interesting aspects..

• Extensibility
• 21% provide some sort of extension mechanism

• Traceability (model-code)
• 18% provide some support for trace links

• Debuggability
• 25% provide debugging features at model-level

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

Other interesting aspects..

• Extensibility
• 21% provide some sort of extension mechanism

• Traceability (model-code)
• 18% provide some support for trace links

• Debuggability
• 25% provide debugging features at model-level

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

Other interesting aspects..

• Extensibility
• 21% provide some sort of extension mechanism

• Traceability (model-code)
• 18% provide some support for trace links

• Interactive debuggability
• 25% provide debugging features at model-level

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

In summary
• Translation outnumbers interpretation
• Interpretation is used for higher-level execution (e.g., simulation)
• Execution semantics from fUML is neglected in most cases
• Most solutions employ 3GLs as action languages
• Almost no model-level interactive debugging
• Little extensibility and customizability

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, Ivano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313–2360

What about ”code generation” approach
• Convenient, reuse of existing (trusted) 3GL compilers

*What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

What about ”code generation” approach
• Convenient, reuse of existing (trusted) 3GL compilers
• Creates discontinuity between model and executable

• Model debugging can become very difficult
• Co-debugging and co-simulation nearly impossible

*What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

What about ”code generation” approach
• Convenient, reuse of existing (trusted) 3GL compilers
• Creates discontinuity between model and executable

• Model debugging can become very difficult
• Co-debugging and co-simulation nearly impossible

• Lack of trust from developers
• Generated 3GL “inspected” and modified by hand

*What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

What about ”code generation” approach
• Convenient, reuse of existing (trusted) 3GL compilers
• Creates discontinuity between model and executable

• Model debugging can become very difficult
• Co-debugging and co-simulation nearly impossible

• Lack of trust from developers
• Generated 3GL “inspected” and modified by hand

*What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

What about ”code generation” approach
• Convenient, reuse of existing (trusted) 3GL compilers
• Creates discontinuity between model and executable

• Model debugging can become very difficult
• Co-debugging and co-simulation nearly impossible

• Lack of trust from developers
• Generated 3GL “inspected” and modified by hand

• Violate source models
• Violate model-based analysis, optimisation and V&V
• Get lost if source models change

*What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

What about ”code generation” approach1

• Convenient, reuse of existing (trusted) 3GL compilers
• Creates discontinuity between model and executable

• Model debugging can become very difficult
• Co-debugging and co-simulation nearly impossible

• Lack of trust from developers
• Generated 3GL “inspected” and modified by hand

• 3GL compilers do not understand model semantics
• Program optimisations may be missed
• Generated executables may be semantically different from models

*What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

What about ”code generation” approach
• Convenient, reuse of existing (trusted) 3GL compilers
• Creates discontinuity between model and executable

• Model debugging can become very difficult
• Co-debugging and co-simulation nearly impossible

• Lack of trust from developers
• Generated 3GL “inspected” and modified by hand

• 3GL compilers do not understand model semantics
• Program optimisations may be missed
• Generated executables may be semantically different from models

• Not suitable for heterogeneous platforms (multiple 3GLs needed)
*What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

Back to code generation for UML
• 26 different code generators from UML to Java

Back to code generation for UML
• 26 different code generators from UML to Java
• No reference semantics (e.g. fUML)

• Different code generators (even commercial!) produce different codes from same
models

Back to code generation for UML
• 26 different code generators from UML to Java
• No reference semantics (e.g. fUML)

• Different code generators (even commercial!) produce different codes from same
models

Back to code generation for UML
• 26 different code generators from UML to Java
• No reference semantics (e.g. fUML)

• Different code generators (even commercial!) produce different codes from same
models

Back to code generation for UML
• 26 different code generators from UML to Java
• No reference semantics (e.g. fUML)

• Different code generators (even commercial!) produce different codes from same
models

Back to code generation for UML
• 26 different code generators from UML to Java
• No reference semantics (e.g. fUML)

• Different code generators (even commercial!) produce different codes from same
models

Back to code generation for UML
• 26 different code generators from UML to Java
• No reference semantics (e.g. fUML)

• Different code generators (even commercial!) produce different codes from same
models

Back to code generation for UML
• 26 different code generators from UML to Java
• No reference semantics (e.g. fUML)

• Different code generators (even commercial!) produce different codes from same
models

