Assessing Robustness and Resilience of Al
The ALC Project

Gabor Karsai, Vanderbilt University

with contributions by Taylor Johnson, Xenofon Koutsoukos
Supported by DARPA under

Assurance of Learning-Enabled Cyber-Physical Systems

Project vision

“The proposed research effort will address the ... technical areas with overall goal of delivering an

integrated design tool suite and reusable operation support components for constructing
autonomous CPS including Learning Enabled Components (LECs). Our vision is to ... create a new design
flow that extends from design-time to operation time, re-interprets the traditional assurance

argumentation to become a dynamic, operational concept. Our ultimate goal is to establish a fusion of
model- and component-based methods with data-driven methods.”

Model-driven design flow

Design Space
(Architecture Models)

Analysis Space
5 (Analysis Models)

<3
w)
5
£
£ ¥)
qg; Component Model Analysis Analysis)
< Modgl Composition F|0W. Templ_ate
Repositor I Integration Reposito
No Y
R Multidisciplinary Verification, Testing and
Optimization

Environment

Model-driven design flow with LEC-s

Requirements models

=

Yesl
S — system model

Design Space Analysis Space |
(Architecture Models) | .| (Analysis Models)
<>

o}

8

£

h l T =

: —N |5

Component Model Analysis Analysis £

Model Rep,] Composition Flow Int. Template 5

with LECs | with Emb. Repository E

Muticls rification, Testing and Opt. \ 4
E
Design-time Embedded Operation-time 0
Multi-Model Analysis Processes Learning+Monitoring Processes| k' ——
observations

Evidence-based Assurance Argumentation:
Design-time + Operation time

i, assurance-level-indicator

Project activities

» Thrusts:
Verification: formal and/or coverage-driven / \
verification of safety and liveness properties
of components, subsystems, and systems, at Verification
design-time and at run-time, to provide < >
evidence for assurance arguments
Assurance: construction and continuous
evaluation of logical arguments that
demonstrate the truth or strength of a safety Toolchain (Design-time)

claim based on available evidence

Toolchain: design-time and run-time software
tools to implement and support the above,

for real systems
Verification
» Learning (component adaptation) A
Design-time: in design tools, while the system w
is not operational

Rgn-tlme: in the running syste.m, on‘-the-fl.y | kTooIchain (Run-time)/
Mixed — learning from operational, ‘overnight

Verification Technology

Example-|: Robustness Assessment
Example-2: Run-time Verification

Prof. Taylor Johnson and team

LEC Verification: Reachability Analysis of
Feedforward /Convolutional Neural Networks

» Given a NN F & an input set X, the output reachable set of F is
Y=Wly=Fx)xeX}

hidden layer 1 hidden layer 2 hidden layer 3
input layer
N — —A &
:. .
.t 3 o gy
AN
=,
e
fd
F ;7
- 4 34

» Computationally: Given a NN F a convex initial set of inputs | represented
as a polytope poly(X'), compute the output setY = F(l) of the network

- 5 — A
I ={x|Ax < B,x € R"} DY Y =F() =7
Layer-by-Layer Propagation — s
of Polytopes | . % T T

CNN Robustness Verification [CAV’20]

224 x 224 x3 224 x 224 x 64 VGG16

https://www.robots.ox.ac.uk/~vgg/research/very_deep/

112 x 112 x 128

4
36)556):256 7 %7 x 512
/ 28 x 28 x 512

114X 1A X512 1x1x4096 1x1x1000

=7 convolution+RelU
—1 max pooling
fully nected+RelU
softmax

Original image Noise a=1e-6% a=8e-6%
bell pepper

bell pepper

Disturbed images = Original image + a x Noise

VGG Classifiers: ~93%

accuracy in top-5 classification
on ImageNet

VGG 6: 16 layers, 138M
parameters

VGGI19: 19 layers, 144M
parameters

Classify images into 1000
classes, e.g., car, horse, bell

pepper; ...

Layers of interest
* Convolutional

* Average pooling

¢ Max pooling

* Fully connected
 RelU

IsVGG16/19 robust to FGSM attacks fora <2 x 10°2?

