Future Directions for MBSE with SysML v2

February 19, 2023

Sanford Friedenthal
SysML v2 Submission Team (SST) Co-Lead
safriedenthal@gmail.com
Agenda

- Systems Engineering Overview
- MBSE Past and Present
- Future of MBSE
- SysML v2 Overview
- Summary

19 February 2023
Systems Engineering Overview
• Systems engineering aims to ensure the pieces work together to achieve the objectives of the whole
 ○ Architect balanced solutions that satisfy diverse stakeholder needs for capability, dependability, sustainability, social acceptability, ease of use, and cost
 ○ Adapt to evolving technology and requirements
 ○ Manage complexity and risk

Source: INCOSE SE Vision 2035
Systems Engineering Practice

Flow-down
Specify & Architect

Flow-up
Integrate & Verify

Mission
System
Subsystem
Component
A Systems Engineering Use Case: Analyzing the Impact of a Requirement Change

Spans Multiple Disciplines

Minimum Turn Radius: 24 ft.
Dry Pavement Braking Distance at 60 MPH: 110 ft.

Source: INCOSE MBSE Initiative-Mark Sampson
MBSE Past and Present
Model-Based Systems Engineering Evolution

Encompasses both System Design & Analysis

- 1950’s: Semiconductor technology and FORTRAN programming language introduced
- 1960’s: Computer-based modeling and simulation as an engineering practice
- 1970’s: Calculators and personal computers
- 1980’s: Computer-aided software engineering (CASE)/Computer-aided design (CAD) methods & tools
- 1983: IDEF standard
- 1988: *Computer-Aided Systems Engineering* by Howard Eisner
- 1991: *Systems Architecting* by Eberhardt Rechtin
- 1993: *Model-Based Systems Engineering* by Wayne Wymore
- Early 1990’s: System behavior modeling tools (e.g., RDD 100, Vitech Core)

Representative set of events and approximate dates
Model-Based Systems Engineering
UML/SysML/MBSE Evolution

- 1997: UML v1.1 (standardized through the Object Management Group)
- 2005: UML v2
- 2007: SysML v1
- 2007: INCOSE SE Vision 2020 (MBSE a key theme)
- 2007: INCOSE MBSE Roadmap
- 2008: Foundational UML (fUML)
- 2008: Unified Profile for DoDAF & MODAF (UPDM) v1
- 2017: Unified Architecture Framework (UAF) v1
- 2023: SysML v2 (beta spec pending OMG approval)

Representative set of events and approximate dates
- System architecture captured using informal diagramming notation
- Good domain content but imprecise description of:
 - Component hierarchy
 - Interfaces
 - Functions vs components
 - Succession vs connection
- Disconnected from other system views
- Lack of traceability to design elements
Model-Based Systems Engineering (MBSE)

- A systems engineering approach where information about the system is captured in a system model
 - The model is the source of the information and managed throughout the lifecycle
- Contrasts with a document-based approach where the information is captured in a variety of documents, informal diagrams, and spreadsheets
- Provides a more complete, consistent, and traceable system design

From: System specification and design data related through documents

To: Shared system model with multiple views, and connected to discipline models

Source: Jet Propulsion Laboratory
The TMT Project gratefully acknowledges the support of the TMT collaborating institutions.

Disclaimer: The use of these slides does not reflect the TMT Project’s endorsement of a particular tool.
Future of MBSE
Digital Transformation

- Consists of digital representation and semantic integration of enterprise information
- Enabled by continuing advances in digital technologies and standards for networking, computing, data storage, semantic web, ...
- Enterprises able to digitally capture, re-use, exploit, and protect information, and more effectively leverage knowledge as an enterprise asset

Source: INCOSE SE Vision 2035
©Ellagrin. Mind Map Team.Shutterstock.com
The Future of Systems Engineering is Model-Based

- Part of the digital transformation
- Full life cycle from SoS to component level
- Agile system development including automated workflow and CM of the digital thread
- Model patterns and reuse

Facilitates

- managing complexity & risk
- more rapidly respond to change
- reuse and design evolution
- reasoning about & analyzing systems
- shared stakeholder understanding
- automated documentation & reporting

Source: INCOSE SE Vision 2035
MBSE Process
Verify Before Build

- Applies at each level of design and across the lifecycle
- Increments can be use case driven (e.g., functional threads)
SysML v2 Overview
SysML v2 Objectives

- Increase adoption and effectiveness of MBSE with SysML by enhancing…
 - Precision and expressiveness of the language
 - Consistency and integration among language concepts
 - Interoperability with other engineering models and tools
 - Usability by model developers and consumers
 - Extensibility to support domain specific applications
 - Migration path for SysML v1 users and implementors

19 February 2023
Key Elements of SysML v2

- New Metamodel that is not constrained by UML
 - Preserves most of UML modeling capabilities with a focus on systems modeling
 - Grounded in formal semantics
- Robust visualizations based on flexible view & viewpoint specification
 - Graphical, Tabular, Textual
- Standardized API to access the model
SysML v2 Language Architecture

- **Systems Modeling Language** (SysML)
 - Systems Syntax
 - Core Syntax
 - Root Syntax
 - Metamodel
 - Semantic library

- **Kernel Modeling Language** (KerML)
 - Kernel Syntax
 - Core Syntax
 - Root Syntax
 - Metamodel
 - Semantic library
 - Core Semantics

- **Systems and Domain Model Libraries**
 - Direct semantic mapping to formal logic
 - Declarative semantic base elements modeled using KerML
 - Declarative semantic base elements and domain-specific libraries modeled using SysML

