The lost art of
software modelling

w8 Simon Brown
’ @simonbrown

Over the past decade, many
teams have thrown away

pig design up front

#13

"We're agile.”

Up Front Design

Vera Gile

#17

“It's not expectea
In agile.”

Up Front Design

Vera Gile

#

“Are we allowed
to do
Up Front Design u p frO nt design?"

Vera Gile

[~ \ ~ “Weaaon'tdoup
front design
because we do XP."

YR
™ ol x\\ \\\ \‘\
s, .

O/ Stratecnes to Avo1d
Up Front. Design

Vera Gile

Unfortunately, architectural
thinking, documentation,
diagramming, and modelling

were also often discardead

Simon Brown

Independent consultant specialising in software architecture,
plus the creator of the C4 model and Structurizr

@simonbrown

O'REILLY" o HALL

A Craftsman’s Guide to
Software Structure and Design

S Oftwa Fe S Oftwa e = S UREGE Clean Architecture

Architecture Architecture

for Developers for Developers

Technical leadership and Visualise, document and explore LA EE
the balance with agility your software architecture SR BEE o \ i
GPEsPE Pro JSP
ISP Al
Simon Brown Simon Brown 2 Edidon

Financial Risk System

1. Context

A global investment bank based in London, New York and Singapore trades (buys and sells) financial products with
other banks (“counterparties"). When share prices on the stock markets move up or down, the bank either makes
money or loses it. At the end of the working day, the bank needs to gain a view of how much risk of losing money
they are exposed to, by running some calculations on the data held about their trades. The bank has an existing
Trade Data System (TDS) and Reference Data System (RDS) but needs a new Risk System.

1.1. Trade Data System

The Trade Data System maintains a store of all trades made by the bank. It is already configured to generate a file-
based XML export of trade data to a network share at the close of business at 5pm in New York. The export
includes the following information for every trade made by the bank:

« Trade ID, Date, Current trade value in US dollars, Counterparty ID

1.2. Reference Data System

The Reference Data System stores all of the reference data needed by the bank. This includes information about
counterparties (other banks). A file-based XML export is also generated to a network share at 5pm in New York,
and it includes some basic information about each counterparty. A new reference data system is due for
completion in the next 3 months, and the current system will eventually be decommissioned. The current data
export includes:

- Counterparty ID, Name, Address, etc...

2. Functional Requirements

1. Import trade data from the Trade Data System.

2. Import counterparty data from the Reference Data System.

3. Join the two sets of data together, enriching the trade data with information about the counterparty.

4. For each counterparty, calculate the risk that the bank is exposed to.

5. Generate a report that can be imported into Microsoft Excel containing the risk figures for all

counterparties known by the bank.

Distribute the report to the business users before the start of the next trading day (9am) in Singapore.

7. Provide a way for a subset of the business users to configure and maintain the external parameters used
by the risk calculations.

o

“Financial Risk System” architecture kata @@@@\

Simon Brown | @simonbrown

3. Non-functional Requirements

a. Performance

« Risk reports must be generated before 9am the following business day in Singapore.

b. Scalability

« The system must be able to cope with trade volumes for the next 5 years.
« The Trade Data System export includes approximately 5000 trades now and it is anticipated that there
will be slow but steady growth of 10 additional trades per day.
« The Reference Data System export includes approximately 20,000 counterparties and growth will be
negligible.
« There are 40-50 business users around the world that need access to the report.

c. Availability

« Risk reports should be available to users 24x7, but a small amount of downtime (less than 30 minutes per
day) can be tolerated.

d. Failover

« Manual failover is sufficient, provided that the availability targets can be met.

e. Security

« This system must follow bank policy that states system access is restricted to authenticated and authorised
users only.

« Reports must only be distributed to authorised users.

« Only a subset of the authorised users are permitted to modify the parameters used in the risk calculations.

« Although desirable, there are no single sign-on requirements (e.g. integration with Active Directory, LDAP,
ete).

« All access to the system and reports will be within the confines of the bank’s global network.

f. Audit

« The following events must be recorded in the system audit logs:
« Report generation.
« Modification of risk calculation parameters.

g. Fault Tolerance and Resilience

« The system should take appropriate steps to recover from an error if possible, but all errors should be
logged.

« Errors preventing a counterparty risk calculation being completed should be logged and the process should
continue.

h. Internationalization and Localization

« All user interfaces will be presented in English only.
« All reports will be presented in English only.
« All trading values and risk figures will be presented in US dollars only.

i. Monitoring and Management

« ASimple Network Management Protocol (SNMP) trap should be sent to the bank’s Central Monitoring
Service in the following circumstances:
« When there is a fatal error with the system.
« When reports have not been generated before 9am Singapore time.

j. Data Retention and Archiving
« Input files used in the risk calculation process must be retained for 1 year.
k. Interoperability

« Interfaces with existing data systems should conform to and use existing data formats.

“Financial Risk System” architecture kata @@@@‘

Simon Brown | @simonbrown

Design a software solution for
the "Financial Risk System”, and

draw one or more architecture
diagrams to describe your solution

@ 60-90 minutes

R ————,
RS
TRANSPET & LOEC
RS | NG

! é:(ﬁﬂag—J

180SS (VGAME CweR (ol vk J

T ——— i e ——

—UNCTIONAL - VIEW

s MANALGE /€ T
CALCOUATION
S vl oY /J\
\\WMTOIM@ \(
Refo
\“‘”""’” T
L

Rectare - M?"T

)) 'y - :
WPl | o |

-“ 4'-‘ y,__-' a

4
R

—

e R
DATH PoLt- SRviICE '.@\

R

DATA Readpce

= DATA TRANSARORTION |

D"‘ _______/ ON“GQ‘T\’ vﬂ_‘-. ~ . (a,k'
DY E
EVGNT(

J w u -
a— ——

v
FAY, |

> pr. N
IV Ll rmn o s A

f

§
1
S i

#3

“I'm the only
person

07 Ways to on the team
Sidestep UML who knows it.”

Knowfa Malliry

In My experience, optimistically,

1 out of 10 people use UML

#30

“YoUu'll be seen as

97 Ways to old.”
Sidestep UML

Knowfa Malliry

#3/

“YoUu'll be seen as

07 Ways to old-fashioned.”
Sidestep UML

Knowfa Malliry

#46

“We don't want to
tell developers

97 Ways to ’
Sidestep UML what to do.

Knowfa Malliry

#380

“It's too detailed.”

