Malardalen
University ‘ J

Model Execution: From a
Retrospective on Code Generation to

a Perspective on Model Compilation

Federico Ciccozzi
federico.ciccozzi@mdu.se

v’ /////

— A

L T77 7.

x4

NOTES:
1. USE ASSEMBLY JIG FOR MEASURING LENGTHS.
2. HO SCALE FACTOR IS 87:1.

mm m_m
o
HOnS (NARROW GAUGE)

"HO" SCALE DECK BRIDGE (DB-HO)

Energy prices, Resource availa

Cost and emissions balance

Coal processing gl

mb

ilardalen
University ‘ ,

Power plants
and

Transportation

CHP plants

and district |

heat networks

Transportation

Primary energy Can,

Final energy-osts

Demand services

Black Bear Construction Co.
‘e blockbearee.com

DRAWING SCALE 1:1

© 1994-95, 2009 Block Beor Construction Co.

Use Case m-y-m)

Empk

G (TN
RS

For Each
Use Case

L
oo

ing Pass)
= sblbed

s

(Rutomated), $-
Boarding) (Greckin) 7
@) \Ga) A,

P ——

Fight Number

Departure Tme |,
Descrption

Type
Arlne g
TS stemUMLATDO 3
Roading and vorying boarding pas |~ VaiaityPaGaTicket "0 o] =|
IF boarding pass s OK g Pt Seat
£rse o o00ng /7 WRecordBoarding U Boarding Time Sze
Show coupon detais (827) I couponDetals , Fight Date Number
N IF H CouponDetals Gate Position |
I Checkin Counter
Extomnal View ;o 7/
ForEach| | For z‘l’n’ Foci
Query | | Mutation s
Bent | | Bent

Process View

/\ . QuTiket Detads(Nurmber)
y

Detats(]
+QTiket Detas) |

[Frgnt Number———{ g ||| ™
7+ ekt et

Dolete Fight Number |- W+ Fight Number]
Adress Machine Inolevant

N
4 "‘rl: : Mutation
\ AT | Bvents.
i\“ v .| seauence nhmm)1 v
+Q Ticket Detals() tomer|| 4 %
s e

Flight :Plane Model|

Vg e)
il
g e
et

mbp

Malardalen
University l ,

Costande

balance

bility

se Case
i Generaung
meck In AInclude™ Boatdmg Pass,
Emplayee

vincludes ' v -

i ‘Automated - 2t

e
Passenger AY Class Diagram

7
77T\
Ay :
= For Each ROk Fiight Number [Type of Plane |
. Use Case Use Case Descripti
Departure Time & o 1[nption ‘
E 4 Use Case Sequence Diagram J I { Graphic
Type Q
i Airine 1
TSy MLAirport .
Reading and verifying boarding pass ., WQuValidityPlaceTicket e =1
IF boarding pass is OK H | Flight | Seat
~ L Note boarding / M+RecordBoarding > ‘ Boarding Time Size
/
Show coupon details (2] r— reainanbetals 0 i thm Date Number
ENDIF 171 i Msuponbetals 7 Ga Position |
r Cneck In Counter |

Somiebody |:Flight Number

. Delete Flight Number |« M « Fight Number
o «Q » Ticket Delalls(Number) *«Qw T-cket Details() Address Machine .,mﬁa,“ } aMu FI$ it Number 'U
Somebody »Q » Ticket Details() | FOR EACH Flight T Nomoe B
Delete Flight | i umber
T | A

[Flight Number|——— :Flight

+Q» Ticket Details()

alardalen
University

Models

* Models can be found in any scientific discipline
* We need to be precise and specific on WHAT a model is

alardalen
University

Models

* Models can be found in any scientific discipline
* We need to be precise and specific on WHAT a model is

“A model is an abstract representation of a specific part,
problem, solution, or feature of a specific domain”

lardalen
University

Software models (some definitions)

“Software models are ways of expressing a software design”

“Software models are representations of software systems
made to understand, analyze, and design such systems”

“A software model is a collection of representations whose
contents depend on the languages and tools used”

