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Project vision
“The proposed research effort will address the ... technical areas with overall goal of delivering an 
integrated design tool suite and reusable operation support components for constructing 
autonomous CPS including Learning Enabled Components (LECs). Our vision is to … create a new design 
flow that extends from design-time to operation time, re-interprets the traditional assurance 
argumentation to become a dynamic, operational concept. Our ultimate goal is to establish a fusion of 
model- and component-based methods with data-driven methods.”

Model-driven design flow Model-driven design flow with LEC-s
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Project activities
 Thrusts:

 Verification:  formal and/or coverage-driven 
verification of safety and liveness properties 
of components, subsystems, and systems, at 
design-time and at run-time, to provide 
evidence for assurance arguments

 Assurance:  construction and continuous 
evaluation of logical arguments that 
demonstrate the truth or strength of a safety 
claim based on available evidence

 Toolchain: design-time and run-time software 
tools to implement and support the above, 
for real systems

 Learning (component adaptation)
 Design-time: in design tools, while the system 

is not operational
 Run-time: in the running system, on-the-fly
 Mixed – learning from operational, ‘overnight’

Verification

Assurance

Toolchain (Design-time)

Verification

Assurance

Toolchain (Run-time)
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Verification Technology

Example-1: Robustness Assessment
Example-2: Run-time Verification

Prof. Taylor Johnson and team
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 Given a NN F & an input set 𝒳𝒳, the output reachable set of F is 
𝒴𝒴 = 𝑦𝑦 𝑦𝑦 = 𝐹𝐹 𝑥𝑥), 𝑥𝑥 ∈ 𝒳𝒳

 Computationally: Given a NN F, a convex initial set of inputs I represented 
as a polytope poly(𝒳𝒳), compute the output set Y = F(I) of the network

Input 
Set𝒳𝒳

Output 
Set 𝒴𝒴

Property P

LEC Verification: Reachability Analysis of 
Feedforward/Convolutional Neural Networks

Layer-by-Layer Propagation 
of Polytopes
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I=poly(𝒳𝒳)

𝐼𝐼 = 𝑥𝑥 𝐴𝐴𝑥𝑥 ≤ 𝐵𝐵, 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛} 𝑌𝑌 = 𝐹𝐹 𝐼𝐼 = ?



CNN Robustness Verification [CAV’20]

6

Is VGG16/19 robust to FGSM attacks for 𝒂𝒂 ≤ 𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟖𝟖 ?
Disturbed images = Original image + a x Noise

VGG Classifiers: ~93% 
accuracy in top-5 classification 
on ImageNet
VGG16: 16 layers, 138M 
parameters
VGG19: 19 layers, 144M
parameters
Classify images into 1000 
classes, e.g., car, horse, bell 
pepper, …

Layers of interest
• Convolutional
• Average pooling
• Max pooling
• Fully connected
• ReLU

https://www.robots.ox.ac.uk/~vgg/research/very_deep/

Tran HD., Bak S., Xiang W., Johnson T.T. (2020) Verification of Deep Convolutional Neural Networks Using ImageStars. In: Lahiri
S., Wang C. (eds) Computer Aided Verification. CAV 2020. https://doi.org/10.1007/978-3-030-53288-8_2

https://www.robots.ox.ac.uk/%7Evgg/research/very_deep/


CNN Classification Robustness 
Analysis: ImageStars
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 ImageStar Θ = 𝑥𝑥 𝑥𝑥 = 𝑐𝑐 + Σ𝑖𝑖=1𝑚𝑚 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ,𝑃𝑃(𝛼𝛼)}
 𝑐𝑐 ∈ 𝑅𝑅𝒉𝒉×𝒘𝒘×𝒏𝒏𝒏𝒏 is the center image
 𝑉𝑉 = 𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑚𝑚 , 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅𝒉𝒉×𝒘𝒘×𝒏𝒏𝒏𝒏 is a set of basis images
 𝑃𝑃 𝛼𝛼 ≜ 𝐶𝐶𝛼𝛼 ≤ 𝑑𝑑, is a predicate
 𝛼𝛼 = 𝛼𝛼1,𝛼𝛼2,⋯ ,𝛼𝛼𝑚𝑚 𝑇𝑇, is predicate variable
 Extension of Star Sets [Tran et al, FM’19]
 Represent infinite sets of multi-channels images 

CARLA driving simulator



VGG16 Robustness Verification
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 Is VGG16/19 robust to FGSM attacks for 𝑎𝑎 ≤ 2 × 10−8?
 Reachable set computation time: 518 seconds

 Verifying Robustness Time: 56 seconds

 Number of ImageStars in the output reachable set: 8
 Total Verification Time: 574 seconds (≈ 10 minutes)

