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Presentation Outline

 Past: Manufacturing and AI Background
 Present: Smart Manufacturing Research
• Remote Monitoring and Control
• Human-Robot Collaboration

 Future: Research Directions
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Past



Manufacturing in a Nutshell
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(Adapted from Koren and Ulsoy, “Reconfigurable manufacturing systems,” ERC/RMS, University of Michigan, 1997)

Towards Smart Manufacturing
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1975:
Genetic 
Algorithm, 
John Holland

1958:
LISP – 1st AI 
Language,
John McCarthy

1950:
Turing Test – Can 
Machines Think?
Alan Turing

1951:
1st Neuron Computer, 
Marvin Minsky & 
Dean Edmonds

1956:
1st AI Workshop, 
John McCarthy

1965:
Fuzzy Sets, 
Lotfi Zadeh

1961:
GPS, Allen 
Newell & 
Herbert 
Simon

1969:
DENDRAL, Edward 
Feigenbaum, Bruce 
Buchanan, Joshua 
Lederberg

The Rise 
of AI

1943:
Binary ANN 
Model,
Warren 
McCulloch & 
Walter Pitts

1997:
Hybrid AI 
Systems

1987:
Fuzzy Logic-based 
electronics, Japan

1943 1950 1960 1970 1980 1990 2000

AI R&
D

 Activities

1976:
MYCIN, 
Stanford 
University

1982:
Hopfield Net, 
John Hopfield

1970:
ANN 
Learning, 
Bryson & Ho

1986:
Back-Propagation 
and Start of DAI, 
D.E. Rumelhart & 
J.L. McClelland

1992:
Genetic 
Programming, 
John Koza

1995:
Intelligent 
Agent

Since 2002:
ACO, PSO, AIO, 
DNA Computing 
…

Dark 
Age AI Winter

AI Becomes 
a Science

L. Wang, "From Intelligence Science to Intelligent Manufacturing," Engineering, Vol.5, No.4, pp.615-618, 2019.Reference

A Brief History of AI



Earlier AI Applications
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Garry Kasparov playing Deep Blue in 1997

Honda ASIMO walking downstairs in 2005



AlphaGo in 2016
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AlphaGo vs. Lee Sedol

DeepMind 
Servers in USA

During the legendary matches:
 Google cloud servers in the USA 

using 1920 CPUs, 280 GPUs and 64 
search threads. 

 Big data: 30 million moves. 
 Reinforcement leaning, Monte Carlo 

search combined with deep neural 
network for decision making. 



Self-Learning of AlphaGo Zero
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AI for Smart Manufacturing
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Robots

Sensors

Smart 
tools

History
data

Machine 
learning 
models

Functionalities for HRC

KnowledgeData Actions

Human 
operators

L. Wang, "From Intelligence Science to 
Intelligent Manufacturing," Engineering, 
Vol.5, No.4, pp.615-618, 2019.

Reference



Typical Machine Learning Models
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Machine learning models Supervised/ 
Unsupervised/ Semi-
supervised

Discriminative/ 
Generative

Deep learning/ 
Not deep learning

K-Means Clustering Unsupervised Generative Not deep learning
K-Nearest Neighbours Supervised Discriminative Not deep learning
Support Vector Machine Supervised Discriminative Not deep learning
Hidden Markov Model Supervised Discriminative Not deep learning
Random Forest Supervised Discriminative Not deep learning
XGBoost Supervised Discriminative Not deep learning
Ensemble Methods Supervised Discriminative Not deep learning
Convolutional Neural Network Supervised Discriminative Deep learning
Recurrent Neural Network Supervised Discriminative Deep learning
Long Short-Term Memory Supervised Discriminative Deep learning
Naive Bayes Supervised Generative Not deep learning
Gaussian Mixture Model Supervised Generative Not deep learning
Generative Adversarial Nets Semi-supervised Generative Deep learning
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Present



Industry 4.0 and Opportunities
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(Adapted from Baur C., Wee D.: Manufacturing’s Next Act. MacKinsey & Company Digital, June 2015,  
https://www.mckinsey.com/business-functions/operations/our-insights/manufacturings-next-act)

https://www.mckinsey.com/business-functions/operations/our-insights/manufacturings-next-act
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AMP 2.0 on Manufacturing Innovation

Activity - Technology Readiness Level

1 2 3 4 5 6 7 8 9

Scale - center 
annual budget

$100K

$1M

NSF ERC

ITRI - Taiwan

SBIR, STTR
NIST MEPs

DoE Energy Hubs

$10M

$100M

Area of typical US Mfg. Company R&D

Fraunhofer- Germany

Adv. Mfg Res Centers, UK

Proposed AMP
scale and placement

Manufacturing 
Innovation Institutes

NSF IUCRC

GAP
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National Network of Mfg Innovation

 Regional hubs for 
manufacturing innovation

 Promote collaboration 
between institutes

 Establish common policies 
when appropriate

 Provide a forum for sharing 
best practices

 Link activities through the 
Manufacturing Portal

Source: M Molnar, Advanced Manufacturing National Program Office, 
with modifications