“Software models are formal methods for handling the process
of creating software”

alardalen
University

Software models in our context

A (software) model
* is a blue-print of a software application,

alardalen
University

Software models in our context

A (software) model
* is a blue-print of a software application,
e can be itself executable, and

lardalen
University

Software models in our context

A (software) model
* is a blue-print of a software application,
e can be itself executable, and

* is directly usable for automating the development process

alardalen
University

Model execution

* Process of partly or fully running a computational model in a
software environment

alardalen
University

Model execution

* Process of partly or fully running a computational model in a
software environment

» Simulation for prediction/monitoring based on specific inputs
and configurations

lardalen
University

Model execution

* Process of partly or fully running a computational model in a
software environment

» Simulation for prediction/monitoring based on specific inputs
and configurations

* Pivotal to understand complex systems

lardalen
University

Model execution

* Process of partly or fully running a computational model in a
software environment

» Simulation for prediction/monitoring based on specific inputs
and configurations

* Pivotal to understand complex systems

* Pivotal to forecast outcomes related to criticality aspects
(e.g., time, safety, security)

lardalen
University

Model execution

* Process of partly or fully running a computational model in a
software environment

» Simulation for prediction/monitoring based on specific inputs
and configurations

* Pivotal to understand complex systems

* Pivotal to forecast outcomes related to criticality aspects
(e.g., time, safety, security)

* Essential in domains like data science, Al, machine learning

alardalen
University

Model execution strategies

Translational

model

model
translator

3GL
code

3GL compiler

low-level
code

execution

alardalen
University

Model execution strategies

Translational

model

model
translator

/'{ 3GL compiler

low-level
code

execution

alardalen
University

Model execution strategies

Translational

model

model
translator

3GL
code

3GL
interpreter

v

execution

alardalen
University

Model execution strategies

. execution
Translational

model

> > KS
model translator =’ Java \

3GL
interpreter

v

alardalen
University

Model execution strategies

execution

) low-level

3GL compiler —>
code

Translational

model > model N 3GL
translator code

N

3GL
interpreter

v

alardalen
University

Model execution strategies

Interpretive

model

Translational

model

model
interpreter

model
translator

3GL
code

3GL compiler

low-level
code

N

3GL
interpreter

v

v

execution

alardalen
University

UML execution

» Systematic review of research and practice
* Research articles
* Tools

* Investigated >5400 items
* Included 63 articles and 19 tools
» Systematic search and data extraction

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

mb

Milardalen
University ‘ ,

Classification of UML execution solutions

UML model execution

[) Mandatory A OR
O Optional A XOR
UML Intended Associated Extensibilit Readiness no:E?upnocitiZ?nal Formal specification Execution
modeling benefits process Y level . languages strategy
properties
0..* 0..*
Production
i system
UMIT_eg;Jlridm Traceability Y
agrams Support for links support
1.5 partial models
Support for
hd hd simulation
Used action Required Modeling tool MDA levels Based on the Model-level
languages UML profiles 9 covered fUML standard debugging
Translation Interpretation Compilation
Execution tools
Explicit Implicit PIM PSM and technologies
1.% Engine
0..* . Target
Compiler platforms
1.*
Translation Intermediate Translation Software
steps artifacts targets platform
0..* 1.x

lardalen

About executability..

* Execution strategy
* 85% based on translation to 3GLs (mostly Java and C++)

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

lardalen

About executability..

* Execution strategy
* 85% based on translation to 3GLs (mostly Java and C++)
* 50% use Java as model transformation/translation language

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

alardalen
University

About executability..

* Execution strategy
* 85% based on translation to 3GLs (mostly Java and C++)
* 50% use Java as model transformation/translation language
* 17% based on interpretation, only for simulation/analysis purposes

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

alardalen
University

About executability..

* Execution strategy
* 85% based on translation to 3GLs (mostly Java and C++)
* 50% use Java as model transformation/translation language
* 17% based on interpretation, only for simulation/analysis purposes

* Execution semantics
e 15% based on fUML

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

alardalen
University

About executability..

* Execution strategy
* 85% based on translation to 3GLs (mostly Java and C++)
* 50% use Java as model transformation/translation language
* 17% based on interpretation, only for simulation/analysis purposes

* Execution semantics
e 15% based on fUML

* Action languages
* >90% use 3GLs
* Only 10% based on Alf

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

lardalen
University

About executability..