 Number of cores: 1
 Robust? Yes



Closed-Loop CPS with LECs:
Verification Flow and Tools
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https://github.com/verivital/hyst https://github.com/verivital/nnv
https://cps-vo.org/group/hyst https://github.com/verivital/nnmt

 Plant models: hybrid automata, or networks thereof, represented in HyST/SpaceEx/CIF 
formats
 Hybrid automaton: finite state machine + set of real-valued variables that evolve continuously over 

intervals of real time according to ordinary differential equations (ODEs)
 Hybrid behaviors: discrete transitions and continuous trajectories over real time
 Plant dynamics: linear, nonlinear, hybrid, continuous-time, discrete-time, …

 LEC and cyber models: feedforward neural networks, represented in ONNX format 
(compatible with Keras, Tensorflow, Matlab, etc.)

 Specifications: primarily safety properties for now, some reachability properties
 Verification: composed LEC and plant analysis: autonomous closed-loop CPS

 Bounded model checking: k control periods, alternating reachability analysis of controller and plant

Communication Networks

Interfaces

Sensors 

Actuators 

Physical 
Environment, 

Plant, 
Humans, …

LECs 
Cyber 

Components
/Software/ 

Controller(s)

HyST nnv + nnmt

https://github.com/verivital/hyst
https://github.com/verivital/nnv
https://cps-vo.org/group/hyst
https://github.com/verivital/nnmt


Runtime (Online) Verification of Autonomous 
Systems with Real-Time Reachability
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 For controller LECs online monitoring at runtime is essential

 How can we provide formal and provable guarantees of system-level behaviors, such 
as safety, online at runtime?

 Key idea: abstract LEC behaviors (see other approaches on out of distribution 
detection, etc.) and simply observe the influence of their behavior on 
plant/system-level at runtime

 Necessary technology: online reachability analysis of plant models, ideally 
with worst-case execution time (WCET) guarantees for implementation in 
embedded hardware

 Builds on real-time reachability of linear/nonlinear ordinary differential 
equations (ODEs) and hybrid automata with WCET guarantees, implemented as 
an anytime algorithm [FORTE’19, TECS’16, RTSS’14]

 Based on mixed face lifting reachability [Dang and Maler, HSCC’98 & 
HSCC’19 Test of Time Award Winner], using hyperrectangles (intervals) as state-
space representation

[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19]
[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]
[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]
http://www.verivital.com/rtreach/

http://www.verivital.com/rtreach/


Runtime (Online) Verification of Autonomous Systems with 
Real-Time Reachability: Supervisory Control and Monitoring of 
LECs in the Loop

 Complex controller: can do anything, be output from LECs, etc., abstracted to just 
produce control inputs (u) for the plant

 Assumptions: analytical (linear or nonlinear ordinary differential equation [ODE]) 
plant model available, and controller input remains fixed over finite time horizon

 Supervisory control via Simplex architecture
 Check these control inputs on closed-loop for a finite time horizon using 

reachability analysis with real-time (WCET) guarantees, if there’s a 
problem, fall back to safety strategy

[Taylor T. Johnson, Stanley Bak, Marco Caccamo, Lui Sha, "Real-Time Reachability for Verified Simplex 
Design", In ACM Transactions on Embedded Computing Systems (TECS), 2016 / RTSS’14]
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Real-time reachability algorithm 
implementation is cross-platform C (x86, 
ARM, AVR, etc.) with no dynamic memory 
allocation, recursion, or library 
dependencies:
https://github.com/verivital/rtreach

u

https://github.com/verivital/rtreach


Safety Verification with Reachability
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 Safe if intersection of overapproximation of reachable 
states with unsafe states is empty (soundness)

Initial
States

Unsafe
States

Reachable 
States

Overapproximation of
Reachable States

If safe, then red 
trajectory reaching an 
unsafe state cannot 
exist 

All trajectories
contained in 
reachable states



F1/10 Ground Vehicle End-to-End (E2E) 
LEC Demo
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 End-to-end (E2E) controller: takes 
images and produces steering 
control inputs

 Classification-based control: 
determining steering angle (straight, 
weak left, weak right, etc.) with fixed 
speed

 Reachable sets visualized below 
right: if intersection with obstacles 
occurs, use fallback safety controller

 Plant model: nonlinear ODEs 
(bicycle, Ackermann steering)



Assurance Monitoring 
Technology

Example-1:  Detecting distribution shifts
Example-2: Detecting adversarial attacks

Prof. Xenofon Koutsoukos and team
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Assurance Monitoring:
Can we trust the output of the LEC?

