
Assessing Robustness and Resilience of AI:
The ALC Project

Gabor Karsai, Vanderbilt University
with contributions by Taylor Johnson, Xenofon Koutsoukos

Supported by DARPA under
Assurance of Learning-Enabled Cyber-Physical Systems

1

Project vision
“The proposed research effort will address the ... technical areas with overall goal of delivering an
integrated design tool suite and reusable operation support components for constructing
autonomous CPS including Learning Enabled Components (LECs). Our vision is to … create a new design
flow that extends from design-time to operation time, re-interprets the traditional assurance
argumentation to become a dynamic, operational concept. Our ultimate goal is to establish a fusion of
model- and component-based methods with data-driven methods.”

Model-driven design flow Model-driven design flow with LEC-s

2

Project activities
 Thrusts:

 Verification: formal and/or coverage-driven
verification of safety and liveness properties
of components, subsystems, and systems, at
design-time and at run-time, to provide
evidence for assurance arguments

 Assurance: construction and continuous
evaluation of logical arguments that
demonstrate the truth or strength of a safety
claim based on available evidence

 Toolchain: design-time and run-time software
tools to implement and support the above,
for real systems

 Learning (component adaptation)
 Design-time: in design tools, while the system

is not operational
 Run-time: in the running system, on-the-fly
 Mixed – learning from operational, ‘overnight’

Verification

Assurance

Toolchain (Design-time)

Verification

Assurance

Toolchain (Run-time)

3

Verification Technology

Example-1: Robustness Assessment
Example-2: Run-time Verification

Prof. Taylor Johnson and team

4

 Given a NN F & an input set 𝒳𝒳, the output reachable set of F is
𝒴𝒴 = 𝑦𝑦 𝑦𝑦 = 𝐹𝐹 𝑥𝑥), 𝑥𝑥 ∈ 𝒳𝒳

 Computationally: Given a NN F, a convex initial set of inputs I represented
as a polytope poly(𝒳𝒳), compute the output set Y = F(I) of the network

Input
Set𝒳𝒳

Output
Set 𝒴𝒴

Property P

LEC Verification: Reachability Analysis of
Feedforward/Convolutional Neural Networks

Layer-by-Layer Propagation
of Polytopes

5

I=poly(𝒳𝒳)

𝐼𝐼 = 𝑥𝑥 𝐴𝐴𝑥𝑥 ≤ 𝐵𝐵, 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛} 𝑌𝑌 = 𝐹𝐹 𝐼𝐼 = ?

CNN Robustness Verification [CAV’20]

6

Is VGG16/19 robust to FGSM attacks for 𝒂𝒂 ≤ 𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟖𝟖 ?
Disturbed images = Original image + a x Noise

VGG Classifiers: ~93%
accuracy in top-5 classification
on ImageNet
VGG16: 16 layers, 138M
parameters
VGG19: 19 layers, 144M
parameters
Classify images into 1000
classes, e.g., car, horse, bell
pepper, …

Layers of interest
• Convolutional
• Average pooling
• Max pooling
• Fully connected
• ReLU

https://www.robots.ox.ac.uk/~vgg/research/very_deep/

Tran HD., Bak S., Xiang W., Johnson T.T. (2020) Verification of Deep Convolutional Neural Networks Using ImageStars. In: Lahiri
S., Wang C. (eds) Computer Aided Verification. CAV 2020. https://doi.org/10.1007/978-3-030-53288-8_2

https://www.robots.ox.ac.uk/%7Evgg/research/very_deep/

CNN Classification Robustness
Analysis: ImageStars

7

 ImageStar Θ = 𝑥𝑥 𝑥𝑥 = 𝑐𝑐 + Σ𝑖𝑖=1𝑚𝑚 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖 ,𝑃𝑃(𝛼𝛼)}
 𝑐𝑐 ∈ 𝑅𝑅𝒉𝒉×𝒘𝒘×𝒏𝒏𝒏𝒏 is the center image
 𝑉𝑉 = 𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑚𝑚 , 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅𝒉𝒉×𝒘𝒘×𝒏𝒏𝒏𝒏 is a set of basis images
 𝑃𝑃 𝛼𝛼 ≜ 𝐶𝐶𝛼𝛼 ≤ 𝑑𝑑, is a predicate
 𝛼𝛼 = 𝛼𝛼1,𝛼𝛼2,⋯ ,𝛼𝛼𝑚𝑚 𝑇𝑇, is predicate variable
 Extension of Star Sets [Tran et al, FM’19]
 Represent infinite sets of multi-channels images