6 Tran HD., Bak S., Xiang W., Johnson T.T. (2020) Verification of Deep Convolutional Neural Networks Using ImageStars. In: Lahiri
S., Wang C. (eds) Computer Aided Verification. CAV 2020. https://doi.org/10.1007/978-3-030-53288-8 2

https://www.robots.ox.ac.uk/%7Evgg/research/very_deep/

CNN Classification Robustness
Analysis: ImageStars

» ImageStar O={x|lx=c+Z2 av,P(a)}

c € RXWXnc is the center image

V = {vy, vy, 0y}, v; € RPWXNC s 3 set of basis images
P(a) £ Ca < d,is a predicate

a = [ay, ay, -, am]", is predicate variable

Extension of Star Sets [Tran et al, FM’|9]

Represent infinite sets of multi-channels images

o4 |12 of1/0/|0
213|213 0o/0|0| O 1 g
O=c+av= + o ,P= o<
11312 o/l0|0]|O —1 2
211|132 ojlo|0o|oO
CER4X4X1 VER4X4X1

VGG16 Robustness Verification

» IsVGGI6/19 robust to FGSM attacks for a < 2 x 10782
» Reachable set computation time: 518 seconds

» Verifying Robustness Time: 56 seconds

» Number of ImageStars in the output reachable set: 8

» Total Verification Time: 574 seconds (= 10 minutes)

15

» Number of cores: |
» Robust? Yes

10

Range

o

11.8199015 |-

% 11.819901
-

@

Y 11.8199005

11.8199 : : : : : :
940 942 944 946 948 950 952 954 956 958 960

Index

Closed-Loop CPS with LECs:
Verification Flow and Tools

H)'ST / Communication Networks \ nnv + nnmt
(" Physical LEGs
. Sensors
Environment, Cyber
Plant’ Interfaces Components
Humans, ... Actuators eiinErE

Controller(s)//

» Plant models: hybrid automata, or networks thereof, represented in HyST/SpaceEx/CIF
formats

Hybrid automaton: finite state machine + set of real-valued variables that evolve continuously over
intervals of real time according to ordinary differential equations (ODEs)

Hybrid behaviors: discrete transitions and continuous trajectories over real time
Plant dynamics: linear, nonlinear, hybrid, continuous-time, discrete-time, ...

» LEC and cyber models: feedforward neural networks, represented in ONNX format
(compatible with Keras, Tensorflow, Matlab, etc.)

» Specifications: primarily safety properties for now, some reachability properties

» Verification: composed LEC and plant analysis: autonomous closed-loop CPS
Bounded model checking: k control periods, alternating reachability analysis of controller and plant

https://github.com/verivital/hyst
https://github.com/verivital/nnv
https://cps-vo.org/group/hyst
https://github.com/verivital/nnmt

Runtime (Online) Verification of Autonomous
Systems with Real-Time Reachability

» For controller LECs online monitoring at runtime is essential

» How can we provide formal and provable guarantees of system-level behaviors, such

as safety, online at runtime!

Key idea: abstract LEC behaviors (see other approaches on out of distribution
detection, etc.) and simply observe the influence of their behavior on
plant/system-level at runtime

Necessary technology: online reachability analysis of plant models, ideally
with worst-case execution time (WCET) guarantees for implementation in
embedded hardware

Builds on real-time reachability of linear/nonlinear ordinary differential ~ _
equations (ODEs) and hybrid automata with WCET guarantees, implemented ds
an anytime algorithm [FORTE’ |9, TECS’ 16, RTSS’ 4]

Based on mixed face lifting reachability [Dang and Maler, HSCC’98 &
HSCC’ 19 Test of Time Award Winner], using hyperrectangles (intervals) as state-
space representation

[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19]
[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]

[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]
http://www.verivital.com/rtreach/

10

1.2

1

0.8

0.6

0.4

0.2

0
0 02040608 1 121416

x (m)

http://www.verivital.com/rtreach/

Runtime (Online) Verification of Autonomous Systems with
Real-Time Reachability: Supervisory Control and Monitoring of
LECs in the Loop

» Complex controller: can do anything, be output from LECs, etc., abstracted to just
produce control inputs (u) for the plant

» Assumptions: analytical (linear or nonlinear ordinary differential equation [ODE])
plant model available, and controller input remains fixed over finite time horizon

» Supervisory control via Simplex architecture

» Check these control inputs on closed-loop for a finite time horizon using
reachability analysis with real-time (WCET) guarantees, if there’s a
problem, fall back to safety strategy

N Real-time reachability algorithm
[;,?SSLTQ ‘ implementation is cross-platform C (x86,

Complex ARM,AVR, etc.) with no dynamic memory
Contoller 4’\15_ allocation, recursion, or library

Actuator

Commands Plant i

Sensor
dependencies:

Data

Safety u

Controller

[Taylor T. Johnson, Stanley Bak, Marco Caccamo, Lui Sha, "Real-Time Reachability for Verified Simplex

Design", In ACM Transactions on Embedded Computing Systems (TECS), 2016 / RTSS’ 14]
I

https://github.com/verivital/rtreach

Safety Verification with Reachability

» Safe if intersection of overapproximation of reachable

states with unsafe states is empty (soundness)

If safe, then red
trajectory reaching an
unsafe state cannot
exist

Reachable
States

Initial

States All trajectories

contained in
reachable states

Overapproximation of
Reachable States

12

F1/10 Ground Vehicle End-to-End (E2E)
LEC Demo

» End-to-end (E2E) controller: takes

images and produces steering
control inputs

» Classification-based control:
determining steering angle (straight,
weak left, weak right, etc.) with fixed
speed

» Reachable sets visualized below
right: if intersection with obstacles
occurs, use fallback safety controller

» Plant model: nonlinear ODEs
(bicycle,Ackermann steering)

Throtil

XY, v.yaw rottle
Controller

—L_

Odometry xy.v.yaw Speed
Information | Selpoint
{) (mss)

v ___v ackermann
- { - Steering 1 msg |
"Black Box" Angle (rad) | Decision ‘ |
Module ‘
.
tte)

|‘
Laser |)\ msg

Salety

Controller

LIDAR Sean TTC
Xy.v,yaw
| _ | |y
an h

Assurance Monitoring
Technology
Example-|: Detecting distribution shifts

Example-2: Detecting adversarial attacks
Prof. Xenofon Koutsoukos and team

Assurance Monitoring:
Can we trust the output of the LEC?

Environment

Perfzp():tlon : CEEtcr:OI I Au:;)erﬁg\gus |
[

t !

[

» Assurance Monitoring Based on Inductive Conformal Prediction

Characterize how close the LEC behavior is to a model that represents
the expected safe behavior obtained during the training phase.

Compute measures of confidence associated with predictions from LECs

Nonconformity measure is used to evaluate the degree to which a new
example disagrees from a set of examples

Confidence is computed based how different is a test example compared
to a set of calibration examples

Inductive Conformal Prediction (ICP)

Training Data

Split the training set into
Callb e The proper training set
The calibration set

2. Use the proper training set to train
the neural network

3. For each example in the calibration
set:

Supply the input to the trained neural
network to obtain the prediction

Calculate the nonconformity scores

Sort the calibration examples using
descending order of the nonconformity
scores in the set 4

Data

LEC _| Nonconformity measure
calculation

A

Calibration data
with

nonconformit 4. For each new example, compute the
fraction of examples that are equally
» Nonconformity measure: or more nonconforming (p-values)
A function that measures the 5. Compute a predictor with a given
disagreement between the actual label confidence based on the p-values
and the prediction using the neural
network

16 Shafer, G., & Vovk,V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9(Mar), 371-421.

Anomaly Detection

» The nonconformity measure can be used to evaluate the degree to which a
new example disagrees from a set of examples

» For test examples, we compute the fraction of nonconformity scores for
the calibration data that are larger than the nonconformity score of the
test input (empirical p-value)

» If the empirical p-value < ¢ the example is classified as a conformal
anomaly

» There are at least three explanations for a conformal anomaly

A rare or previously unseen example from the same probability
distribution as the training set

A true novelty not generated from the same probability distribution as
the training set

The training examples are not |ID

|7 Laxhammar, R. & Falkman, G., Inductive conformal anomaly detection for sequential detection of anomalous
subtrajectories, Annals of Mathematics and Artificial Intelligence, (2015) 74: 67.

Online Out-of-Distribution Detection in
Multidimensional Time Series

» In CPS, examples arrive one by one and after observing each
new example, we would like to quantify the degree to which
the examples disagree with the training data

» If the examples are IID, the inductive conformal anomaly
detection algorithm produces p-values that are independent
and uniformly distributed in [0, 1]

» Out-of-distribution detection can be performed by testing the
hypothesis that p-values that are independent and uniformly
distributed in [0,|] — or not

I8 V.Fedorova,A. Gammerman, |. Nouretdinov, and V.Vovk. 2012. Plug-in martingales for testing exchangeability on-line.
In Proceedings of the 29th International Conference on International Conference on Machine Learning (ICML'12).