 Assurance Monitoring Based on Inductive Conformal Prediction
 Characterize how close the LEC behavior is to a model that represents 

the expected safe behavior obtained during the training phase.
 Compute measures of confidence associated with predictions from LECs
 Nonconformity measure is used to evaluate the degree to which a new 

example disagrees from a set of examples
 Confidence is computed based how different is a test example compared 

to a set of calibration examples

Perception
LEC

Control
LEC

Autonomous
Vehicle

Environment
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Inductive Conformal Prediction (ICP)
1. Split the training set into

 The proper training set
 The calibration set

2. Use the proper training set to train 
the neural network

3. For each example in the calibration 
set:

 Supply the input to the trained neural 
network to obtain the prediction

 Calculate the nonconformity scores
 Sort the calibration examples using 

descending order of the nonconformity 
scores in the set 𝐴𝐴

4. For each new example, compute the 
fraction of examples that are equally 
or more nonconforming (p-values)

5. Compute a predictor with a given 
confidence based on the p-values

 Nonconformity measure:             
A function that measures the 
disagreement between the actual label 
and the prediction using the neural 
network

Nonconformity measure 
calculationLEC

Training Data Calibration 
Data

Calibration data 
with 

nonconformity

16 Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9(Mar), 371-421.



Anomaly Detection
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 The nonconformity measure can be used to evaluate the degree to which a 
new example disagrees from a set of examples

 For test examples, we compute the fraction of nonconformity scores for 
the calibration data that are larger than the nonconformity score of the 
test input (empirical p-value)

 If the empirical p-value < 𝜀𝜀 the example is classified as a conformal 
anomaly

 There are at least three explanations for a conformal anomaly
 A rare or previously unseen example from the same probability 

distribution as the training set
 A true novelty not generated from the same probability distribution as 

the training set
 The training examples are not IID

Laxhammar, R. & Falkman, G. , Inductive conformal anomaly detection for sequential detection of anomalous 
subtrajectories, Annals of Mathematics and Artificial Intelligence, (2015) 74: 67.



Online Out-of-Distribution Detection in 
Multidimensional Time Series
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 In CPS, examples arrive one by one and after observing each 
new example, we would like to quantify the degree to which 
the examples disagree with the training data

 If the examples are IID, the inductive conformal anomaly 
detection algorithm produces p-values that are independent 
and uniformly distributed in [0,1]

 Out-of-distribution detection can be performed by testing the 
hypothesis that p-values that are independent and uniformly 
distributed in [0,1] – or not 

V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk. 2012. Plug-in martingales for testing exchangeability on-line. 
In Proceedings of the 29th International Conference on International Conference on Machine Learning (ICML'12). 



Exchangeability Martingales
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 Given the sequence of p-values, a martingale is calculated as a 
function of the p-values
 Power martingale

𝑀𝑀𝑛𝑛
𝜀𝜀 = �

𝑖𝑖=1

𝑛𝑛

𝜀𝜀𝑝𝑝𝑖𝑖𝜀𝜀−1

 Simple mixture martingale

𝑀𝑀𝑛𝑛 = �
0

1
𝑀𝑀𝑛𝑛
𝜀𝜀 𝑑𝑑𝜀𝜀

 The value of the martingale reflects the strength of evidence against 
the exchangeability assumption, i.e. that the examples are generated 
from the same probability distribution independently

 Such a martingale will grow only if there are many small p-values in 
the sequence

 If the generated p-values concentrate in any other part of the unit 
interval, we cannot expect the martingale to grow

V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk. 2012. Plug-in martingales for testing exchangeability on-line. 
In Proceedings of the 29th International Conference on International Conference on Machine Learning (ICML'12). 



Nonconformity Measure (NCM)
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 Computing the NCM using k-nearest neighbors requires 
storing the training data which may be infeasible for 
autonomous CPS  Reduce the memory/time requirements

 Train an appropriate neural network architecture which can be 
used to compute efficiently the NCM

 1.  Autoencoders
 Use the reconstruction error as the NCM
 Based on current experiments, the method is not robust

 2. Variational autoencoders
 Use the generative model to sample multiple IID examples for the 

input of the current time step
 Use the reconstruction error (probability) as the NCM

 3. Deep One-Class Classification
 Deep Support Vector Description (SVDD)



Assurance Monitoring
Distribution Shift Detection Example

Precipitation parameter [0,100] is the full range. Precipitation [0,20] is in distribution
In distribution Out of distribution



Assurance Monitoring:
Distribution Shift Detection in adversarial scenarios

Shift detected



ALC Toolchain
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Tool architecture - coverage
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Assurance 
monitoring

Verification 
tool

Modeling tool



ALC Toolchain
Approach

System 
Integrator

• The model driven toolchain 
supports training, verification 
and design-time assurance of 
learning enabled components.

• Toolchain helps with 
developing safety assurance 
cases for the system using 
collected evidence.

• Complete provenance tracking 
of Experimental runs and data 
collection is supported.