97 Ways to
Sidestep UML

Knowfa Malliry

= UML, Cucumberand modeling reality - MPJ.s sings%n Fun Function
. ,

= UML, Cucumber argd modeling reality - MPJs usingsﬂn Fun Function

'r
5 :
.‘\ .'

4 . | '
. "‘

) 1:42/12:48

#

75 i dokc

i RS Log IC

a1

—

__OC_‘P\

P
e
.
&
)
A
3 |
I
ot
LE
\

aito’

oy \@TR ANSPORT | AR e | |

CRLCUMLEM oY \“ c
anve CE R &

oo rs
S
1 =
s S,
o Vi
e — e ——

‘
[/

>
B
™~

DATA TRAN
ok SfoertmTion

VoL DaTION > (
Te bl

—1-

\ "”NT A+8 =

CRL(L)LF’R‘(OM ENGING.

5 , ! r’&n_

COMPLETE

#97/

“The value is
N the

W t " I
gZdeS?eYPS) [(j)ML conversation.

Knowfa Malliry

They are all excellent, as long as there
IS @ conversation about their meaning
and intent. It's the accompanying
conversation that matters.

“the value is In the conversation”
only works if you're having
the right conversations

What's wrong these diagrams?

Swap and review your diagrams

1. Do the solutions satisty the architectural drivers?
2. If you were the bank, would you buy this solution?

@ 10 minutes

t's impossible to
answer those gquestions

f you can’t see and understand
a solution, you can't evaluate it

Business Rules

Workflow

DAL

Controls

i
. . ™
! Video over IP
[
! Capturing video Format |
D:] l frames from conversion and E:;:zcg‘er Fra ?n‘:\l{,ation
zme,:g—!-b Camera y Pre-processing J 9
:
| \ Format
! Audio/Video Oonv;g:; — H.264 Reconstruction
| sync module Post-processing Decoder of NALU
[/ /
Display || v,
|
— —]
) e -)
' Voice over IP
K
. S@
mc [~ 7)) _
/ ; 3 g
(r— 55 | = £
\ - e 5
et [T
Speaker 51 2 . =5
= 7 5L T
= SF =
[85 E
g £53
=) 2 g £
[*] = S §
Dmod = =~ =
=
g
i 2
- < - Service Interface
@ — —
f{‘s = S o
= wfl =] = Activity
. 5 3 K 2 .g s Activity
" [z || HEHE
- & 7 Bl =
= =
< | <
v
&
> — DW
lachine - g E—
-~
Session Initiation Protocol (SIP)
-
In;?ut
VZolP devices

Video over IP

Voice over IP

Fax over IP

OLTP

Input device

manager

SULIOJIUON

eI 2 507

User manager l

) CA Server Automation
~ (teesondwmen) meswe
Network Layer: L CAIT Cient Manager) CA Process
| CAPatch Manager) ——
TCP | UDP
RTP/
RTCP k IP f ‘ — Automation Infrastructure Platform
MAC
Microsoft HyperV
Ethernet ()
—— Trene : = Active X Sad Pasty
‘ - f:-:: .";;.:l‘v — i

R

[Actnve X Coutasser

Juawagdeuey uondasxy

Server > M Subscrbel - TCP P
S.ADN Servms
BT & Foewe [

Archive
- ——

Archive DB

‘s§|
g
:
8
LB
2=
1 &
I
_

Dan | _ DOE]

rw | APS DA I]

Drrves OPC Provate EXCEL WJ B Managemen! Senice lanagement Senice g
Ag= by rdou i ‘

O® @

Typecal genenc software architecture of

e-ARSview

HoneINsyuo))

(Adaptve Problem. Sobving Erwvirone

l Remote administration
|
Control interface
i |
Object-Tracker Outpl
Reak-ime kenel ™ XML/SOAP/HTTP | | i i ! i
I .
SASP (Scientific Application Service Provider) p . AG + VNC
' e ey R
o AIRS [Vuaheation shanm
| :

Middleware
Service
Layer

DB-Server

Data Transfer Service | -
R — [om

L !

If you're going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation

To describe a software architecture,
we use a model composed of

multiple views or perspectives.

Architectural Blueprints - The “4+1" View Model of Software Architecture
Philippe Kruchten

The description of an architecture—the decisions made—can be organized around these four views, and

then illustrated by a few selected use cases, or scenarios which become a fifth view. The architecture 1s in
fact partially evolved from these scenarios as we will see later.

End-user Programmers
Functionality Software management

Development

Logical View —» View

J Scenarios J
Process View Physical View
Integrators System engineers
Perforrpgnce Topology
Scalability Communications

Figure 1 — The "4+1" view model

Why Is there a separation
petween the logical and
development views?

Our architecture diagrams
don't match the code.

JUST ENOUGH
SOFTWARE ARCHITECTURE

A RISK-DRIVEN APPROACH
GEORGE FAIRBANKS

FOREWORD BY DAVID GARLAN

o/ AN
N 1, NS

g i mrsgm [X
WY 2 R E=R 1 RYE. 3=
- W=
e e T T —— =g -
- P =
Ny 7 J] "l S B e S\
N ([pe—— - - - - - e
§ | S . 4 =
. iy : 2 . N’ . ™~ |

Model-code gap. Your architecture models and your source code will not show the
same things. The difference between them is the model-code gap. Your architecture

models include some abstract concepts, like components, that your programming lan-
guage does not, but could. Beyond that, architecture models include intensional ele-

ments, like design decisions and constraints, that cannot be expressed in procedural
source code at all.