* Execution strategy
* 85% based on translation to 3GLs (mostly Java and C++)
* 50% use Java as model transformation/translation language
* 17% based on interpretation, only for simulation/analysis purposes

* Execution semantics
e 15% based on fUML

* Action languages
* >90% use 3GLs
* Only 10% based on Alf

* Support for simulation
* 59% provide some simulation feature

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

alardalen
University

Other interesting aspects..

* Extensibility

* 21% provide some sort of extension mechanism

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

alardalen
University

Other interesting aspects..

* Extensibility

* 21% provide some sort of extension mechanism

* Traceability (model-code)
* 18% provide some support for trace links

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

alardalen
University

Other interesting aspects..

* Extensibility

* 21% provide some sort of extension mechanism

* Traceability (model-code)
* 18% provide some support for trace links

* Interactive debuggability

« 25% provide debugging features at model-level

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

lardalen
University

In summary

» Translation outhnumbers interpretation

* Interpretation is used for higher-level execution (e.g., simulation)
* Execution semantics from fUML is neglected in most cases

* Most solutions employ 3GLs as action languages

* AImost no model-level interactive debugging

* Little extensibility and customizability

Execution of UML models: a systematic review of research and practice. Federico Ciccozzi, lvano
Malavolta, Bran Selic. Software & Systems Modeling (2019) 18:2313-2360

alardalen
University

What about "code generation” approach

* Convenient, reuse of existing (trusted) 3GL compilers

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

alardalen
University

What about "code generation” approach

* Convenient, reuse of existing (trusted) 3GL compilers

* Creates discontinuity between model and executable
* Model debugging can become very difficult
* Co-debugging and co-simulation nearly impossible

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

alardalen
University

What about "code generation” approach

* Convenient, reuse of existing (trusted) 3GL compilers

* Creates discontinuity between model and executable
* Model debugging can become very difficult
* Co-debugging and co-simulation nearly impossible

e Lack of trust from developers
* Generated 3GL “inspected” and modified by hand

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

alardalen
University

What about "code generation” approach

* Convenient, reuse of existing (trusted) 3GL compilers

* Creates discontinuity between model and executable
* Model debugging can become very difficult
* Co-debugging and co-simulation nearly impossible

e Lack of trust from developers
» Generated 3GL “inspected” and modified by han

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

alardalen
University

What about "code generation” approach

* Convenient, reuse of existing (trusted) 3GL compilers

* Creates discontinuity between model and executable
* Model debugging can become very difficult
* Co-debugging and co-simulation nearly impossible

* Lack of trust from developers
» Generated 3GL “inspected” and modified by han
* Violate source models
» Violate model-based analysis, optimisation and V&V
» Get lost if source models change

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

lardalen
University

What about "code generation” approach?

* Convenient, reuse of existing (trusted) 3GL compilers

* Creates discontinuity between model and executable
* Model debugging can become very difficult
* Co-debugging and co-simulation nearly impossible

e Lack of trust from developers
» Generated 3GL “inspected” and modified by han

» 3GL compilers do not understand model semantics

* Program optimisations may be missed
* Generated executables may be semantically different from models

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

lardalen
University

What about "code generation” approach

* Convenient, reuse of existing (trusted) 3GL compilers

* Creates discontinuity between model and executable
* Model debugging can become very difficult
* Co-debugging and co-simulation nearly impossible

e Lack of trust from developers
» Generated 3GL “inspected” and modified by han

» 3GL compilers do not understand model semantics

* Program optimisations may be missed
* Generated executables may be semantically different from models

* Not suitable for heterogeneous platforms (multiple 3GLs needed)

“What will it take? A view on adoption of model-based methods in practice. Bran Selic. Software &
Systems Modeling 11.4 (2012): 513-526.

alardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

lardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same
models

lardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)
» Different code generators (even commercial!) produce different codes from same

models

(T e,
g} Activity

start 4
[l
B
k

lardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same
models

g} Activity

start

fUML model in textual

format @
let a ¢+ A = null;
f (a); execution stops
k()

o]
o]

lardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same
models

g} Activity

\V) | start

fUML model in textual

format @
let a ¢+ A = null;
f (a); execution stops
k()

o]
o]

lardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same

models

YAy
()

fUML model in textual
format

let a ¢+ A = null;
f (a); execution stops
k();