Back to code generation for UML
• 26 different code generators from UML to Java
• No reference semantics (e.g. fUML)

• Different code generators (even commercial!) produce different codes from same
models

Back to code generation for UML
• 26 different code generators from UML to Java
• No reference semantics (e.g. fUML)

• Different code generators (even commercial!) produce different codes from same
models

Some of the issues
• Predictability
• Validity of MB-analysis
• Consistency model-code
• Bidirectional traceability
• Co-simulation
• Co-debugging

Model execution strategies

model

execution

model
interpreter

Interpretive

model 3GL
code

3GL compiler

3GL
interpreter

model
translator

Translational low-level
code

Why are we generating 3GL code?!

execution

model 3GL
code

3GL compiler

3GL
interpreter

model
translator

low-level
code

Why are we generating 3GL code?!

Java

execution

JVM

C C compiler low-level
code

C++

Why are we generating 3GL code?!

execution
C C compilerJava to C

translator
low-level

code

C++

We have tried before..

execution
C C compilerCfront low-level

code

.. And not succeeded

execution
C++ C C compilerCfront low-level

code

Code generation.. why

executionmodel

C C compiler

JVM

model
translator

low-level
code

Javamodel
translator

Model execution strategies

model

execution

model
interpreter

model 3GL
code

3GL compiler

3GL
interpreter

model
translator

low-level
code

Model execution strategies

model

execution

model
interpreter

model 3GL
code

3GL compiler

3GL
interpreter

model
translator

low-level
code

In H2020 SPACE-10-TEC-2020, new model execution approaches regarded as
the most urgent software engineering need in the space industry

Model compilation

model

execution

model
interpreter

model 3GL
code

3GL compiler

3GL
interpreter

model
compiler

low-level
code

compilation to low-level code

Model compilation

• 3GL code generators are specific to source DSML and target
3GL

Model compilation

• 3GL code generators are specific to source DSML and target
3GL

Model compilation

• 3GL code generators are specific to source DSML and target
3GL

Model compilation

• Bypass 3GLs and compile models by a flexible compiler
framework

Model compilation

• Bypass 3GLs and compile models by a flexible compiler
framework
• Semantic anchoring of DSML at hand to compiler IR language

Model compilation

• Bypass 3GLs and compile models by a flexible compiler
framework
• Semantic anchoring of DSML at hand to compiler IR language
• Preservation of model semantics in generated executables

Model compilation

• Bypass 3GLs and compile models by a flexible compiler
framework
• Semantic anchoring of DSML at hand to compiler IR language
• Preservation of model semantics in generated executables
• Coherent model semantics-based analysis and optimisations

Model compilation

• Bypass 3GLs and compile models by a flexible compiler
framework
• Semantic anchoring of DSML at hand to compiler IR language
• Preservation of model semantics in generated executables
• Coherent model semantics-based analysis and optimisations
• Reusability of compiler “lowerings” for same front-ends and

back-ends

Model compilation

• Bypass 3GLs and compile models by a flexible compiler
framework
• Semantic anchoring of DSML at hand to compiler IR language
• Preservation of model semantics in generated executables
• Coherent model semantics-based analysis and optimisations
• Reusability of compiler “lowerings” for same front-ends and

back-ends
• Use of AI/ML for compilation purposes (e.g. semantic anchoring)

Model compilation

• Bypass 3GLs and compile models by a flexible compiler
framework
• Semantic anchoring of DSML at hand to compiler IR language
• Preservation of model semantics in generated executables
• Coherent model semantics-based analysis and optimisations
• Reusability of compiler “lowerings” for same front-ends and

back-ends
• Use of AI/ML for compilation purposes (e.g. semantic anchoring)
• Use of model compilation for AI/ML purposes

Envisioned model compilation approach
MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

Envisioned model compilation approach
MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

CompilerIRL

Compiler
framework

Envisioned model compilation approach

...DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

CompilerIRL

Compiler
framework

Envisioned model compilation approach

...

HOT

DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

CompilerIRL

Compiler
framework

Envisioned model compilation approach

...

HOT

DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

CompilerIRL

Compiler
framework

Envisioned model compilation approach

...

TDSML TDSML1 m

HOT

DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

CompilerIRL

Compiler
framework

Envisioned model compilation approach

...

TDSML TDSML1 m

HOT

DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

MDSML ...
1

DSML1 DSMLm

MDSML
m

CompilerIRL

Compiler
framework

Envisioned model compilation approach

...