Exchangeability Martingales

» Given the sequence of p-values, a martingale is calculated as a
function of the p-values

Power martingale
n

My, = Hspf‘l

i=1
Simple mixture martingale

1
anj M?E de
0

» The value of the martingale reflects the strength of evidence against
the exchangeability assumption, i.e. that the examples are generated
from the same probability distribution independently

» Such a martingale will grow only if there are many small p-values in
the sequence

» If the generated p-values concentrate in any other part of the unit
interval, we cannot expect the martingale to grow

|9 V.Fedorova,A. Gammerman, |. Nouretdinov, and V.Vovk. 2012. Plug-in martingales for testing exchangeability on-line.
In Proceedings of the 29th International Conference on International Conference on Machine Learning (ICML'[2).

Nonconformity Measure (NCM)

» Computing the NCM using k-nearest neighbors requires
storing the training data which may be infeasible for
autonomous CPS - Reduce the memory/time requirements

» Train an appropriate neural network architecture which can be
used to compute efficiently the NCM
» |. Autoencoders
Use the reconstruction error as the NCM
Based on current experiments, the method is not robust
» 2.Variational autoencoders

Use the generative model to sample multiple 1ID examples for the
input of the current time step

Use the reconstruction error (probability) as the NCM

» 3.Deep One-Class Classification
Deep Support Vector Description (SVDD)

20

Assurance Monitoring
Distribution Shift Detection Example

0.0
0.0 T T T T 1,000
1.00,0 02 na 06 08 10

0.5 1

0.0 T T T T 1,000 e
1,000 02 n4 06 08 0

i & v i i . In distribution” “Out of distribution
Precipitation parameter [0,100] is the full range. Precipitation [0,20] is in distribution

Assurance Monitoring:

Distribution Shift Detection in adversarial scenarios

logM (SVDD)

T
20

Time Step

60

logM (SVDD)

™~

10

20

miss Shife detected

23

ALC Toolchain

Tool architecture - coverage

[Meodeling tool

[

Verification
tool

|

Assurance
monitoring

24

madels

Requirémen

Design Space
(Architecture Models)

—
m

Analysis Space
(Analysis Models)

Analysis

Comeorent Model
' Fhrr e F.t;i:”

No

; Template
with Emb. R i

‘ =

, Design-time
\wjlti odel Analysis Processes

Embedded Operation-time
Learning+Monitoring Processes

nce-based Assurance Argumentation:
Design-time + Operation time

assurance-level-indicator

IQ [h‘u Environment models

observations

ALC Toolchain
Approach

System
Integrator

LEC
Developer

supports training, verification

and design-time assurance of

learning enabled components.

* Toolchain helps with
developing safety assurance
cases for the system using
collected evidence.

» Complete provenance tracking
of Experimental runs and data
collection is supported.

Assurance

Engineer

VE

Cellabe

Modeling

collision with the pipe at
all times while keeging the
Pipe in view of the camara.

Execution, Training, Data Collection,
Verification

}I;[_;

i
H
[[53

-l—i-l*

{d} Run System with LEC

e

1

¥
I
T

vical Workflow Sequence

_t_i_[ﬂ

{b} Train LECs

{a} Run Scenarios To Collect Data

ALC Toolchain Concepts

» Modeling
System Architecture / SysML

» LEC Construction

Data collection

Training

Evaluation

e

Controllers
{LEC and Conventional Alternatives)

S
-

IIZ,; | software Components
= j?i and Assemblies
[T
. — | |
=1 = == !
.!..'! L 1 -I& . r;:: n = i
oo | | L=
ST b hoER
=l |

Fuperimean Iy
" o pumrs
Makn |
Faliw pipes g % Camnpaig
1 X [o
T i = ™
i i = Caempsign
i H T Campaign
| b p— -
5 - ™ Pammetes Vaksis
5 =5
=,
reat 3 =,
- [E—— ipe_pesx =2,
===)
larwade =3 Aswam ™
B — -
pe pos e
| = | N
—
——

Parametr aler
BATCH SUZE 18
EROCHS 5
USERIL_FRACTION 1
TRAR_FRACTION oy
L mee
CETHER azam
[- ST
o ntes E
pah prete LEc2
Rt israrie ORI faki
-

» Testing -- Verlﬂcatlon/VaI|dat|on/Assurance

26

r reduces speed to keep a safe distance with the lead c:

L ke o o ealllw-d k Az i gl
[_ - rq-
R u:r.lul u-n- e [
vs LAY . o
S '
- L ez III | .
i ~ o S
£ N, 1 = g1
p I g 5
Iay @ 1t SN y 3 z
H ’ YA z g1
P - o £ 32
E R
: | i—
v 1oy o
] " e
s P
o - ",
us - N
™ B CEO TE w Teh T
i, by

n

and

Physical Components

Assemblies

Reinforcement Learning

i -« Emrzreare 2
e Migsion [
LECL with %
Pamamener | Vel
st
- LAt

ALC Worktlow

» MDE with support for LEC development + Assurance

1) System Modeling '3 Verification & Validation
/ NESTEE Iterate Design
// 2 /’ / y ; | om 2 //
| Library \ Architecture |/ Assembly : -, | Verification / Assurance
/ Component /' Models /7 Models | ; Tools / Cases
[Library \
+ : 1}
h2) Campaign_ LEC Construction
= v T
Data Generation 11 Supervised Learning Performance Evaluation
Design / /' Configure | ./ Configure _’ Test Set Collect Analyze
Experiment / / Simulation / / Training Evaluation Evaluation Data / / Performance /
A i :
\ \ Adjust Parameters i i H
g N A
N 1
v [< Gather Additional Data :
A Y
N 1
Reinforcement Learning)
—_— — Workflow/Orchestration
Design / /Configure /
/ Experiment | ¥ Simulation \ :
t e > Exploration Job Job Job
— ; / - 7 Learning €« - - - - y Y
/Design Reward / } Configure
Function / / Learning Algorithm /

.

/
/

27

Models in the ALC Toolchain

<< Modeling >>

1. Modeling Model Systems using:

-‘EE * Component blocks (hardware/software)
* Messages/datatypes for software
* System architecture

<< Construction >>
2. Construction

% Construct Experiments consisting of:

e Data collection
e LEC training
* Assurance Monitor construction

<< VE&V&A >>
3. VE&V&A
Verification,Validation, and Assurance via:
* Formal Verification (Design-time)

e LEC testing
* Assurance argument construction

<< Workflows >=>

4. Workflows
Workflow automation:
= * Create/Execute sequences of operations
Datasets to:
<< DataSets >> .
5. DataSets * Manage all data produced by Experiments and Workflows
* Track data provenance
% * Perform automated analysis/evaluation of data

20

Components:

SYS tem Data Models, Messages Hardware, Software/LEC
/ I?OO' = ALC > 1. Modeling > BlockLibrary

.
M O d‘ 11 I I g ROOT = ALC = 1. Modsling > Messagel ibrary
+ |
: : o
ny

weHprdwarer

ROOT > ALC > 1. Modeling

+

12x

<< MessageLibrary >>
MessageLibrary

.

<< BlockLibrary >>
BlockLibrary

3

<< Systems >>
Systems

—i

<< Assemblys >>
Assemblys

e

<< WorldModels >>
WorldModels ROGT = ALE > 1, Modeling = WordModels > Gazebo_IVER
+

Systems: Components/ Subsystems; Parameters,...

World models: Scenarios, Environments, Parameters

System architecture
SysML block diagrams

Software Components
And Assemblies

UUV_System_GSN | 1 UVBlockLibrary
- [1P 1l 30Posion

= 1l AfvSection

5 Annotation

[l Battories

5 BatteryLeadAcid
Jal BatteryLION

3l Block

Sl camera

I ChemicalConcentratic
Saf Controlier

14t Dopplervelocity
Il Dymamicassurance
i FAn

Sl Frorasection

M ors

ol ors

3 1MUY

[l MidSection

Sl Manigation

Jal ObstacieDetect

Controllers i
(LEC)

5l PatriPlanner
ol Prant

ecHardwares P "
FoOS 0N batackDitict Block
1 |
4+ Mot ot ? b sonar waming [9— -
i i
] Bt ot (4= pendtion
. Librar Yy
Horiens
- Lo

Assurance
Monitors

Dynamic Assurance
Process

Physical Components - —17 L
And Assemblies i

Subset of SysML Blocks, IBD to model all blocks, implementation alternatives for flexibility