Ve

g} Activity

start

o]
o]

Java from code generator 1

A a = null;
f (a) ; unchecked exception
k()i

lardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same

models

YAy
()

fUML model in textual
format

let a ¢+ A = null;
f (a); execution stops
k();

Ve

g} Activity

start

o]
o]

Java from code generator 1

A a = null;
f (a) ; unchecked exception
k()i

lardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same

Java from code generator 1X
A a = null;

models

W)

fUML model in textual
format
let a ¢+ A = null;
f (a); execution stops
k()

(-
g} Activity

start

o]
o]

f (a) ; unchecked exception
k()i

) |/

Java from code generator 2

A a = null;
try{
f(a);
}catch{..}
k(); execution continues

alardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)

» Different code generators (even commercial!) produce different codes from same

Java from code generator 1X
A a = null;

models

&

fUML model in textual
format
let a ¢+ A = null;
f (a); execution stops
k()

(-
g} Activity

start

o]
o]

f (a) ; unchecked exception
k()i

) |/

Java from code generator ZX
A a = null;

try{
f(a);
}catch{..}
k(); execution continues

alardalen
University

Back to code generation for UML

» 26 different code generators from UML to Java

* No reference semantics (e.g. f{UML)
» Different code generators (even commercial!) produce different codes from same

models

fUML model in textual
format
let a ¢+ A = null;
f (a); execution stops
k()

=

(-
g} Activity

start

o]
o]

Java from code generator 1X
A a = null;

f (a) ; unchecked exception
k()i

) |/

Java from code generator 2?
A a = null;

try{
f(a);
}catch{..}
k(); execution continues

Some of the issues

Predictability

Validity of MB-analysis
Consistency model-code
Bidirectional traceability
Co-simulation
Co-debugging

alardalen
University

Model execution strategies

Interpretive

model

Translational

model

model
interpreter

model
translator

3GL
code

3GL compiler

low-level
code

N

3GL
interpreter

v

v

execution

Milardalen

University

Why are we generating 3GL code?!

model

model
translator

>

3GL
code

3GL compiler

low-level
code

1

N

S

3GL
interpreter

v

execution

alardalen
University

JVM

C compiler

low-level
code

execution

alardalen
University

Why are we generating 3GL code?!

100

[]
ﬁ

§ | ,| JavatoC : low-level 2L
<> Java C compiler —>
= translator code

Milardalen

University

We have tried before..

@ — Cfront

C compiler

low-level
code

execution

Milardalen

University

.. And not succeeded

C compiler

low-level
code

execution

alardalen
University

Code generation.. why

e

model . low-level

—> » C compiler
/‘ translator @ omprie code
model \ execution

model «

—» > Java JVM
translator =
(s

\./

(& quotefancy

alardalen
University

Model execution strategies

model

model
interpreter

model

model
translator

3GL
code

3GL compiler

low-level
code

N

3GL
interpreter

v

v

execution

alardalen
University

Model execution strategies

In H2020 SPACE-10-TEC-2020, new model execution approaches regarded as
the most urgent software engineering need in the space industry

model

model
interpreter

model

model
translator

3GL
code

3GL compiler

low-level
code

7
.

3GL
interpreter

v

v

execution

Milardalen
University

Model compilation

compilation to low-level code

execution

low-level
code

model

model [.
compiler

v

alardalen
University

Model compilation

* 3GL code generators are specific to source DSML and target
3GL

CodeGen, T CodeGen,

Compiler, ansn Compiler,

lardalen
University

Model compilation

* 3GL code generators are specific to source DSML and target
3GL

DSML, DSML,,
A R N
: |
MDSML 1 MDSML m
CodeGen, T CodeGen, CodeGen; L CodeGen,

Compiler, ansn Compiler, Compiler, nnn Compiler,

Model compilation

* 3GL code generators are specific to source DSML and target

DSML, e DSML,, ‘ DSML1 | DSMLm

A R N

1 1 A

' ' 1 1
MbsmL) L 1 I

MDSML nmm MDSML
1 [m
CodeGen, T CodeGen, CodeGen; L CodeGen,
P OG3G|_ PROG3GL PROG3GL
\ 4 A\ 4