CARLA driving simulator

VGG16 Robustness Verification

8

 Is VGG16/19 robust to FGSM attacks for 𝑎𝑎 ≤ 2 × 10−8?
 Reachable set computation time: 518 seconds

 Verifying Robustness Time: 56 seconds

 Number of ImageStars in the output reachable set: 8
 Total Verification Time: 574 seconds (≈ 10 minutes)

 Number of cores: 1
 Robust? Yes

Closed-Loop CPS with LECs:
Verification Flow and Tools

9

https://github.com/verivital/hyst https://github.com/verivital/nnv
https://cps-vo.org/group/hyst https://github.com/verivital/nnmt

 Plant models: hybrid automata, or networks thereof, represented in HyST/SpaceEx/CIF
formats
 Hybrid automaton: finite state machine + set of real-valued variables that evolve continuously over

intervals of real time according to ordinary differential equations (ODEs)
 Hybrid behaviors: discrete transitions and continuous trajectories over real time
 Plant dynamics: linear, nonlinear, hybrid, continuous-time, discrete-time, …

 LEC and cyber models: feedforward neural networks, represented in ONNX format
(compatible with Keras, Tensorflow, Matlab, etc.)

 Specifications: primarily safety properties for now, some reachability properties
 Verification: composed LEC and plant analysis: autonomous closed-loop CPS

 Bounded model checking: k control periods, alternating reachability analysis of controller and plant

Communication Networks

Interfaces

Sensors

Actuators

Physical
Environment,

Plant,
Humans, …

LECs
Cyber

Components
/Software/

Controller(s)

HyST nnv + nnmt

https://github.com/verivital/hyst
https://github.com/verivital/nnv
https://cps-vo.org/group/hyst
https://github.com/verivital/nnmt

Runtime (Online) Verification of Autonomous
Systems with Real-Time Reachability

10

 For controller LECs online monitoring at runtime is essential

 How can we provide formal and provable guarantees of system-level behaviors, such
as safety, online at runtime?

 Key idea: abstract LEC behaviors (see other approaches on out of distribution
detection, etc.) and simply observe the influence of their behavior on
plant/system-level at runtime

 Necessary technology: online reachability analysis of plant models, ideally
with worst-case execution time (WCET) guarantees for implementation in
embedded hardware

 Builds on real-time reachability of linear/nonlinear ordinary differential
equations (ODEs) and hybrid automata with WCET guarantees, implemented as
an anytime algorithm [FORTE’19, TECS’16, RTSS’14]

 Based on mixed face lifting reachability [Dang and Maler, HSCC’98 &
HSCC’19 Test of Time Award Winner], using hyperrectangles (intervals) as state-
space representation

[Tran et al, “Decentralized Real-Time Safety Verification for Distributed Cyber-Physical Systems”, FORTE’19]
[Johnson et al, “Real-Time Reachability for Verified Simplex Design”, TECS’16]
[Bak et al, “Real-Time Reachability for Verified Simplex Design”, RTSS’14]
http://www.verivital.com/rtreach/

http://www.verivital.com/rtreach/

Runtime (Online) Verification of Autonomous Systems with
Real-Time Reachability: Supervisory Control and Monitoring of
LECs in the Loop

 Complex controller: can do anything, be output from LECs, etc., abstracted to just
produce control inputs (u) for the plant

 Assumptions: analytical (linear or nonlinear ordinary differential equation [ODE])
plant model available, and controller input remains fixed over finite time horizon

 Supervisory control via Simplex architecture
 Check these control inputs on closed-loop for a finite time horizon using

reachability analysis with real-time (WCET) guarantees, if there’s a
problem, fall back to safety strategy

[Taylor T. Johnson, Stanley Bak, Marco Caccamo, Lui Sha, "Real-Time Reachability for Verified Simplex
Design", In ACM Transactions on Embedded Computing Systems (TECS), 2016 / RTSS’14]

11

Real-time reachability algorithm
implementation is cross-platform C (x86,
ARM, AVR, etc.) with no dynamic memory
allocation, recursion, or library
dependencies:
https://github.com/verivital/rtreach

u

https://github.com/verivital/rtreach

Safety Verification with Reachability

12

 Safe if intersection of overapproximation of reachable
states with unsafe states is empty (soundness)