Consequently, the relationship between the architecture model and source code is

complicated. It is mostly a refinement relationship, where the extensional elements
in the architecture model are refined into extensional elements in source code. This

is shown in Figure 10.3. However, intensional elements are not refined into corre-
sponding elements in source code.

Upon learning about the model-code gap, your first instinct may be to avoid it. But

reflecting on the origins of the gap gives little hope of a general solution in the short
term: architecture models help you reason about complexity and scale because they

are abstract and intensional; source code executes on machines because it is concrete
and extensional.

“model-code gap”

We lack a common vocabulary
to describe software architecture

SEVEN KIi

\J
i

. STOKE] f\j

EWINGTON |

_——=CHALK.FARM - | c
‘ Vo1 F—a \STOVASS //) 2
/ | / | CAMDEN TOWN \# /AL N
| "~ ZSLLondon Zoo & T L A123
N S Bl N s
| /7 " KENSAL:GREEN) < > 5 |® A1208 \ireds W
== e ‘ < N = ° | N\ 9.\109 |
\ S \ \AWN;,Q\;/' \/ _~ CLERKENWELL D el N - \
\ \ —_—— 76‘-\;’\’ MARYLEBONE £ The British:l\VIuseum\ \(/ | Y \ e ‘<
<\ PADDINGTON | 20 2 y / = o
Sy T - ALS\ | 3=l POPLAR= | 2 =)
- ayswate" X7 [- fLONDON\:f‘%i: ‘A1203 m\\\j’> 2 | 5N i
| i A\ LLondol® T Wiy x| i e w‘\ °
e Vale SHEPHERD'S *gl(ensmgtogﬁlace, v S S ;%{b‘, o~ \\J | QANAR@WRQ London City Airport 4
BUSH T A e Paince | Southwark s G (K~ Xy
o KENSINGTON &) Royal Albert Hall, 1 Buckingham Palace | IS 4L F Al12 o
‘ I \\\ <A \ /(/ \)WESTMINSTER) S/ R = X A 7"
= AB\° \?‘39:7;”< I YD/\ BB\ |
= <<:?a / ~~gpimeicos. M / — A~
o i /®\ 5\ \) / N/ WOOLWICH—— =<
' "\

S >\\\\\\\<:\é S : /2

o=
: 3

FULHAM \—
| CAMBERWELL——-PECKHAM

[/\7’7-{\

. N
Ra BRIXTON

oét HERNE HILL” ~EAST/ DULWICH
5 Dulwich
) .
@ & /. \Vilage
> .

", \ / . C m— N\

\ Putney Heath

| \eZ

I

/

urmw

>
g
&

VOLTMETER

@ PICTORIAL DIAGRAM
OF CIRCUIT

I*4 ANMPERES

= EzI12VOLTS

@scnzmmc OF CIRCUIT

Figure 8. Diagrom of a dasic clrowis,

https://en.wikipedia.org/wiki/Circuit_diagram

id Policy Admin Components Wiring/

IPalicyService

IProductService

P
o o i @ RuleExecytionAP|
.L\ J_‘\ RuleExecut|onAP]
delegate
Application Components::Policy Admin 2 egates - «COES»
nfrastructure Components::
«delegates Rules Engine
¢delegates
RuleExecutionAPI cdeleaates
s . RuleExecutjonAPI
| LY s
3] = |3
Application Components:: $:| E’o & =
ke SIT Application Components:: | @ = , 3:] o
Unylerwriting & Rating Ul G = = eweb semnices)
Engine BRI e O o L S
@ N b o Application Components:: "‘g‘(
IRatingEervide IUndemritin%%ewice |P0|IC}"S/ENICB J} |ACC€SSCOH/LO|Semce E Product Server ug
- =
/\(;/ O/ IUIGenera onSemce O T
IRatingSIamice IUnderwritinlgSe ice s e et
7] IUIGeneratlonFemce Erd] wiE J— Application Components::
eweb services @ N $:| roayctoemice Product Admin Ul
icati =Poli S . = . = in cli
Application Components::Policy IPolicySenice IPolicySenvice . «}hm clients
Server Application Components:: «delegates @
/L IFormsSeIec/tli\onSewice SLC Policy Admin Ul
lAccessControlService
DocumentAdcessAPI \©\ IAccessCoirolSewice
O
IFormsSeIectionSeNice

¢delegates

3]

Application Components::
Forms Management

gdelegates

DocumentAj::essAPI IFormsDeﬂgionSewice

«delegates \M,/
L |
DocumentAEessAPl
@ O ~—0 7
Document}AccessAPI lAccessControlService IAccessC4ntroI89wice COTSs /
=] 9] Infrastructure Components: [—
«COTS» Application Components:: :ldentity Management JNDI

Infrastructure Components::
Document Management

Access Control

AuthenticationAPI AUthUV'Zion API

/OAuthorlz?gonAPI

AuthenticgtionAP]

«LDAP»

Infrastructure Components::
Directory Server

https://en.wikipedia.org/wiki/Component_diagram

Software System

Web
Application

Relational
Database

Component

noun com-po-nent | \kem-'po-nant, ‘kam-, kam-\

Simple Definition of COMPONENT

: one of the parts of something (such as a system or mixture) :

something

Popularity: Top 30% of words

an important piece of

When drawing software
architecture diagrams,

think like a software developer

If software developers created building architecture diagrams...

Stairs Bathroom

Hallway

l

Bathroom

Water out
Peak electricity

Off-peak electricity

A common set of abstractions
IS more Important
than a common notation

Software System

Container

(e.g. client-side web app, server-side web app, console application,
mobile app, microservice, database schema, file system, etc)

Component

A software system is made up of one or more containers,
each of which contains one or more components,
which in turn are implemented by one or more code elements.

Personal Banking

Acustomer of the bank, with
personal bank accounts.

Views account ~
balances, and
makes payments

| ~

Internet Banking System

[Software System]

E-mail System
__ Sends e-mail _ [Bothyars Systel
Allows customers to view using
information about their bank

accounts, and make payments.

The internal Microsoft Exchange
e-mail system.

