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* We need to be precise and specific on WHAT a model is
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Models

* Models can be found in any scientific discipline
* We need to be precise and specific on WHAT a model is

“A model is an abstract representation of a specific part,
problem, solution, or feature of a specific domain”
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Software models (some definitions)

“Software models are ways of expressing a software design”

“Software models are representations of software systems
made to understand, analyze, and design such systems”

“A software model is a collection of representations whose
contents depend on the languages and tools used”

“Software models are formal methods for handling the process
of creating software”
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* is a blue-print of a software application,
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Software models in our context

A (software) model
* is a blue-print of a software application,
e can be itself executable, and

* is directly usable for automating the development process
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software environment
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Model execution

* Process of partly or fully running a computational model in a
software environment

» Simulation for prediction/monitoring based on specific inputs
and configurations

* Pivotal to understand complex systems

* Pivotal to forecast outcomes related to criticality aspects
(e.g., time, safety, security)

* Essential in domains like data science, Al, machine learning
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Translational

model

model
translator

3GL
code

3GL compiler

low-level
code

execution




alardalen
University

Model execution strategies

Translational

model

model
translator

/'{ 3GL compiler

low-level
code

execution




alardalen
University

Model execution strategies

Translational

model

model
translator

3GL
code

3GL
interpreter

v

execution




alardalen
University

Model execution strategies
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UML execution

» Systematic review of research and practice
* Research articles
* Tools

* Investigated >5400 items
* Included 63 articles and 19 tools
» Systematic search and data extraction

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360
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Classification of UML execution solutions

UML model execution

[ ) Mandatory A OR
O Optional A XOR
UML Intended Associated Extensibilit Readiness no:E?upnocitiZ?nal Formal specification Execution
modeling benefits process Y level . languages strategy
properties
0..* 0..*
Production
i system
UMIT_eg;Jlridm Traceability Y
agrams Support for links support
1.5 partial models
Support for
hd hd simulation
Used action Required Modeling tool MDA levels Based on the Model-level
languages UML profiles 9 covered fUML standard debugging
Translation Interpretation Compilation
Execution tools
Explicit Implicit PIM PSM and technologies
1.% Engine
0..* . Target
Compiler platforms
1.*
Translation Intermediate Translation Software
steps artifacts targets platform
0..* 1.x
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Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360
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About executability..

* Execution strategy
* 85% based on translation to 3GLs (mostly Java and C++)
* 50% use Java as model transformation/translation language
* 17% based on interpretation, only for simulation/analysis purposes

* Execution semantics
e 15% based on fUML

* Action languages
* >90% use 3GLs
* Only 10% based on Alf

* Support for simulation
* 59% provide some simulation feature

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360
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* Extensibility

* 21% provide some sort of extension mechanism

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360
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Other interesting aspects..

* Extensibility

* 21% provide some sort of extension mechanism

* Traceability (model-code)
* 18% provide some support for trace links

* Interactive debuggability

« 25% provide debugging features at model-level

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360
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In summary

» Translation outhnumbers interpretation

* Interpretation is used for higher-level execution (e.g., simulation)
* Execution semantics from fUML is neglected in most cases

* Most solutions employ 3GLs as action languages

* AImost no model-level interactive debugging

* Little extensibility and customizability

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360
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What about "code generation” approach

* Convenient, reuse of existing (trusted) 3GL compilers

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.
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What about "code generation” approach

* Convenient, reuse of existing (trusted) 3GL compilers

* Creates discontinuity between model and executable
* Model debugging can become very difficult
* Co-debugging and co-simulation nearly impossible

* Lack of trust from developers
» Generated 3GL “inspected” and modified by han
* Violate source models
» Violate model-based analysis, optimisation and V&V
» Get lost if source models change

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.
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What about "code generation” approach?

* Convenient, reuse of existing (trusted) 3GL compilers

* Creates discontinuity between model and executable
* Model debugging can become very difficult
* Co-debugging and co-simulation nearly impossible
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» Generated 3GL “inspected” and modified by han

» 3GL compilers do not understand model semantics

* Program optimisations may be missed
* Generated executables may be semantically different from models
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What about "code generation” approach

* Convenient, reuse of existing (trusted) 3GL compilers

* Creates discontinuity between model and executable
* Model debugging can become very difficult
* Co-debugging and co-simulation nearly impossible

e Lack of trust from developers
» Generated 3GL “inspected” and modified by han

» 3GL compilers do not understand model semantics

* Program optimisations may be missed
* Generated executables may be semantically different from models

* Not suitable for heterogeneous platforms (multiple 3GLs needed)

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.
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Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same

models
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» Different code generators (even commercial!) produce different codes from same

models
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f (a); execution stops
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Ve
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Java from code generator 1

A a = null;
f (a) ; unchecked exception
k()i
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Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same

Java from code generator 1X
A a = null;

models

W)

fUML model in textual
format
let a ¢+ A = null;
f (a); execution stops
k()

( -
g} Activity

start

o]
o]

f (a) ; unchecked exception
k()i

) |/

Java from code generator 2

A a = null;
try{
f(a);
}catch{..}
k(); execution continues
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Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same

Java from code generator 1X
A a = null;

models

&

fUML model in textual
format
let a ¢+ A = null;
f (a); execution stops
k()

( -
g} Activity

start

o]
o]

f (a) ; unchecked exception
k()i

) |/

Java from code generator ZX
A a = null;

try{
f(a);
}catch{..}
k(); execution continues
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Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)
» Different code generators (even commercial!) produce different codes from same

models

fUML model in textual
format
let a ¢+ A = null;
f (a); execution stops
k()

=

( -
g} Activity

start

o]
o]

Java from code generator 1X
A a = null;

f (a) ; unchecked exception
k()i

) |/

Java from code generator 2?
A a = null;

try{
f(a);
}catch{..}
k(); execution continues

Some of the issues

Predictability

Validity of MB-analysis
Consistency model-code
Bidirectional traceability
Co-simulation
Co-debugging
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Why are we generating 3GL code?!
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Why are we generating 3GL code?!
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We have tried before..
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Code generation.. why
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Model execution strategies

model

model
interpreter

model

model
translator

3GL
code

3GL compiler

low-level
code

N

3GL
interpreter

v

v

execution




alardalen
University

Model execution strategies

In H2020 SPACE-10-TEC-2020, new model execution approaches regarded as
the most urgent software engineering need in the space industry

model

model
interpreter

model

model
translator

3GL
code

3GL compiler

low-level
code

7
.

3GL
interpreter

v

v

execution




Milardalen
University

Model compilation

compilation to low-level code
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Model compilation

» Bypass 3GLs and compile models by a flexible compiler
framework

* Semantic anchoring of DSML at hand to compiler IR language
* Preservation of model semantics in generated executables
* Coherent model semantics-based analysis and optimisations

* Reusability of compiler “lowerings” for same front-ends and
back-ends

* Use of Al/ML for compilation purposes (e.g. semantic anchoring)
* Use of model compilation for Al/ML purposes
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A lot to do..

* Ability to execute abstract (high-level) and incomplete models
* Observability of executing models

» Control of model execution

* Compilation of DSMLs

* Integration of model simulation into heterogeneous multi-
paradigm simulation systems

* UML model execution
* Compliance to fUML execution semantics
e Support for UML-compliant action languages
e Support for executing models based on UML profiles
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Many of us are engineers and..
we tend to bring all back to “programs” and “programming”,
which is what we know (and often value) the most

Let’s not forget that modelling, for sketching, communication,
and brainstorming purposes, is..

. fun, useful, and very valuable!
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