Initial
States

Unsafe
States

Reachable
States

Overapproximation of
Reachable States

If safe, then red
trajectory reaching an
unsafe state cannot
exist

All trajectories
contained in
reachable states

F1/10 Ground Vehicle End-to-End (E2E)
LEC Demo

13

 End-to-end (E2E) controller: takes
images and produces steering
control inputs

 Classification-based control:
determining steering angle (straight,
weak left, weak right, etc.) with fixed
speed

 Reachable sets visualized below
right: if intersection with obstacles
occurs, use fallback safety controller

 Plant model: nonlinear ODEs
(bicycle, Ackermann steering)

Assurance Monitoring
Technology

Example-1: Detecting distribution shifts
Example-2: Detecting adversarial attacks

Prof. Xenofon Koutsoukos and team

14

Assurance Monitoring:
Can we trust the output of the LEC?

 Assurance Monitoring Based on Inductive Conformal Prediction
 Characterize how close the LEC behavior is to a model that represents

the expected safe behavior obtained during the training phase.
 Compute measures of confidence associated with predictions from LECs
 Nonconformity measure is used to evaluate the degree to which a new

example disagrees from a set of examples
 Confidence is computed based how different is a test example compared

to a set of calibration examples

Perception
LEC

Control
LEC

Autonomous
Vehicle

Environment

15

Inductive Conformal Prediction (ICP)
1. Split the training set into

 The proper training set
 The calibration set

2. Use the proper training set to train
the neural network

3. For each example in the calibration
set:

 Supply the input to the trained neural
network to obtain the prediction

 Calculate the nonconformity scores
 Sort the calibration examples using

descending order of the nonconformity
scores in the set 𝐴𝐴

4. For each new example, compute the
fraction of examples that are equally
or more nonconforming (p-values)

5. Compute a predictor with a given
confidence based on the p-values

 Nonconformity measure:
A function that measures the
disagreement between the actual label
and the prediction using the neural
network

Nonconformity measure
calculationLEC

Training Data Calibration
Data

Calibration data
with

nonconformity

16 Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9(Mar), 371-421.

Anomaly Detection

17

 The nonconformity measure can be used to evaluate the degree to which a
new example disagrees from a set of examples

 For test examples, we compute the fraction of nonconformity scores for
the calibration data that are larger than the nonconformity score of the
test input (empirical p-value)

 If the empirical p-value < 𝜀𝜀 the example is classified as a conformal
anomaly

 There are at least three explanations for a conformal anomaly
 A rare or previously unseen example from the same probability

distribution as the training set
 A true novelty not generated from the same probability distribution as

the training set
 The training examples are not IID

Laxhammar, R. & Falkman, G. , Inductive conformal anomaly detection for sequential detection of anomalous
subtrajectories, Annals of Mathematics and Artificial Intelligence, (2015) 74: 67.

Online Out-of-Distribution Detection in
Multidimensional Time Series

18

 In CPS, examples arrive one by one and after observing each
new example, we would like to quantify the degree to which
the examples disagree with the training data

 If the examples are IID, the inductive conformal anomaly
detection algorithm produces p-values that are independent
and uniformly distributed in [0,1]

 Out-of-distribution detection can be performed by testing the
hypothesis that p-values that are independent and uniformly
distributed in [0,1] – or not

V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk. 2012. Plug-in martingales for testing exchangeability on-line.
In Proceedings of the 29th International Conference on International Conference on Machine Learning (ICML'12).

Exchangeability Martingales

19

 Given the sequence of p-values, a martingale is calculated as a
function of the p-values
 Power martingale

𝑀𝑀𝑛𝑛
𝜀𝜀 = �

𝑖𝑖=1

𝑛𝑛

𝜀𝜀𝑝𝑝𝑖𝑖𝜀𝜀−1

 Simple mixture martingale

𝑀𝑀𝑛𝑛 = �
0

1
𝑀𝑀𝑛𝑛
𝜀𝜀 𝑑𝑑𝜀𝜀

 The value of the martingale reflects the strength of evidence against
the exchangeability assumption, i.e. that the examples are generated
from the same probability distribution independently

 Such a martingale will grow only if there are many small p-values in
the sequence

 If the generated p-values concentrate in any other part of the unit
interval, we cannot expect the martingale to grow

V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk. 2012. Plug-in martingales for testing exchangeability on-line.
In Proceedings of the 29th International Conference on International Conference on Machine Learning (ICML'12).