Gets account
information from,
and makes
payments using

Mainframe Banking

System
(Software System]

Stores all of the core banking
information about customers,
accounts, transactions, etc.

System Context diagram for Internet Banking System
The system context diagram for the Internet Banking System.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

Level 1
System Context

The C4 model for visualising
software architecture

cdmodel.com

Personal Banking
Customer
{person)

A customer of the bank, with
personal bank accounts.

~
Sends e-mails to
~

Views account
balances, and

Views account

Visits
bigbank.com/ib balances, and

e makes payments makes payments
_ using i ~
~
~
Web Application q Mobile App
Containerjava nd Spring MVC] : Single-Page A| Container:Xamari) E-mail System
Delivers to the [Container: Javascript and Angular] [software System]
Delivers the static content and the customer’s web —4 Provides a limited subset of the
Internet banking single page browser Provides all of the Internet banking, Internet banking functionality to A e
application. functionality e‘g ;::‘Zf;\ffs via their customers via their mobile device. ystem.
‘web browser.
~
-~
~

\
Makes API calls to
USON/HTTPS]

/

Makes API calls to
USONIHTTPS]
/

Rl ¥
Mainframe Banking
Database

[Container: Relational Database Schema]

API Application System
(Container:Java and Spring MVC] (Software Syster]

_ Readsfromand __
Stores user registration information,
hashed authentication credentials,

access logs, etc.

Provides Internet banking
functionality via a JSON/HTTPS API.

Stores all of the core banking
information about customers,
accounts, transactions, etc.

5]

Internet Banking System
(Software System)

The container diagram for the Internet Banking System.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

Mobile App

[Container: Xamarin]

Single-Page Application

[Container: Javascript and Angular]

Provides a limited subset of the
Internet banking functionality to
customers via their mobile device.

Provides all of the Internet banking
functionality to customers via their
web browser.

Makes API calls to
[ISON/HTTPS).

Makes API calls to
—— USONMTTPS]

Makes API calls to
USONMHTTPS]

gn
use in to the

Uses Uses Uses.

| AP! Application
e poads from and

oom in

wsq) |

InternetBankingSystemException
——— /1

Mainframe Banking
System

Database y!
(Sofiware system]

[Container; Relational Database Schema]

E-mail System
Software Systern]

Stores user registration information,
hashed authentication credentials,
access logs, etc.

Stores all of the core banking
information about customers,
accounts, transactions, etc.

The internal Microsoft Exchange
e-mail system.

Component diagram for Internet Banking System - API Application
The component diagram for the API Application.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

MainframeBankirigSystemFacade

GetBalanceResponse

GetBalanceRequest
I

AbstractResponse
—
——

Level 4

Code

Level 3
Components

Level 2
Containers

Personal Banking
Customer

Acustomer of the bank, with
personal bank accounts.

Views account
balances, and
makes payments
using

Internet Banking System
f

(Software System]

Allows customers to view
information about their bank
accounts, and make payments.

ccount

information from,
makes

payments using

cont Internet Ban

st modified: Th

System Context diagram for Internet Banking System
The sy " . " e

Sends e-mails to

Sends e-mail
using

Web Application
[Container:Java and Spring MVC]
Delivers the static content and the
Internet banking single page

ication.

Database
[Container: Relational Database Schera]

Stores user registration information,

hashed authentication credentials,
access logs, etc.

Internet Banking System
eml

Guernsey

Personal Banking
Customer

person)

A customer of the bank, with
personal bank accounts.

Visits 3
bigbank.com/ib Views account Views account
s balances, and balances, and Sends e-mails to

makes payments makes payments

" Mobile App

e
Delivers tothe e
customer's web —|
Provides a limited subset of the
browser Provides all of the i i ionali

|

|

|

|

|

ty their -
web browser. |
|

|

|

Makes APl callsto Makes API calls to Sends e-mail
0 JSON/HTTPS

USONHTTP

API Application
[p———ey

_ Readsfromand _ — —MakesAPlcallsto — — —}
writes to .

Provides Internet banking PMUHTTPS)
functionality via a JSON/HTTPS API.

Container diagram for Internet Banking System
; Banin

m for th
Thu A

Single-Page Application
(Container:javascriptand Angular]
Provides all of the Internet banking
functionality to customers via their

b browser.

Makes API calls to Makes API calls to

SONHTTPS]

Makes AP calls to
4SON/HTTPS]
Sign In Controller

[Component: Spring MVC Rest Controller]

Allows users to sign in to the Internet
Banking System.

Security Component

Provides functionality related to
signing in, changing passwords, etc.

|
|
|
|
|
|
|
1
|
|
1
|
| (Component: Spring Bean]
|
|
1
|
|
|

API Application
niainer

Database
[Container: Relational Database Schema]

Stores user registration information,
hashed authentication credentils,

Reset Password Controller

Component: Spring MVC Rest Controler]

Allows users to reset their passwords
with a single use URL.

E-mail Component
(Component: Spring Bean]

Sends e-m:

Component diagram for Internet Banking System - API Appl

The . am for the API Ap n
v 0 summer Time)

Mobile App

[Container: Xamarin]

Provides a limited subset of the
Internet banking functionality to
customers via thelr mobile device.

~ Makes API calls to Makes API calls to
[sONHTTP oNHTTPS

Makes API calls to
{FonsTE — - Accounts Summary
Controller
[Component: Spring MVC Rest Cortroller]

Provides customers with a summary
of their bank accounts.

v

Mainframe Banking
System Facade

Componernt; pring Bean]

Afacade onto the mainframe.
banking system.

com.bigbankplc.internetbanking.component.mainframe

MainframeBankingSystemFacade

MainframeBankingSystemFacadelmpl +hrows
——— 1
— 1

GetBalanceRequest
——

InternetBankingSystemException
—

MainframeBankingSystemException

GetBalanceResponse

AbstractRequest AbstractResponse
 —

Dlagrams are maps

that help software developers navigate a large and/or complex codebase

Personal Banking

Customer

[Person]

A customer of the bank, with
personal bank accounts.