30

Mission << Environmant Implementation Selection

. Environment
« Follow pipes using

LEC Construction -—=—

WER Sysem InCodePahFlannerLECT) | LEC Sonfiolier

i LEC Entries
H i LEE_CTRL

'3
=< Assemblyhadel ==

< PArams
IVER

le
<< Construction >> Excaulant an x LEC Mame [Morte weteronc

. g — LEC CTRL Noma
2, Construction C:? -

Parameter Value

false

<< DataCollection >> A e | e Select Configuration
DataCollection E — =

- . << Campaign >>
Campaign
headlass e p g
smesut 2500
unpause_timeaut | 1 Parameter | Values
= :"’“"““” = tarminaion_tapic | flcistopsim
081PrOCESS. D

num episodes | 1 pipe_roll | 314150

15_bend_pipe,

|. Data Collection pipe_name | o e

<< Training >>

T —_ ———————=
al nlng =< Params >> & u
RLParams Mission << Environment > Mission - :",,m,,,,,em ol
nvironment
: " S « Follow pipes usin e
Train LEG1 with RL ey Pipe 9 v —
Parameter Value _ g .
testing Q ' : :
v i : !
EEes << AssemblyModel >> << RLAgent >> 1 ' Parares 5
) IVER RLAgent ¥] - -
— = == AssemblyModel >> ! ExecuticnParams
& L 5> 1
<< Params >») . Parameter Value
<o Testin g %3 ExecParams c
— upload false
Testln g Paramater Value ¥ fe_path_prafix I Nerakndais
=< Result >> |
<< Resull >>
upload false Trained_LEC_Model SimulatienData record true
fs_path_prafix ivarsimr ‘ E gui | false
v =
— record true headless true
v ===
J — gui false | timeaut l 150
headless true << PostProcess >> unpause_timeout 1
PostProcess
unpause_timecut | 5 | termination_topic I Jaloistopsim
termination_topic | fale/stopsim num_episades 1

3 2. Training LEC + A/M 3.Testing

LEC Construction:
1. Data Colﬁ.ection/ 5

<< Environment =& . IEnvironrnent
Mission Environment EnVlronment +
« ULV should follow Model
the pipe on the
seabed | \
| ___I <= Params =>
ey H ExecutionParams
! ! Name Value
¥ ¥
Implementatlon << AssemblyModel >> upload true
_’ ECAZ_AUVCHr le
Alternative = record rue
qui false
timeout 12
Campaign
campalgn
unpause_timeout | 5
Parameter S — sl
S Parameter | Values _ Resuk fs_path_prefix
weep
15_bend_pipe,
PRSNSME | 30 bend_pipe

Remote job: launching of
dockers, management of
results.

Dockerized ALC-toolchain
services for portability

GAZEBO

» Assembly model selects a specific implementation variant of a system architecture
» Mission, Environment, and Execution parameters set up the experiment scenario
» Campaigns across parameters a configurations related to system and environments

» Tool generates configuration for running the simulation, capture results + metadata for all trials
32

LEC Construction:
2. Training

>

Neural Net model and parameters
specified in “LEC Model”

“Training Data” links to data
generated from previous
experiments

Training job is dispatched to worker
machines (typically with GPUs)

Results and metadata are saved
from the training sessions

33

<< LEC_Model >,

NNModel

<= Params ==

<<TrainingData>{Z
File

Name

PUNEEERNNENN——

result-DataGen_PipeFollower-1542125401110

result-DataGen_PipeFollower-1542129035690

result-DataGen_PipeFollower-1542140169160

Params
Name Value
batch_size 64
epochs 5
useful_data_fraction | 0.5
train_data_fraction | 0.7
image_height 492
image_width 768
color_depth 3
loss keras.losses.mean_squared_error
optimizer keras.optimizers.Adam{)
metrics accuracy
upload true
Type
metadata json
metadata.json
metadata json

LEC Construction

2. Training: Assurance Monitor

<< AssuranceMonitorSetup >>
LEC1_AM

—

== Params >>

<< TrainingData ==
TrainingData

AMParams
Parameter value << LEC_Model =
RL_LEC1
num_neighbors 5
test_fraction 03
0.9 << Result >>
confidence_values | 0.95, Sl I gL e
0.89

T

Deploy trained LEC, build
assurance monitor.