TDSML TDSML1 m

HOT

DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

MDSML

TDSML

...
TDSML

1

1 m

DSML1 DSMLm

MDSML
m

CompilerIRL

Compiler
framework

Envisioned model compilation approach

...

TDSML TDSML1 m

HOT

DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

MDSML

IR

TDSML

PROGIRL

...
TDSML

1

1 m

DSML1 DSMLm

MDSML
m

CompilerIRL

Compiler
framework

Envisioned model compilation approach

...

TDSML TDSML1 m

HOT

DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

MDSML

IR

TDSML

PROGIRL

Compilation steps

...
TDSML

1

1 m

DSML1 DSMLm

MDSML
m

CompilerIRL

Compilation steps

Compiler
framework

Envisioned model compilation approach

...

TDSML TDSML1 m

HOT

DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

MDSML

IR

TDSML

PROGIRL

Compilation steps

...
TDSML

1

1 m

DSML1 DSMLm

MDSML
m

CompilerIRL

Compilation steps

Compiler
framework

ORPHEUS model compilation approach

https://www.es.mdu.se/projects/603-ORPHEUS,	funded	by	the	Swedish	Research	Council	(VR)

...

TDSML TDSML1 m

ORPHEUSHOT

MOF

DSML1 DSMLm

MX: Model in language X
DSMLX: DSML X

I/O flow
Conforms to

Compiler components

Compiler theory

Implemented in

Automated macro-step

MDSML

IR

TDSML

PROGIRL

Compilation steps

...
TDSML

1

1 m

DSML1 DSMLm

MDSML
m

ORPHEUSMLIR_IR

MLIR lowering steps

https://www.es.mdu.se/projects/603-ORPHEUS

A lot to do..
• Ability to execute abstract (high-level) and incomplete models
• Observability of executing models
• Control of model execution
• Compilation of DSMLs
• Integration of model simulation into heterogeneous multi-

paradigm simulation systems
• UML model execution

• Compliance to fUML execution semantics
• Support for UML-compliant action languages
• Support for executing models based on UML profiles

A lot to do..
• Ability to execute abstract (high-level) and incomplete models
• Observability of executing models
• Control of model execution
• Compilation of DSMLs
• Integration of model simulation into heterogeneous multi-

paradigm simulation systems
• UML model execution

• Compliance to fUML execution semantics
• Support for UML-compliant action languages
• Support for executing models based on UML profiles

A lot to do..
• Ability to execute abstract (high-level) and incomplete models
• Observability of executing models
• Control of model execution
• Compilation of DSMLs
• Integration of model simulation into heterogeneous multi-

paradigm simulation systems
• UML model execution

• Compliance to fUML execution semantics
• Support for UML-compliant action languages
• Support for executing models based on UML profiles

A lot to do..
• Ability to execute abstract (high-level) and incomplete models
• Observability of executing models
• Control of model execution
• Compilation of DSMLs
Integration of model simulation into heterogeneous multi-
paradigm simulation systems
• UML model execution

• Compliance to fUML execution semantics
• Support for UML-compliant action languages
• Support for executing models based on UML profiles

A lot to do..
• Ability to execute abstract (high-level) and incomplete models
• Observability of executing models
• Control of model execution
• Compilation of DSMLs
• Integration of model simulation into heterogeneous multi-

paradigm simulation systems
• UML model execution

• Compliance to fUML execution semantics
• Support for UML-compliant action languages
• Support for executing models based on UML profiles

A lot to do..
• Ability to execute abstract (high-level) and incomplete models
• Observability of executing models
• Control of model execution
• Compilation of DSMLs
• Integration of model simulation into heterogeneous multi-

paradigm simulation systems
• UML model execution

• Compliance to fUML execution semantics
• Support for UML-compliant action languages
• Support for executing models based on UML profiles

.. and..

.. and..

Many of us are engineers and..
we tend to bring all back to “programs” and “programming”,
which is what we know (and often value) the most

Let us now forget that modelling itself, as drawing for sketching,
communication, and brainstorming purposes, is..

 fine, fun, and very useful!

.. and..

Many of us are engineers and..
we tend to bring all back to “programs” and “programming”,
which is what we know (and often value) the most

Let’s not forget that modelling, for sketching, communication,
and brainstorming purposes, is..

 .. fun, useful, and very valuable!