AN
Views account N
balances, and Sends e-mails to
makes payments ~
using N
| N
Internet Banking System E-mail System
[Software System] [Software System]
__ Sends e-mail _ =
Allows customers to view using

The internal Microsoft Exchange
e-mail system.

information about their bank
accounts, and make payments.

Gets account
information from,
and makes
payments using

Mainframe Banking
System

[Software System]

Stores all of the core banking
information about customers,
accounts, transactions, etc.

System Context diagram for Internet Banking System

The system context diagram for the Internet Banking System.
Workspace last modified: Wed Feb 05 2020 09:33:36 GMT+0100 (Central European Standard Time)

Personal Banking

Customer

[Person]

A customer of the bank, with
personal bank accounts.

N
Views account N
balances, and Sends e-mails to
makes payments ~
using N
| N
Internet Banking System E-mail System
[Software System] [Software System]
. __ Sends e-mail _ .
Allows customers to view using The internal Microsoft Exchange

information about their bank
accounts, and make payments.

e-mail system.

Gets account
information from,
and makes
payments using

Mainframe Banking

System
[Software System]

The container diagram shows the
containers that reside inside
the software system boundary

Stores all of the core banking
information about customers,
accounts, transactions, etc.

System Context diagram for Internet Banking System

The system context diagram for the Internet Banking System.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

Personal Banking

Customer

[Person]

A customer of the bank, with
personal bank accounts.

~N
- ~N
- - ~N
bi ba\::l?:)m Jib Views account Views account o~)
8 usi;1 balances, and balances, and Sends e-mails to
_ [Hm,g makes payments makes payments ~
using using ~N

-

/ \ ~N
~N
Web Application . . Mobile A :

[Container:]aeapand Spring MVC] . Slngle-Page Appllcatlon [Container: Xamaprinp] E-mall SYStem

Delivers to the [Container: JavaScript and Angular] [Software System]
Delivers the static content and the customer's web — . . Provides a limited subset of the he T .

Internet banking single page browser Provides all of the Internet banking Internet banking functionality to U2] M:croso 2ETLE
application. functionality to customers via their customers via their mobile device. e-mail system.
web browser.
-
-
~

\ /

Makes API calls to Makes API calls to
[ISON/HTTPS] [JSON/HTTPS]

\ /

Mainframe Banking

System
[Software System]

Database

[Container: Relational Database Schema]

API Application

[Container: Java and Spring MVC]

__Readsfromand
writes to
[DBC]

— — Makes APlFallsto — —
Provides Internet banking XML/HTRPS]
functionality via a JSON/HTTPS API.

Stores user registration information,
hashed authentication credentials,
access logs, etc.

Stores all of the core banking
information about customers,
accounts, transactions, etc.

Internet Banking System
[Software System]

Container diagram for Internet Banking System

The container diagram for the Internet Banking System.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

Personal Banking

Customer

[Person]

A customer of the bank, with

- personal bank accounts. \
7~ - o
N
bigbaIrlIliIzsom /ib Views account Views account ~)
using balances, and balances, and Sends e-mails to
P (HTTPS] makes payments makes payments ~N
using using N
d / \ N
______________ o o _ _ ~

Web Application

[Container: Java and Spring MVC]

Mobile App

[Container: Xamarin]

E-mail System
[Software System]

_ Single-Page Application
Delivers to the [Container: JavaScript and Angular]
customer's web —

Delivers the static content and the The internal Microsoft Exchange

e-mail system.

Internet banking single page browser Provides all of the Internet banking Internet banking functionality to
application.

functionality to customers via their customers via their mobile device.
web browser.

I
I
I
I
Provides a limited subset of the |
I
I
I
I
I

~
~
\ / -
Makes API calls to Makes API calls to Sends e-mail
[JSON/HTTPS] [JSON/HTTPS] using
\ / _~ [SMTP]

~
~

Mainframe Banking

Database API Application System
[Container: Oracle Database Schema] Reads from and [Container: Java and Spring MVC] [Software System]
— — . — — — — Makes APl callsto — —
Stores user registration information, wrulggglto Provides Internet banking [XML/HTTPS] Stores all of the core banking

hashed authentication credentials,
access logs, etc.

functionality via a JSON/HTTPS API.

information about customers,
accounts, transactions, etc.

I
I
I
| Internet Banking System I
| [Software System] I

Container diagram for Internet Banking System

The container diagram for the Internet Banking System.
Workspace last modified: Wed Feb 05 2020 09:33:36 GMT+0100 (Central European Standard Time)

Personal Banking

Customer

[GELEC

A customer of the bank, with

ersonal bank accounts.
~ p ~
7 g ™~
~N
bigh. a‘::lili-:m Jib Views account Views account ~)
g u Si;‘l balances, and balances, and Sends e-mails to
_ [Hﬂpg makes payments makes payments ~
- using using N

Web Application
[Container: Java and Spring MVC]

Single-Page Application

[Container: JavaScript and Angular]

Delivers to the
Delivers the static content and the customer’s web —
Internet banking single page browser
application.

Provides all of the Internet banking
functionality to customers via their
web browser.

\

Makes API calls to
[JSON/HTTPS]

\
-

DETE] T

Container: Relational Database Schema
: L __Reads fromand __

Stores user registration information, w";:z to
hashed authentication credentials, ubBa
access logs, etc.

| Internet Banking System
| [Software System]

Container diagram for Internet Banking System
The container diagram for the Internet Banking System.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

API Application

[Container: Java and Spring MVC]

Mobile App

[Container: Xamarin]

|

|

|

|

Provides a limited subset of the |
Internet banking functionality to

customers via their mobile device. |

|

|

|

|

/ -
Makes API calls to Sends e-mail
[ISON/HTTPS] using
/ - [SMTP]
~
3 ~

— — — Makes API calls to —

Provides Internet banking [XML/HTTPS]
functionality via a JSON/HTTPS API.

E-mail System
[Software System]

The internal Microsoft Exchange
e-mail system.

Mainframe Banking
System

[Software System]

Stores all of the core banking
information about customers,
accounts, transactions, etc.