' v Model Compilation
Compiler, Compiler, nnn Comp1 Framework

alardalen
University

Model compilation

» Bypass 3GLs and compile models by a flexible compiler
framework

lardalen
University

Model compilation

» Bypass 3GLs and compile models by a flexible compiler
framework

* Semantic anchoring of DSML at hand to compiler IR language

lardalen
University

Model compilation

» Bypass 3GLs and compile models by a flexible compiler
framework

* Semantic anchoring of DSML at hand to compiler IR language
* Preservation of model semantics in generated executables

lardalen
University

Model compilation

» Bypass 3GLs and compile models by a flexible compiler
framework

* Semantic anchoring of DSML at hand to compiler IR language
* Preservation of model semantics in generated executables
* Coherent model semantics-based analysis and optimisations

alardalen
University

Model compilation

» Bypass 3GLs and compile models by a flexible compiler
framework

* Semantic anchoring of DSML at hand to compiler IR language
* Preservation of model semantics in generated executables
* Coherent model semantics-based analysis and optimisations

* Reusability of compiler “lowerings” for same front-ends and
back-ends

lardalen
University

Model compilation

» Bypass 3GLs and compile models by a flexible compiler
framework

* Semantic anchoring of DSML at hand to compiler IR language
* Preservation of model semantics in generated executables
* Coherent model semantics-based analysis and optimisations

* Reusability of compiler “lowerings” for same front-ends and
back-ends

* Use of Al/ML for compilation purposes (e.g. semantic anchoring)

lardalen
University

Model compilation

» Bypass 3GLs and compile models by a flexible compiler
framework

* Semantic anchoring of DSML at hand to compiler IR language
* Preservation of model semantics in generated executables
* Coherent model semantics-based analysis and optimisations

* Reusability of compiler “lowerings” for same front-ends and
back-ends

* Use of Al/ML for compilation purposes (e.g. semantic anchoring)
* Use of model compilation for Al/ML purposes

Envisioned model compilation approach .oy

Mx. Model in language X
DSMLy: DSML X

I:l Automated macro-step

Compiler components

h .

Compiler theory
- —=> Conforms to
— I/0 flow

"""""" > Implemented in

Envisioned model compilation approach .oy

Mx. Model in language X
DSMLy: DSML X

I:l Automated macro-step

Compiler components

Compiler theory
- = => Conforms to
— 1/0 flow
----------- > Implemented in

\! Compiler
framework

Envisioned model compilation approach .oy

Mx. Model in language X
DSMLy: DSML X

I:l Automated macro-step

Compiler components

—
Compiler theory

= = => Conforms to
DSML, amn DSML,, — 1/0 flow
===> Tmplemented 1in

\! Compiler
framework

Envisioned model compilation approach .oy

Mx. Model in language X
DSMLy: DSML X

I:l Automated macro-step

Compiler components

—
Compiler theory

= = => Conforms to
DSML, amn DSML,, — 1/0 flow
===> Tmplemented 1in

[\
\! Compiler

— w—h — b — b m— . m— w— frameworlk —h w— w— % — % — % m— kw4 m— % — b m— b m—
HOT L Compi'l.er'IRL \‘

Envisioned model compilation approach .oy

‘ DSML, \

Mx. Model in language X
DSMLy: DSML X

I:l Automated macro-step

Compiler components

Compiler theory
= = => (Conforms to
— 1/0 flow
----------- > Implemented in

Compiler
framework

A

Envisioned model compilation approach .oy

Mx. Model in language X
DSMLy: DSML X

I:l Automated macro-step

Compiler components

—
Compiler theory

= = => Conforms to
‘ DSML, \ amn ‘ DSML,, \ — 1/0 flow
===> Tmplemented 1in

e
L’j Compiler
: framework
l : ! ———— i
HOT “ Compileri. 1
\

TDSML

Envisioned model compilation approach .oy

I:l Automated macro-step A

Mx. Model in language X

DSMLy: DSML X DSML, DSML,,
A
1

Compiler components —
Compiler theory MoswL 1 nmn Mpswe
= ==> (Conforms to
‘ DSML, \ amn ‘ DSML,, \ — 1/0 flow
> Implemented in
e
L’j Compiler
: framework
l : ! e e e I
| . :
HOT — Compilerig 1 !
N i
I :
: |
I :
\ 4 \ 4 | |
T | T =
TDSMLl DSMLm