Heading Change v. Time

10+

04 -

0.6 4

0.4+

Heading Change {deg)

0.2+

0.0 4

— heading change
— 90% confidence
— 95% confidence
— 99% confidence

=02~

0 10 20

40 50 G0 n
Time {s)

Pipe Visibility Lost

Speed (m/s)

1
F=3
Mission << Environment >
Environment
« Follow pipes using _|
c=el
= Deploy and run -
assurance monitor i
1
o ;
L o i
L
W L 4
<< AssemblyModel >> << Params ==
IVER ExecutionParams
le - - |
C.-: Parameter Value
upload true
<< Result => path_prefix am_deploy
SimResults
headless true
= termination_topic | /falc/stopsim
num_episodes 10
Speed v. Time
112 { — speed
— 90% confidence
— 95% confidence
1109 g9% confidence
1.08 4
1.06
1.04 4
10Z 4
1004
0.98 4
Q 10 20 30 40 50 60 0
Time (s) M

Pipe Visibility Lost

LEC Construction:

3. Evaluation: Testing/Verification

]l

Mission

UUV should follow pipe
using trained Neural
Network to identify the
pipe and determine an
appropriate heading. Pipe
should be kept in view of
the camera at all times.

» Trained Neural Net can be tested in the
simulator with another experiment model

» Performance metrics are recorded for

<< Environment >3
Environment

¥

ECA_A9_LEC_PathP...

<< AssemblyModel >>

Ve

<< Result »»
Result

LEC evaluation, e.g.:

<< Params >>

ExecutionParams
Parameter Value
upload true
fs_path_prefix ccps-demo
record true
gui false
timeout 100
unpause_fimeout 45
lec_assurance_monitor | true

Distance from ideal path

Pipe within camera field of view

35

Analysis in Jupyter Notebook

Also, “single step” the process

for debugging

Version Controlled
Model Database

Return Metadata

H ‘.'/ WebGME Server
/=

'

Name
result-NN_Trainin g_Test-1542127634867

result-NN_Training_Test-1542128784700

Genera ited Dat

Execute on Remote Server/s

25
5 20
| 3
&
8 15
=
=
w10
o
S os
B
2 oo
LT
wh
-05
_10 T T T T T
_ 20000 40000 60000 80000 100000
SFTP Fileserver Time {ms}
20— Ppitch Command 10
a Pitch Error
—— Desired Pitch L 08
ET!T! 15 -—— Current Pitch
’ 06
Execution Servers =10
04
L 02
00 00
0 20000 40000 60000 80000 100000
Time (ms)

Training Model Data Managed on GitLab

Type Size Creation Date
model keras 2678 111372018 @x
model keras 2678 111312018 ox

Results in file store + git, cross-linked for data provenance

Pitch Command

Tool Automation

Workflow Models

» Workflow models are for the specification and execution of job graphs
Each workflow job specifies execution of one or more activity models

Data dependencies between jobs are handled automatically

» Workflow supports

Loops — For (parallel), while/ do-while (sequential)
Transforms - Filter / Join (subset or aggregation of results)
Branch - execution path based on user-specified condition

» Example workflow to train and optimize a LEC

36

A
<< WF_Start >> ',
WF_Start ’
' J
1
i
1
i
<< Loop ==
Test_Scenarios
-
A

<< WorkflowJob >>
Test_Tough

<<'WF_Stert >>
WF_Start
=< Workflow Job >> o L >3 << Transform > << Braneh »>
DataGeneration LEC2_HyperParams... Fidter Branich
WF_input LEC inp_lecs Out_LEC T

WF_Pre: Q Data

-

<< Loop_War ==
pipe_pos_x

/

Fa

Inner loop — Hyper-parameter search for LEC learning

epochs

o Loop_Vir x>

optimizer

== Loop_Var >>

<o WF_Stun »>
WF_Start

< Workflowlob »=
SLModelTraini g

<< WF_Output >>
Trained_LECS

| ke (ten(i

inp_lecs)cel):

Transform (“Filter”) — identify
LEC with minimum loss from
those generated in the loop.

LEC m Datap

<< Whorkilow Job >
Test_Easy

LEC [:—:] Data p

X

Branch — based on the input set —
check the loss value of the LEC

1]
1
Bet fund[imp_lec): |
1

lec_loss = inp lec[0].get_loss(] !
return lec_loes and lec_loss € 0.1!