Single-Page Application

[Container: JavaScript and Angular]

Provides all of the Internet banking
functionality to customers via their

web browser. ~— —

Makes API calls to

JSON/HTTS) Makes API calls to
7

_[JSON/HTTPS]

—

Uses Uses Uses

-
-
—

API Application

(Container] . SendsAe-mall
writes to e
[IDBC] [

Database

[Container: Relational Database Schema]

E-mail System
[Software System]

Stores user registration information,
hashed authentication credentials,
access logs, etc.

The internal Microsoft Exchange
e-mail system.

Component diagram for Internet Banking System - APl Application

The component diagram for the API Application.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

~ Makes API calls to

—
Makes API calls to
_— [ISON/HTTPS]
—
—

Mobile App

[Container: Xamarin]

Provides a limited subset of the
Internet banking functionality to
customers via their mobile device.

Makes API calls to
USON/HTTPS]

~

Makes API calls to
[JSON/HTTPS] ~

Uses

lises
[XML/HTTPS]
|

Mainframe Banking
System

[Software System]

Stores all of the core banking
information about customers,
accounts, transactions, etc.

Mobile App

[Container: Xamarin]

Single-Page Application

[Container: JavaScript and Angular]

Provides a limited subset of the
Internet banking functionality to
customers via their mobile device.

Provides all of the Internet banking
functionality to customers via their

web browser. ~ —
\ /
\ /
—_—
— ~
Makes API calls to Makes API calls to Makes API calls to Makes API calls to
—r - - - - — — — — — 4/ — — — — — — — — s e — — N L /_ _— e— E————— e e e —— —— — — — \

Makes API calls to
USON/HTTPS] ~

Makes API calls to
_— [JSON/HTTPS]

I
| I
| I
| I
| I
| I
I
| I
- |
I —
- I
I Uses Uses Uses Uses
| - |
- |
| —~
I
| I
| I
| I
| I
| I
I
| I
API Application |
Contai ' Sends e-mail
-_[cﬂa'fr]_ Reads fromand — — — — — . _ _ _ _ _ _ _ —_ —_ — — _— using -~ — — — — — — — — — — — — — — — — — — — Uses _ _ _ _ _ |
writes to [XML/HTTPS]
[DBC] | I

Mainframe Banking
System

[Software System]

Database

[Container: Oracle Database Schema]

E-mail System
[Software System]

Stores user registration information,
hashed authentication credentials,
access logs, etc.

The internal Microsoft Exchange

Stores all of the core banking
e-mail system.

information about customers,
accounts, transactions, etc.

Component diagram for Internet Banking System - APl Application

The component diagram for the API Application.
Workspace last modified: Wed Feb 05 2020 09:33:36 GMT+0100 (Central European Standard Time)

Mobile App

[Container: Xamarin]

Single-Page Application

[Container: JavaScript and Angular]

Provides a limited subset of the
Internet banking functionality to
customers via their mobile device.

Provides all of the Internet banking
functionality to customers via their

web browser. ~ —
~— —
~ —
—
— ~
Makes API calls to Makes API calls to Makes API calls to Makes API calls to
/USON/ HTTPS] _SON/HTTPS] ISON/HTTPS]_ [SON/HTTPS]
— — — — — — — — - — 2/ _ _ _ _ _ _ _ —_ = — = M, = = = —_— e S~ e = = N
— ~ |

! Makes API calls to Makes API calls to |
| _—~ [JSON/HTTPS] [SON/HTTPS] ~ |
! |
! |
! |
! |
| _ |
| _ - |
| Uses Uses Uses Uses

— I
- I
! I
! {
!
! {

API Application
Container; ’ Sends e-mail
-_[- —]_ Reads fromand — — — — — — — — . . . _ _ _ _ _ _ _— using -~ — - — — —————————— —— — — — Uses — —
writes to [XML/HTTPS]
UDBC] | |

The code level diagram shows the code
elements that make up a component

Mainframe Banking

A
[Software System]

Database

[Container: Relational Database Schema]

E-mail System
[Software System]

Stores user registration information,
hashed authentication credentials,
access logs, etc.

The internal Microsoft Exchange

Stores all of the core banking
e-mail system.

information about customers,
accounts, transactions, etc.

Component diagram for Internet Banking System - APl Application

The component diagram for the API Application.
Workspace last modified: Thu Apr 04 2019 13:09:10 GMT+0100 (British Summer Time)

InternetBankingSystemException

<. tparses

.-~¥creates

o tuses N

GetBalanceRequest GetBalanceResponse

v
BankingSystemConnection

“*-treceives

.-~ "¥sends

AbstractRequest AbstractResponse

InternetBankingSystemEXxception

/\

com.bigbankplc.internetbanking.component.mainframe

MainframeBankingSystemFacade

MainframeBankingSystemFacadelmpl | I | MainframeBankingSystemException
s #parses
_.-““creates :
L tuses s
GetBalanceRequest | GetBalanceResponse
A4

BankingSystemConnection

- =
- ~
- ~

IOt “~~treceives

AbstractRequest AbstractResponse

Plus some supplementary diagrams...

- Asks questions
[Telephone]

[Software System]

Allows customers to withdraw cash.

Withdraws cash

using

Personal Banking

using
A customer of the bank, with
personal bank accounts.

N

Views account

Customer — balances, and
[Person] makes payments — __

Internet Banking System
[Software System]

Allows customers to view
information about their bank
accounts, and make payments.

Sends e-mails to

™ Sends e-mail

using
I

E-mail System
[Software System]

The internal Microsoft Exchange
e-mail system.

System Landscape diagram for Big Bank plc

The system landscape diagram for Big Bank plc.

System Landscape

Gets account
information from,
and makes
payments using

Customer Service Staff
[Person]

Customer service staff within the
bank.

Mainframe Banking
System
[Software System]
Stores all of the core banking

information about customers,
accounts, transactions, etc.

Back Office Staff
[Person]

Administration and support staff
within the bank.

Single-Page Application

[Container: JavaScript and Angular]

Provides all of the Internet banking
functionality to customers via their
web browser.