Envisioned model compilation approach .oy

Mx. Model in language X
DSMLy: DSML X

[::::] Automated macro-step

Compiler components

—
Compiler theory

- —=> Conforms to

—> I/0 flow

"""""" > Implemented in

Compj
mework

T
DSML 1

DSML,

MDSML

DSML,,
A
|

TosmL
m

Envisioned model compilation approach .oy

mb

Mx. Model in language X

DSMLy: DSML X

I:l Automated macro-step

Compiler components

—
Compiler theory

- == Conforms to
— I/0 flow

"""""" > Implemented in

DSML,

Compiler
framework

DSML,,

i

Envisioned model compilation approach .oy

e it [oswy
I:l Automated macro-step I
Compiler components —
Compiler theory Mosw 1

- == Conforms to
—> I/0 flow

"""""" > Implemented in

DSML,,

i

Compiler UL
e e e
IR

Envisioned model compilation approach

mb

Malardalen

UUUUUUUUU

A

Mx. Model in language X
DSMLy: DSML X

[::::] Automated macro-step

Compiler components

r_‘ .

Compiler theory
- —=> Conforms to
—> I/0 flow

"""""" > Implemented in

Compiler
framework

TDSML

DSML, DSML,,
XI A
|
S
MDSML EEE MDSML
m

Tosme Tosme

1 ‘/é//

______ PROGIRL
_ ¥

ORPHEUS model compilation approach 3

MOF I:l Automated macro-step ;'Iﬁ 1\
IR N Compiler components — ’_‘ﬁ
,’/ \‘\ Compiler theory Mosmc 1 e MbsmL .

- —=> Conforms to
DSML]_ EEN DSMLm —> I/0 flow 4 {
===> Tmplemented 1in

@ /;SML m
v)2 \ 4 I ; |
ORPHEUSHot “— ORPHEUSML1r_1r](- PROGzr, '
DN — |
| v :
| | | >[MLIR lowering steps :
e esmrremee——— T _
TDSMLl TDSMLm nn li 1

https://www.es.mdu.se/projects/603-ORPHEUS, funded by the Swedish Research Council (VR)

https://www.es.mdu.se/projects/603-ORPHEUS

alardalen
University

A lot to do..

* Ability to execute abstract (high-level) and incomplete models

lardalen
University

A lot to do..

* Ability to execute abstract (high-level) and incomplete models
* Observability of executing models

Milardalen

University

A lot to do..

* Ability to execute abstract (high-level) and incomplete models
* Observability of executing models

e Control of model execution

alardalen
University

A lot to do..

* Ability to execute abstract (high-level) and incomplete models
* Observability of executing models

» Control of model execution

* Compilation of DSMLs

lardalen
University

A lot to do..

* Ability to execute abstract (high-level) and incomplete models
* Observability of executing models

» Control of model execution

* Compilation of DSMLs

* Integration of model simulation into heterogeneous multi-
paradigm simulation systems

lardalen
University

A lot to do..

* Ability to execute abstract (high-level) and incomplete models
* Observability of executing models

» Control of model execution

* Compilation of DSMLs

* Integration of model simulation into heterogeneous multi-
paradigm simulation systems

* UML model execution
* Compliance to fUML execution semantics
e Support for UML-compliant action languages
e Support for executing models based on UML profiles

Milardalen

University

.. and..

alardalen
University

.and..

Many of us are engineers and..
we tend to bring all back to “programs” and “programming”,
which is what we know (and often value) the most

alardalen
University

.and..

Many of us are engineers and..
we tend to bring all back to “programs” and “programming”,
which is what we know (and often value) the most

Let’s not forget that modelling, for sketching, communication,
and brainstorming purposes, is..

. fun, useful, and very valuable!

lardalen
University