Nonconformity Measure (NCM)

20

 Computing the NCM using k-nearest neighbors requires
storing the training data which may be infeasible for
autonomous CPS Reduce the memory/time requirements

 Train an appropriate neural network architecture which can be
used to compute efficiently the NCM

 1. Autoencoders
 Use the reconstruction error as the NCM
 Based on current experiments, the method is not robust

 2. Variational autoencoders
 Use the generative model to sample multiple IID examples for the

input of the current time step
 Use the reconstruction error (probability) as the NCM

 3. Deep One-Class Classification
 Deep Support Vector Description (SVDD)

Assurance Monitoring
Distribution Shift Detection Example

Precipitation parameter [0,100] is the full range. Precipitation [0,20] is in distribution
In distribution Out of distribution

Assurance Monitoring:
Distribution Shift Detection in adversarial scenarios

Shift detected

ALC Toolchain

23

Tool architecture - coverage

24

Assurance
monitoring

Verification
tool

Modeling tool

ALC Toolchain
Approach

System
Integrator

• The model driven toolchain
supports training, verification
and design-time assurance of
learning enabled components.

• Toolchain helps with
developing safety assurance
cases for the system using
collected evidence.

• Complete provenance tracking
of Experimental runs and data
collection is supported.

LEC
Developer

25

Assurance
Engineer

Ty
pi

ca
l W

or
kf

lo
w

 S
eq

ue
nc

e

ALC Toolchain Concepts

26

 Modeling
 System Architecture / SysML

 LEC Construction
 Data collection
 Training
 Evaluation

 Testing -- Verification/Validation/Assurance

ALC Workflow

27

 MDE with support for LEC development + Assurance

Workflow/Orchestration

Job JobJob

Models in the ALC Toolchain

28

Model Systems using:
• Component blocks (hardware/software)
• Messages/datatypes for software
• System architecture

Construct Experiments consisting of:
• Data collection
• LEC training
• Assurance Monitor construction

Verification, Validation, and Assurance via:
• Formal Verification (Design-time)
• LEC testing
• Assurance argument construction

Workflow automation:
• Create/Execute sequences of operations

Datasets to:
• Manage all data produced by Experiments and Workflows
• Track data provenance
• Perform automated analysis/evaluation of data

System
Modeling

29

Data Models, Messages

Components:
Hardware, Software/LEC

Systems: Components/ Subsystems; Parameters,...

World models: Scenarios, Environments, Parameters

System architecture
SysML block diagrams

Subset of SysML Blocks, IBD to model all blocks, implementation alternatives for flexibility

30

Dynamic Assurance
Process

Assurance
Monitors

LEC Construction

31

1. Data Collection

2. Training LEC + A/M 3. Testing

Select Configuration

LEC Construction:
1. Data Collection

32

 Assembly model selects a specific implementation variant of a system architecture

 Mission, Environment, and Execution parameters set up the experiment scenario

 Campaigns across parameters a configurations related to system and environments

 Tool generates configuration for running the simulation, capture results + metadata for all trials

Implementation
Alternative

Environment
Model

Remote job: launching of
dockers, management of
results.

Dockerized ALC-toolchain
services for portability

Parameter
Sweep

LEC Construction:
2. Training

33

 Neural Net model and parameters
specified in “LEC Model”

 “Training Data” links to data
generated from previous
experiments

 Training job is dispatched to worker
machines (typically with GPUs)

 Results and metadata are saved
from the training sessions

LEC Construction
2. Training: Assurance Monitor

Deploy trained LEC, build
assurance monitor.