LEC  
Developer
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Assurance
Engineer
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ALC Toolchain Concepts
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 Modeling
 System Architecture / SysML

 LEC Construction
 Data collection
 Training
 Evaluation

 Testing -- Verification/Validation/Assurance



ALC Workflow
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 MDE with support for LEC development + Assurance

Workflow/Orchestration

Job JobJob



Models in the ALC Toolchain
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Model Systems using:
• Component blocks (hardware/software)
• Messages/datatypes for software
• System architecture

Construct Experiments consisting of:
• Data collection
• LEC training
• Assurance Monitor construction

Verification, Validation, and Assurance via:
• Formal Verification (Design-time)
• LEC testing
• Assurance argument construction

Workflow automation:
• Create/Execute sequences of operations

Datasets to:
• Manage all data produced by Experiments and Workflows
• Track data provenance
• Perform automated analysis/evaluation of data



System
Modeling
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Data Models, Messages

Components:
Hardware, Software/LEC

Systems: Components/ Subsystems; Parameters,...

World models: Scenarios, Environments, Parameters



System architecture
SysML block diagrams

Subset of SysML Blocks, IBD to model all blocks, implementation alternatives for flexibility

30

Dynamic Assurance 
Process

Assurance
Monitors



LEC Construction
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1. Data Collection

2. Training LEC + A/M 3. Testing

Select Configuration



LEC Construction:
1. Data Collection
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 Assembly model selects a specific implementation variant of a system architecture

 Mission, Environment, and Execution parameters set up the experiment scenario

 Campaigns across parameters a configurations related to system and environments

 Tool generates configuration for running the simulation, capture results + metadata for all trials

Implementation
Alternative

Environment 
Model

Remote job: launching of 
dockers, management of 
results.

Dockerized ALC-toolchain 
services for portability

Parameter 
Sweep



LEC Construction:
2. Training
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 Neural Net model and parameters 
specified in “LEC Model”

 “Training Data” links to data 
generated from previous 
experiments

 Training job is dispatched to worker 
machines (typically with GPUs)

 Results and metadata are saved 
from the training sessions



LEC Construction
2. Training: Assurance Monitor

Deploy trained LEC, build 
assurance monitor.

Pipe Visibility Lost Pipe Visibility Lost



LEC Construction:
3. Evaluation: Testing/Verification
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 Trained Neural Net can be tested in the 
simulator with another experiment model

 Performance metrics are recorded for 
LEC evaluation, e.g.:

 Distance from ideal path

 Pipe within camera field of view 

Analysis in Jupyter Notebook

Also, “single step” the process
for debugging

Training Model Data Managed on GitLab

Results in file store + git, cross-linked for data provenance

Execute on Remote Server/s



Tool Automation
Workflow Models
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 Workflow models are for the specification and execution of job graphs
 Each workflow job specifies execution of one or more activity models
 Data dependencies between jobs are handled automatically

 Workflow supports
 Loops – For (parallel), while/ do-while (sequential)
 Transforms - Filter / Join (subset or aggregation of results )
 Branch – execution path based on user-specified condition

 Example workflow to train and optimize a LEC



Tool automation
Support for Data Provenance

37

 All artifacts – generated during data 
collection, training, evaluation

 Recorded for each execution:
 Parameter settings
 LEC(s) Models (Deployed/Initial)
 Data used in training, validation and 

evaluation
 Allows re-execution of any step/workflow
 Track the evolution of data/ LECs/ 

Assurance
 Maintain traceability links at each stage 

to:
 Data used in training LECs
 Initial trained model used in training 

LECs
 LECs used in generating data 

sets/Assurance

SimData

System Version

Trained
LEC 
Weights

Parameters

V1 V22

Assurance
Monitor

Workflow

Data 
Collection
Workflow

Trained
AM Data



System Assurance Case: GSN
• Top-level goals correspond 

to high level safety claims

• Leaf goals correspond to 
claims which can be directly 
supported by 
evidence/solutions

• Evaluation metrics from LEC 
experiments can be used as 
evidence for leaf goals

• User Defined Combination 
Logic (E.g. M-of-N, etc.)

38 Example GSN Model for UUV

Cross-Referencing 
Components, Datasets,
for Context/Evidence



Summary
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ALC Project 
 Verification:
 Design-time: reachability + robustness of AI/LEC 

components
 Run-time: safety given in the given situation

 Assurance monitoring:
 Detect distribution shift
 Assess confidence/credibility in the output

 Toolchain:
 Automation for evaluating LECs
 Modeling for assurance arguments (with evidence)

Publications:
https://alc.isis.vanderbilt.edu/redmine/projects/alc-project-public/documents
Portal for AA program tools:
https://assured-autonomy.org/

https://alc.isis.vanderbilt.edu/redmine/projects/alc-project-public/documents
https://assured-autonomy.org/
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