
Simon Brown
@simonbrown

The lost art of

software modelling

@simonbrown

Over the past decade, many
teams have thrown away

big design up front

@simonbrown

#13

“We’re agile.”

@simonbrown

#17

“It’s not expected
in agile.”

@simonbrown

#1

“Are we allowed

to do

up front design?”

@simonbrown

#12

“We don't do up
front design

because we do XP.”

@simonbrown

Unfortunately, architectural
thinking, documentation,

diagramming, and modelling

were also often discarded

@simonbrown

Simon Brown

Independent consultant specialising in software architecture,

plus the creator of the C4 model and Structurizr

@simonbrown

1. Context
A global investment bank based in London, New York and Singapore trades (buys and sells) financial products with
other banks (“counterparties"). When share prices on the stock markets move up or down, the bank either makes
money or loses it. At the end of the working day, the bank needs to gain a view of how much risk of losing money
they are exposed to, by running some calculations on the data held about their trades. The bank has an existing
Trade Data System (TDS) and Reference Data System (RDS) but needs a new Risk System.

1.1. Trade Data System
The Trade Data System maintains a store of all trades made by the bank. It is already configured to generate a file-
based XML export of trade data to a network share at the close of business at 5pm in New York. The export
includes the following information for every trade made by the bank:

• Trade ID, Date, Current trade value in US dollars, Counterparty ID

1.2. Reference Data System
The Reference Data System stores all of the reference data needed by the bank. This includes information about
counterparties (other banks). A file-based XML export is also generated to a network share at 5pm in New York,
and it includes some basic information about each counterparty. A new reference data system is due for
completion in the next 3 months, and the current system will eventually be decommissioned. The current data
export includes:

• Counterparty ID, Name, Address, etc…

2. Functional Requirements
1. Import trade data from the Trade Data System.
2. Import counterparty data from the Reference Data System.
3. Join the two sets of data together, enriching the trade data with information about the counterparty.
4. For each counterparty, calculate the risk that the bank is exposed to.
5. Generate a report that can be imported into Microsoft Excel containing the risk figures for all

counterparties known by the bank.
6. Distribute the report to the business users before the start of the next trading day (9am) in Singapore.
7. Provide a way for a subset of the business users to configure and maintain the external parameters used

by the risk calculations. 

“Financial Risk System” architecture kata
Simon Brown | @simonbrown

Financial Risk System 3. Non-functional Requirements
a. Performance

• Risk reports must be generated before 9am the following business day in Singapore.

b. Scalability
• The system must be able to cope with trade volumes for the next 5 years.

• The Trade Data System export includes approximately 5000 trades now and it is anticipated that there
will be slow but steady growth of 10 additional trades per day.

• The Reference Data System export includes approximately 20,000 counterparties and growth will be
negligible.

• There are 40-50 business users around the world that need access to the report.

c. Availability
• Risk reports should be available to users 24x7, but a small amount of downtime (less than 30 minutes per

day) can be tolerated.

d. Failover
• Manual failover is sufficient, provided that the availability targets can be met.

e. Security
• This system must follow bank policy that states system access is restricted to authenticated and authorised

users only.
• Reports must only be distributed to authorised users.
• Only a subset of the authorised users are permitted to modify the parameters used in the risk calculations.
• Although desirable, there are no single sign-on requirements (e.g. integration with Active Directory, LDAP,

etc).
• All access to the system and reports will be within the confines of the bank’s global network.

f. Audit
• The following events must be recorded in the system audit logs:

• Report generation.
• Modification of risk calculation parameters.

g. Fault Tolerance and Resilience
• The system should take appropriate steps to recover from an error if possible, but all errors should be

logged.
• Errors preventing a counterparty risk calculation being completed should be logged and the process should

continue.

h. Internationalization and Localization
• All user interfaces will be presented in English only.
• All reports will be presented in English only.
• All trading values and risk figures will be presented in US dollars only.

i. Monitoring and Management
• A Simple Network Management Protocol (SNMP) trap should be sent to the bank’s Central Monitoring

Service in the following circumstances:
• When there is a fatal error with the system.
• When reports have not been generated before 9am Singapore time.

j. Data Retention and Archiving
• Input files used in the risk calculation process must be retained for 1 year.

k. Interoperability
• Interfaces with existing data systems should conform to and use existing data formats.

“Financial Risk System” architecture kata
Simon Brown | @simonbrown

Design a software solution for

the ”Financial Risk System”, and

draw one or more architecture

diagrams to describe your solution

60-90 minutes

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

UML?

@simonbrown

#3

“I’m the only
person

on the team

who knows it.”

@simonbrown

In my experience, optimistically,

1 out of 10 people use UML

@simonbrown

#36

“You’ll be seen as
old.”

@simonbrown

#37

“You’ll be seen as
old-fashioned.”

@simonbrown

#46

“We don’t want to
tell developers

what to do.”

@simonbrown

#80

“It’s too detailed.”

“just use a whiteboard”

@simonbrown

#97

“The value is

in the

conversation.”

“ ”@simonbrown

They are all excellent, as long as there
is a conversation about their meaning

and intent. It's the accompanying
conversation that matters.

@simonbrown

“the value is in the conversation”

only works if you’re having

the right conversations

@simonbrown

What’s wrong these diagrams?