Pipe Visibility Lost Pipe Visibility Lost

LEC Construction:
3. Evaluation: Testing/Verification

35

 Trained Neural Net can be tested in the
simulator with another experiment model

 Performance metrics are recorded for
LEC evaluation, e.g.:

 Distance from ideal path

 Pipe within camera field of view

Analysis in Jupyter Notebook

Also, “single step” the process
for debugging

Training Model Data Managed on GitLab

Results in file store + git, cross-linked for data provenance

Execute on Remote Server/s

Tool Automation
Workflow Models

36

 Workflow models are for the specification and execution of job graphs
 Each workflow job specifies execution of one or more activity models
 Data dependencies between jobs are handled automatically

 Workflow supports
 Loops – For (parallel), while/ do-while (sequential)
 Transforms - Filter / Join (subset or aggregation of results)
 Branch – execution path based on user-specified condition

 Example workflow to train and optimize a LEC

Tool automation
Support for Data Provenance

37

 All artifacts – generated during data
collection, training, evaluation

 Recorded for each execution:
 Parameter settings
 LEC(s) Models (Deployed/Initial)
 Data used in training, validation and

evaluation
 Allows re-execution of any step/workflow
 Track the evolution of data/ LECs/

Assurance
 Maintain traceability links at each stage

to:
 Data used in training LECs
 Initial trained model used in training

LECs
 LECs used in generating data

sets/Assurance

SimData

System Version

Trained
LEC
Weights

Parameters

V1 V22

Assurance
Monitor

Workflow

Data
Collection
Workflow

Trained
AM Data

System Assurance Case: GSN
• Top-level goals correspond

to high level safety claims

• Leaf goals correspond to
claims which can be directly
supported by
evidence/solutions

• Evaluation metrics from LEC
experiments can be used as
evidence for leaf goals

• User Defined Combination
Logic (E.g. M-of-N, etc.)

38 Example GSN Model for UUV

Cross-Referencing
Components, Datasets,
for Context/Evidence

Summary

39

ALC Project
 Verification:
 Design-time: reachability + robustness of AI/LEC

components
 Run-time: safety given in the given situation

 Assurance monitoring:
 Detect distribution shift
 Assess confidence/credibility in the output

 Toolchain:
 Automation for evaluating LECs
 Modeling for assurance arguments (with evidence)

Publications:
https://alc.isis.vanderbilt.edu/redmine/projects/alc-project-public/documents
Portal for AA program tools:
https://assured-autonomy.org/

https://alc.isis.vanderbilt.edu/redmine/projects/alc-project-public/documents
https://assured-autonomy.org/

Credits

41

 Ted Bapty
 Dimitrios Boursinos
 Feiyang Cai
 Abhishek Dubey
 Charles Hartsell
 Taylor Johnson
 Xenofon Koutsoukos
 Jiani Li
 Nagabhushan Mahadevan
 Diego Manzanas Lopez

 Mary Metelko
 Patrick Musau
 Harmon Nine
 Shreyas Ramakrishnan
 Joel Rosenfeld
 Janos Sztipanovits
 Hoang-Dung Tran
 Ayana Wild
 Weiming Xiang
 Xiaodong Yang

	Assessing Robustness and Resilience of AI: The ALC Project
	Project vision
	Project activities
	Verification Technology�
	LEC Verification: Reachability Analysis of Feedforward/Convolutional Neural Networks
	CNN Robustness Verification [CAV’20]
	CNN Classification Robustness Analysis: ImageStars
	VGG16 Robustness Verification
	Closed-Loop CPS with LECs:�Verification Flow and Tools
	Runtime (Online) Verification of Autonomous Systems with Real-Time Reachability
	Runtime (Online) Verification of Autonomous Systems with Real-Time Reachability: Supervisory Control and Monitoring of LECs in the Loop
	Safety Verification with Reachability
	F1/10 Ground Vehicle End-to-End (E2E) LEC Demo
	Assurance Monitoring Technology
	Assurance Monitoring:�Can we trust the output of the LEC?
	Inductive Conformal Prediction (ICP)
	Anomaly Detection
	Online Out-of-Distribution Detection in Multidimensional Time Series
	Exchangeability Martingales
	Nonconformity Measure (NCM)
	Assurance Monitoring�Distribution Shift Detection Example
	Assurance Monitoring:�Distribution Shift Detection in adversarial scenarios
	ALC Toolchain
	Tool architecture - coverage
	ALC Toolchain�Approach
	ALC Toolchain Concepts
	ALC Workflow
	Models in the ALC Toolchain
	System�Modeling
	System architecture�SysML block diagrams
	LEC Construction
	LEC Construction:�1. Data Collection
	LEC Construction:�2. Training
	LEC Construction�2. Training: Assurance Monitor
	LEC Construction:�3. Evaluation: Testing/Verification
	Tool Automation�Workflow Models
	Tool automation�Support for Data Provenance
	System Assurance Case: GSN
	Summary
	ALC Project
	Credits