- **Kernel Model Library**
 - Root syntactic elements without model-level semantics (e.g., packaging)

19 February 2023
SysML v2 Language Capabilities

Behavior
- function-based
- state-based
- sequence-based
- use cases

Structure
- decomposition
- interconnection
- classification

Requirements

Analysis
- analysis cases
- expression language

Verification
- verification cases

View & Viewpoint
package 'Vehicle Parts Tree' {
 part vehicle {
 attribute mass;
 perform providePower;
 }
 part engine {
 attribute mass;
 perform providePower.generateTorque;
 part cylinders [6];
 }
 part transmission {
 attribute mass;
 perform providePower.amplifyTorque;
 }
}

action providePower {
 action generateTorque;
 action amplifyTorque;
}
Vehicle Usage Example
Modifying Usages to their Context

Different usages of Axle Assembly

Tire pressure is different on front and rear tires
SysML v2 to v1

Terminology Mapping (partial)

<table>
<thead>
<tr>
<th>SysML v2</th>
<th>SysML v1</th>
</tr>
</thead>
<tbody>
<tr>
<td>part / part def</td>
<td>part property / block</td>
</tr>
<tr>
<td>attribute / attribute def</td>
<td>value property / value type</td>
</tr>
<tr>
<td>port / port def</td>
<td>proxy port / interface block</td>
</tr>
<tr>
<td>action / action def</td>
<td>action / activity</td>
</tr>
<tr>
<td>state / state def</td>
<td>state / state machine</td>
</tr>
<tr>
<td>constraint / constraint def</td>
<td>constraint property / constraint block</td>
</tr>
<tr>
<td>requirement / requirement def</td>
<td>requirement</td>
</tr>
<tr>
<td>connection / connection def</td>
<td>connector / association block</td>
</tr>
<tr>
<td>view / view def</td>
<td>view</td>
</tr>
</tbody>
</table>
Connecting SysML v2 through the API

Systems Modeling API

- Structure
- Behavior
- Requirements
- Analysis
- Verification
- View & Viewpoint

CM of the Digital Thread
Source: Syndeia with SysML v2

Graph Visualization
Source: Tom Sawyer with SysML v2

CAD/CAD Viewer
Source: FreeCAD with SysML v2

Analysis Solver
Source: Maple with SysML v2
Contrasting SysML v2 with SysML v1

- **Simpler to learn and use**
 - Systems engineering concepts designed into metamodel versus added-on
 - Consistent application of definition and usage pattern
 - More consistent terminology
 - Ability to decompose parts, actions,
 - More flexible model organization (unowned members, package filters)…

- **More precise**
 - Textual syntax and expression language
 - Formal semantic grounding
 - Requirements as constraints

- **More expressive**
 - Variant modeling
 - Analysis case
 - Trade-off analysis
 - Individuals, snapshots, time slices
 - More robust quantitative properties (e.g., vectors, ..)
 - Simple geometry
 - Query/filter expressions
 - Metadata

- **More extensible**
 - Simpler language extension capability
 - Based on model libraries

- **More interoperable**
 - Standardized API
Summary
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>December, 2017</td>
<td>SysML v2 RFP issued</td>
</tr>
<tr>
<td>June, 2018</td>
<td>SysML v2 API & Services RFP issued</td>
</tr>
<tr>
<td>August, 2020</td>
<td>Initial Submission</td>
</tr>
<tr>
<td>February, 2021</td>
<td>Stakeholder Review</td>
</tr>
<tr>
<td>August, 2021</td>
<td>Revised Submission</td>
</tr>
<tr>
<td>November, 2021</td>
<td>2nd Revised Submission (OMG evaluation initiated)</td>
</tr>
<tr>
<td>September, 2023</td>
<td>Specification Review at OMG</td>
</tr>
<tr>
<td>November, 2022</td>
<td>3rd Revised Submission</td>
</tr>
<tr>
<td>1st Qtr 2023</td>
<td>Final Submission (beta specification pending OMG approval)</td>
</tr>
<tr>
<td>2024</td>
<td>Adopted Specification</td>
</tr>
</tbody>
</table>
Summary

- Future of Systems Engineering is Model-Based
- Computing technology and standards enable MBSE practice
- SysML v2 is addressing SysML v1 limitations to improve MBSE adoption and effectiveness
 - Precision, expressiveness
 - Regularity, usability
 - Interoperability with other engineering models and tools
- Approach
 - SysML v2 metamodel with formal semantics architected to overcome fundamental UML limitations
 - Flexible graphical notations and textual notation
 - Standardized API for interoperability
 - Transformation specification from SysML v1 to SysML v2
- Final submission Q1 2023 / Final specification planned for 2024
SST Public Repositories
Current Release: 2023-01

- Monthly release repository
 - https://github.com/Systems-Modeling/SysML-v2-Release

- Release content
 - Specification documents (for KerML, SysML and API)
 - Training material for SysML textual notation
 - Training material for SysML graphical notation
 - Example models (in textual notation)
 - Pilot implementation
 - Installer for Jupyter tooling
 - Installation site for Eclipse plug-in
 - Web access to prototype repository via SysML v2 API
 - Web access to Tom Sawyer visualization tooling

- Open-source repositories
 - https://github.com/Systems-Modeling

- Google group for comments and questions
 - https://groups.google.com/g/SysML-v2-Release
 (to request membership, provide name, affiliation and interest)
Thank you!!
Q&A