1

1

Tool automation
Support for Data Provenance

. . =] T e o= SimData
» All artifacts — generated during data oy — = » =
collection, training, evaluation o () —~, =
. Daa | 5~ — B
» Recorded for each execution: Collection = l’ v
. Workfl
Parameter settings oritiow \

LEC(s) Models (Deployed/Initial)

Data used in training, validation and
evaluation

» Allows re-execution of any step/workflow
» Track the evolution of data/ LECs/

/
<< Result > H ‘ << Result >
Assurance g Trained ® =i

E LEC =
. . oq e . Weigh
» Maintain traceability links at each stage vio 0 RSNy
to: J 1
. .. 1 !
Data used in training LECs Assurance =] |
" . . . Monitor [==] == ==
Initial trained model used in training Workflow | L5 -
LECs : ‘x
LECs used in generating data oy m‘f;d i
t
sets/Assurance i “ B

37

System Assurance Case: GSN

~

=< GEN_Model ==

SafetyCase T __
GSN
<< GEN_Model >> << GEN_Model >> << GEN_Model >> << GSN_Model >>
SensoryInformation c orrect forr Safety Controller
GSN GSN GSN GSN
~
~
~
~
~
~
v ~
~

=< GSN_Model ==
LEC-2

== G5N_Model ==
LEC-1

GSN

N

GSN

* Top-level goals correspond

* Leaf goals correspond to
claims which can be directly

supported by

evidence/solutions

e Evaluation metrics from LEC

experiments can be used as
evidence for leaf goals

e User Defined Combination
Logic (E.g. M-of-N, etc.)

N

Q0T = 3. VAVAA = Assuranca[® = AcfuatorPerformance

38 Example GSN Model for UUV

‘_______

=
[=}
o
2
a
S

Assumption

ChoiceJn

Context

EvidenceSource =

|

Goal
GSN

Justification

Metric

94

ModelRef =

®

Cross-Referenciné

Components, Datasets,
for Context/Evidence

Quality

-

39

Summary

ALC Project

» Verification:

Design-time: reachability + robustness of AI/LEC
components

Run-time: safety given in the given situation

» Assurance monitoring:
Detect distribution shift
Assess confidence/credibility in the output

» Toolchain:
Automation for evaluating LECs
Modeling for assurance arguments (with evidence)

Publications:
https://alc.isis.vanderbilt.edu/redmine/projects/alc-project-public/documents
Portal for AA program tools:

https://assured-autonomy.org/

https://alc.isis.vanderbilt.edu/redmine/projects/alc-project-public/documents
https://assured-autonomy.org/

Credits
» Ted Bapty

» Dimitrios Boursinos

» Feiyang Cai

» Abhishek Dubey

» Charles Hartsell

» Taylor Johnson

» Xenofon Koutsoukos

» Jiani Li

» Nagabhushan Mahadevan

» Diego Manzanas Lopez

41

vV Vv VvV VvV VvV VvV V9V VvV VvV VY

Mary Metelko

Patrick Musau
Harmon Nine
Shreyas Ramakrishnan
Joel Rosenfeld

Janos Sztipanovits
Hoang-Dung Tran
Ayana Wild

Weiming Xiang
Xiaodong Yang

	Assessing Robustness and Resilience of AI: The ALC Project
	Project vision
	Project activities
	Verification Technology�
	LEC Verification: Reachability Analysis of Feedforward/Convolutional Neural Networks
	CNN Robustness Verification [CAV’20]
	CNN Classification Robustness Analysis: ImageStars
	VGG16 Robustness Verification
	Closed-Loop CPS with LECs:�Verification Flow and Tools
	Runtime (Online) Verification of Autonomous Systems with Real-Time Reachability
	Runtime (Online) Verification of Autonomous Systems with Real-Time Reachability: Supervisory Control and Monitoring of LECs in the Loop
	Safety Verification with Reachability
	F1/10 Ground Vehicle End-to-End (E2E) LEC Demo
	Assurance Monitoring Technology
	Assurance Monitoring:�Can we trust the output of the LEC?
	Inductive Conformal Prediction (ICP)
	Anomaly Detection
	Online Out-of-Distribution Detection in Multidimensional Time Series
	Exchangeability Martingales
	Nonconformity Measure (NCM)
	Assurance Monitoring�Distribution Shift Detection Example
	Assurance Monitoring:�Distribution Shift Detection in adversarial scenarios
	ALC Toolchain
	Tool architecture - coverage
	ALC Toolchain�Approach
	ALC Toolchain Concepts
	ALC Workflow
	Models in the ALC Toolchain
	System�Modeling
	System architecture�SysML block diagrams
	LEC Construction
	LEC Construction:�1. Data Collection
	LEC Construction:�2. Training
	LEC Construction�2. Training: Assurance Monitor
	LEC Construction:�3. Evaluation: Testing/Verification
	Tool Automation�Workflow Models
	Tool automation�Support for Data Provenance
	System Assurance Case: GSN
	Summary
	ALC Project
	Credits