Database

[Container: Oracle Database Schema]

Stores user registration information,
hashed authentication credentials,
access logs, etc.

Dynamic diagram for API Application
Summarises how the sign in feature works in the single-page application.
Workspace last modified: Wed Feb 05 2020 09:33:36 GMT+0100 (Central European Standard Time)

Sign In Controller

1: Submits B [Component: Spring MVC Rest Controller]

credentials to

Allows users to sign in to the Internet
[SON/HTTPS]

Banking System.

Security Component
3:select * from [Component: Spring Bean]
users where - —
username =? Provides functionality related to

[DBC] signing in, changing passwords, etc.

API Application
[Container]

Dynamic

Mobile App

[Container: Xamarin]

API Application
[Container: Java and Spring MVC]

Provides a limited subset of the - Makes API calls to —

Internet banking functionality to USON/HTTPS]
customers via their mobile device.

Provides Internet banking

Customer's mobile device
[Deployment Node: Apple iOS or Android]

é
Apache Tomcat
[Depléyment Node: Apache Tomcat 8.x]

/
bigbank-api***
[Deployment Node: Ubuntu 16.04 LTS]

/

Makes API calls to
[SON/HTTPS]
7

/

; S Web Application
SIngle-Page Appllcatlon [Container: jaﬁ':nd Spring MVC]
[Container: JavaScript and Angular] Delivers to the .

— customer's web — Delivers the static content and the

Internet banking single page
application.

Provides all of the Internet banking
functionality to customers via their
web browser.

Web Browser
[Deployment Node: Chrome, Firefox, Safari, or Edge]

Apache Tomcat
| [Deployment Node: Apache Tomcat 8.x]

Customer's computer
| [Deployment Node: Microsoft Windows or Apple macOS]

bigbank-web***
[Deployment Node: Ubuntu 16.04 LTS]

Big Bank plc
[Deployment Node: Big Bank plc data center]

Deployment diagram for Internet Banking System - Live
An example live deployment scenario for the Internet Banking System.
Workspace last modified: Wed Feb 05 2020 09:33:36 GMT+0100 (Central European Standard Time)

functionality via a JSON/HTTPS API.

Database

_ Reads from and [Container: Oracle Database Schema]

writes to

e Stores user registration information,

hashed authentication credentials,
access logs, etc.

Oracle - Primary
[Deployment Node: Oracle 12c]

bigbank-db01
[Deployment Node: Ubuntu 16.04 L[I'S]

Replicates data to

Deployment

Abstractions first,
notation second

Ensure that your team has a ubiquitous
language to describe software architecture

The C4 model is
notation independent

«Software System»
Spring PetClinic Spring PetClinic - Containers
«Person»

«Container» /
Web Application
(from Spring PetClinic)
Clinic Employee -
[Person) Allows employees to Clinic Employee
An employee of the clinic YIeW anq manage) |
{ Clinic Employee information regarding '
the veterinarians, the Uses «HTTPS»
‘ clients, and their pets.

| SpringPetClinic
Reads from and

writes to
UDFC]

\
v

' «JDBC» «C Onta/'.r‘lerl»
+Reads from and writes to Web Application

«Container»
Database

(from Spring PetClinic) «Container»

. . Database
Stores information

[ssg;ivr;ils’e;ecr:;nlc regal’dlng the
: veterinarians, the
clients, and their pets.
The Container diagram for the Spring PetClinic system.

Container diagram for Spring PetClinic
The Containers diagram for the Spring PetClinic system.
Last modified: Thursday 17 August 2017 10:15 UTC | Version: 95de1d9f8bf63560915331664b27a4a75ce1f1f6

Internet Banking System
[Software System]

Web Application

[Container: Java and Spring MVC]

Delivers the static content and the

Internet banking single page browser
application.

Database

[Container: Oracle Database Schema]

Stores user registration information,
hashed authentication credentials,
access logs, etc.

| Internet Banking System
| [Software System]

Delivers to the

Personal Banking

Customer

[Person]

A customer of the bank, with

ersonal bank accounts.
~ B ~
7~ g o~
~N
bigh a\:lllil:) m/ib Views account Views account . .
g usi;1 balances, and balances, and Sends e-mails to
_ [H'I'I'Pg] makes payments makes payments ~
using using ~N

Single-Page Application

[Container: JavaScript and Angular]

Mobile App

[Container: Xamarin]

customer's web —|

Provides a limited subset of the
Internet banking functionality to

|

I

I

|

Provides all of the Internet banking |
customers via their mobile device. |
|

|

I

I

functionality to customers via their
web browser.

\ / -
Makes API calls to Makes API calls to Sends e-mail
[SON/HTTPS] [JSON/HTTPS] using
- [SMTP]

API Application

B Reads from and o [Container: Java and Spring MVC]

writes to
DBC]

— — Makes API calls to —

Provides Internet banking [XML/HTTPS]

functionality via a JSON/HTTPS API.

Container diagram for Internet Banking System

The container diagram for the Internet Banking System.

Workspace last modified: Tue Oct 29 2019 15:41:33 GMT+0000 (Greenwich Mean Time)

Container

Software System, Existing

System

Container, Database

R

Relationship

E-mail System
[Software System]

The internal Microsoft Exchange
e-mail system.

Mainframe Banking
System

[Software System]

Stores all of the core banking
information about customers,
accounts, transactions, etc.

Container, Mobile App

Container, Web Browser

The lost art of
software modelling?

How can we avoid copy-pasting
elements across diagrams?

Stop using Visio!

«@»
=l

ThoughtWorks:

TECHNOLOGY RADAR

Download

What we do Who we work with Insights

Subscribe Search Build your Radar

Techniques

Trial

5. Continuous delivery for machine learning
(CD4ML)

6. Data mesh

7. Declarative data pipeline definition

8. Diagrams as code

We're seeing more and more tools that
enable you to create software architecture
and other diagrams as code. There are
benefits to using these tools over the heavier
alternatives, including easy version control
and the ability to generate the DSLs from
many sources. Tools in this space that we like

include Diagrams, Structurizr DSL,

AsciiDoctor Diagram and stables such as

WebSequenceDiagrams, PlantUML and the

venerable Graphviz. It's also fairly simple to

generate your own SVG these days, so don't

rule out auicklvy writing vour own tool either.