Swap and review your diagrams

1. Do the solutions satisfy the architectural drivers?

2. If you were the bank, would you buy this solution?

10 minutes

“ ”@simonbrown

It’s impossible to

answer those questions

@simonbrown

If you can’t see and understand

a solution, you can’t evaluate it

@simonbrown

@simonbrown

If you’re going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation

“ ”@simonbrown

To describe a software architecture,
we use a model composed of

multiple views or perspectives.
Architectural Blueprints - The “4+1” View Model of Software Architecture

Philippe Kruchten

@simonbrown

@simonbrown

Why is there a separation
between the logical and

development views?

“ ”@simonbrown

Our architecture diagrams

don’t match the code.

@simonbrown

“model-code gap”

@simonbrown

We lack a common vocabulary

to describe software architecture

https://en.wikipedia.org/wiki/Circuit_diagram

https://en.wikipedia.org/wiki/Component_diagram

@simonbrown

Software System

Web

Application

Logging
Component

Relational

Database

@simonbrown

When drawing software
architecture diagrams,

think like a software developer

@simonbrown

If software developers created building architecture diagrams…

Hallway

Stairs

Kitchen Living Room

Bed1

Bed3Bed2Stairs Bathroom

Bathroom

W
at

er
 in

W
at

er
 o

ut

 P
ea

k
el

ec
tri

ci
ty

 O
ff-

pe
ak

 e
le

ct
ric

ity

@simonbrown

A common set of abstractions

is more important

than a common notation

@simonbrown

A software system is made up of one or more containers,

each of which contains one or more components,

which in turn are implemented by one or more code elements.

Code Code Code

Component Component Component

Container

(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, file system, etc)

Container

(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, fi

Container

(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, fi

Software System

Zoom in

Zoom in

Level 1

System Context
Level 2

Containers
Level 3

Components
Level 4

Code

Zoom in

The C4 model for visualising

software architecture

c4model.com

@simonbrown

Diagrams are maps

that help software developers navigate a large and/or complex codebase

The container diagram shows the
containers that reside inside

the software system boundary

The component diagram
shows the components

that reside inside an
individual container

The code level diagram shows the code
elements that make up a component

@simonbrown

Plus some supplementary diagrams…

System Landscape Dynamic Deployment

@simonbrown

Abstractions first,

notation second

Ensure that your team has a ubiquitous
language to describe software architecture

@simonbrown

The C4 model is

notation independent

@simonbrown

The lost art of

software modelling?

“ ”@simonbrown

How can we avoid copy-pasting
elements across diagrams?

@simonbrown

Stop using Visio!

🙈

@simonbrown

@simonbrown

“Diagrams as code” is easy to author,
diff, version control, collaborate on,

integrate into CI/CD, etc

@startuml

title Software System - System Context

top to bottom direction

hide stereotype

rectangle "==User\n<size:10>[Person]</size>" <<User>> as User

rectangle "==Software System\n<size:10>[Software System]</size>" <<SoftwareSystem>> as SoftwareSystem

User ..> SoftwareSystem : "Uses"

@enduml

Domain language of diagramming

(no rules, no guidance)

@simonbrown

“Diagrams as code 2.0”

makes this model based,

separating content from presentation

workspace {

 model {

 user = person "User"

 softwareSystem = softwareSystem "Software System"

 user -> softwareSystem "Uses"

 }

 views {

 systemContext softwareSystem {

 include *

 autoLayout

 }

 }

}

Domain language of software architecture

(metamodel and rules)

workspace {

 model {

 user = person "User"

 softwareSystem = softwareSystem "Software System"

 user -> softwareSystem "Uses"

 }

 views {

 systemContext softwareSystem {

 include *

 autoLayout

 }

 }

}

workspace {

 model {

 user = person "User"

 softwareSystem = softwareSystem "Software System" {

 webapp = container "Web Application"

 database = container "Database"

 }

 user -> webapp "Uses"

 webapp -> database "Reads from and writes to"

 }

 views {

 systemContext softwareSystem {

 include *

 autoLayout

 }

 container softwareSystem {

 include *

 autolayout

 }

 }

}

user -> webapp "Uses"

webapp -> database "Reads from and writes to"

user -> softwareSystem "Uses"

@simonbrown

container softwareSystem {

 include user ->service1->

 autolayout

}

“ ”@simonbrown

How can we avoid our diagrams
becoming out of sync when we make

changes to our code?

@simonbrown

Authoring tool

Create diagrams as code (Java, .NET,
TypeScript, Python, PHP, etc) or text

(DSL, YAML) via a number of different
authoring tools.

Rendering tool

Render views using multiple

diagramming tools and formats
(Structurizr cloud service/on-premises
installation/Lite, PlantUML, Mermaid,

WebSequenceDiagrams, Ilograph, etc).

Workspace

A workspace is the wrapper for a

software architecture model and views,
described using the C4 model and

an open JSON data format.

Custom tool

Your own tooling to parse the model
and views; for integration into other
rendering tools, dashboards, service

catalogs, etc.

Consumes

Creates Renders

@simonbrown

Diagramming tools are still the first choice for
most teams, but some are starting to adopt
modelling tools to improve consistency and

enable diagram automatic generation

@simonbrown

Abstractions first,

notation second

Simon Brown
@simonbrown

Thank you!