About

Careers About Contact Search Q

Techniques

® New
@® Moved in/out

@® Nochange

Diagrams as code

Hold Assess Trial Adopt

Unable to find something you expected to see?

Each edition of the radar features blips reflecting what we came
across during the previous six months. We might have covered

Espafiol Portugués Deutsch HX

“Diagrams as code” is easy to author,
diff, version control, collaborate on,
iIntegrate into CI/CD, etc

@startuml
title Software System - System Context

top to bottom direction

hide stereotype

c)"==User\n<size:10>[Person]</size>" <<User>> as User

éhgié*"==80ftware System\n<size:10>[Software System]</size>" <<SoftwareSystem>> as SoftwareSystem

. 1
e Ty
— ——

 —

— o

User ..> SoftwareSystem : "Uses"
denduml

Domain language of diagramming

(no rules, no guidance)

“Diagrams as code 2.0"
makes this model based,
separating content from presentation

workspace {

model { . —
user € person "Wser"
softwaresystem =C

reSystémf*

Software System"

user —-> softwareSystem "Uses"

}
views {
systemContext softwareSystem {
include *
autoLayout
}
}

Domain language of software architecture

(metamodel and rules)

workspace {

model {
user = person "User"
softwareSystem = softwareSystem "Software System"
user —-> softwareSystem "Uses" User
}
|
. |
views {

systemContext softwareSystem {
include * |
autolLayout

Software System
[Software System]

webapp = container "Web Application"
database = contalner "Database"

user —> webapp "Uses"
webapp —-> database "Reads from and writes to"

container softwareSystem
include *
autolayout

User

[Person]

Software System
[Software System]

User

[Person]

Web Application

[Container]

I

I

I

I

I

I

I

I

I

I

| Reads from and
| writes to
I
I
I
I
I
I
I
I
I
I

|
v

Database

[Container]

| Software System
| [Software System]

user

- >

softwareSystem "Uses"

User

[Person]

Software System
[Software System]

user -> webapp "Uses"
webapp —-> database

User

[Person]

Software System
[Software System]

"Reads

from and

User

[Person]

Web Application

[Container]

Reads from and
writes to

|
\ 4

Database

[Container]

| Software System
| [Software System]

writes to"

contaliner softwareSystem
include user ->servicel->
autolayout

— - - —— = - — - — - — - — - = = = = = —

[Container]

Service 1 Database @ « — FReadsfromand

writes to

User

[Person]

Web Application

[Container]

Uses

Service 1 API

[Container]

Uses

Service 2 API

[Container]

_— e a2

Software System - Containers

User‘
| [Person] |

N -
|

‘Uses
|

Software System |,
[Software System],

Y
Web Application

[Container]

1
|

Uses
|
|
|
|

Y

<Service 1 API>
[Container]

| ~
~
l ~

-~

Readsfrom and ™~
writes to ~

|

|
l ~

|
¥ AW
Service 2 API

[Container]

Service 1 Database
[Container] N

How can we avoid our diagrams
pecoming out of sync when we make
changes to our code?

Authoring tool

Create diagrams as code (Java, .NET,
TypeScript, Python, PHP, etc) or text
(DSL, YAML) via a number of different
authoring tools.

private static final long WORKSPACE_ID = 25441;
private static final String API_KEY = "";
private static final String API_SECRET = "“;

public static void main(String[] args) throws Exception {
// all software architecture models belong to a workspace
Workspace workspace = new Workspace("Getting Started”, “This is a model of my software system.");
Model model = workspace.getModel();

// create a model to describe a user using a software system

Person user = model.addPerson("User", "A user of my software system.");

SoftwareSystem softwareSystem = model.addSoftwareSystem(“Software System”, "My software system.");
user.uses(softwareSystem, "Uses");

// create a system context diagram showing people and software systems

ViewSet views = workspace.getViews();

SystemContextView contextView = views.createSystemContextView(softwareSystem, “SystemContext", "An example of
contextView.addAllSoftwareSystems();

contextView.addAllPeople();

// add some styling to the diagram elements

Styles styles = views.getConfiguration().getStyles();
styles.addElementStyle(Tags.SOFTWARE_SYSTEM) .background("#1168bd").color ("#ffffff");
styles.addElementStyle(Tags.PERSON) .background("#08427b").color ("#ffffff").shape(Shape.Person);

// upload to structurizr.com (you'll need your own workspace ID, API key and API secret)
StructurizrClient structurizrClient = new StructurizrClient(API_KEY, API_SECRET);
structurizrClient.putWorkspace (WORKSPACE_ID, workspace);

workspace "Getting Started" "This is a model of my software system." {

model {
user = person "User" "A user of my software system."
softwareSystem = softwareSystem "Software System" "My software system."

user —> softwareSystem "Uses"

}

views {
systemContext softwareSystem "SystemContext" "An example of a System Context diagram."
include *

}

styles {
element "Software System" {
background #1168bd
color #ffffff

element "Person" {
shape person
background #08427b
color #ffffff

@ Structurizr

Workspace

A workspace is the wrapper for a
= = = Creates = = software architecture model and views,
described using the C4 model and
an open JSON data format.

A

Consumes

Custom tool

Your own tooling to parse the model

and views; for integration into other

rendering tools, dashboards, service
catalogs, etc.

<4 = Renders= = =

Rendering tool

Render views using multiple
diagramming tools and formats
(Structurizr cloud service/on-premises
installation/Lite, PlantUML, Mermaid,
WebSequenceDiagrams, llograph, etc).

Diagramming tools are still the first choice for
most teams, but some are starting to adopt
modelling tools to improve consistency and

enable diagram automatic generation

Abstractions first,
notation second

Thank you!

=8 Simon Brown
b W @simonbrown