The first institute, America Makes, was established 
in August 2012 as a pilot in Youngstown, OH



3 More Institutes founded in 2014
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President Obama announced the Power Electronics 
Manufacturing Institute in North Carolina on 
January 15, 2014

President Obama announced the Manufacturing 
Institutes in Light Weight Metals Manufacturing 
(Detroit) and Digital Manufacturing and Design

Innovation (Chicago) on February 25, 2014



16 Institutes as Part of NNMI
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America Makes
Additive Mfg

Youngstown, OH

PowerAmerica
Energy Efficiency

Raleigh, NC

LIFT
Light/Modern Metals

Detroit, MI

IACMI
Adv Composites

Knoxville, TN

DMDII
Digital Mfg
Chicago, IL

16 Institutes Established
• An initial network of 15 institutes 

was planned. Over 10 years, 45 
institutes will be established. 

• At launch, 349 companies and 
universities active partners from all 
across the country



Other Innitiatives
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Smart Manufacturing: CPS in Mfg
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A Quick Comparison
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Cloud Computing

Cloud Manufacturing

Cyber-Physical System

Internet of Things

H/W in the Loop
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Topic 1:

Remote Monitoring and Control



A CPS in the Cloud
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Virtual to Real via Cloud
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System Architecture
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Sensor Data Collection
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Health Monitoring Data Format

Motion Monitoring Data Format

1 2 3 4 5 6 7 8 9 10 11 12

BPFO1 BPFO2 BPFI1 BPFI2 SPEED TMPR BPFO1 BPFO2 BPFI1 BPFI2 SPEED TMPR

Vibration 1 Speed 1 Temp 1 Vibration 2 Speed 2 Temp 2

1 2 3 4 5 6 7 8 9 10 11 12

Axis1 Axis2 Axis3 Axis4 Axis5 Axis1 Axis2 Axis3 Axis4 Axis5 Feed Rate SPEED

Relative Position Absolute Position
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In collaboration with Professor Robert Gao, CWRU



A Mini Robotic Assembly Cell
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Demo
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Data Size Comparison
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An 8-bit VGA Camera Image
640×480 (307,200 bytes)

One Scene in Java 3D
Any size (52 bytes)

100%0.017%

1 2 3 4 5 6 7 8 9 10 11 12 13

Relative position of 6 joints Absolute position of 6 joints CW
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Topic 2:

Human-Robot Collaboration



Human-Robot Collaboration

2022-11-02 KTH Sustainable Manufacturing • www.kth.se • © Lihui Wang 30

Operator’s 
hand 

tracked by 
the system

Robot’s end-
effector follows 
the operator’s 

hand

Monitored area

Parts of the scene 
considered as 
background

Collaboration 
modes can be 
specified by 

operator’s voice 
commands

Following

Monitored 
distance

Part to be 
assembled  The capability to track an 

operator’s position allows 
controlling a robot to 
follow the operator

Operator’s 
thoughts can be 

converted to robot 
control commands



Key Properties of HRC Assembly
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Multiplicity Initiative

Wang XV, Kemény Z, Váncza J, Wang L (2017) Human–Robot Collaborative Assembly in Cyber-Physical Production: Classification 
Framework and Implementation. CIRP Ann - Manuf Technol 66(1):5–8.

Reference

KTH Sustainable Manufacturing • www.kth.se • © Lihui Wang
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Human-robot co-existing environment

Dual-camera 
for positioning

Collecting current 
robot position

Calculating 
relative distance

Making decision / 
taking action

Acquiring depth 
images of operator

Detecting 
operator’s position

Monitoring robot 
via a 3D model

Active Collision Avoidance

Depth images

Data 
acquisition

Background
removal

Filtering 
and labeling

3D visualisation

Combining with 3D 
model of robot

Depth images without 
background

3D point cloud of 
detected operator

Active collision 
detection and 

avoidance between 
human and robot

Detected operator

Augmented 
environment

Camera 1 Camera 2

Reference Schmidt B, Wang L (2014) Depth camera based collision avoidance via active robot control. J Manuf Syst 33(4):711–7118.

KTH Sustainable Manufacturing • www.kth.se • © Lihui Wang
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Human action recognition

Part/tool identification

 Part/tool identification: recognize what the human operator picks up
 Identified part/tool: valid for a “picking up” + “installing” combination

Deep Learning of Assembly Context 

Reference Wang P, Liu H, Wang L, Gao RX (2018) Deep learning-based human motion recognition for predictive context-aware human-
robot collaboration. CIRP Ann - Manuf Technol 67(1):17–20.

KTH Sustainable Manufacturing • www.kth.se • © Lihui Wang
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∎ Prediction
 Based on cognition and modeling 

of human behavioral pattern and 
preference

 Human heterogeneity needs to be 
accounted for, in a probabilistic 
manner 

∎ Action
 Safely adapt to human worker’s planned and unplanned 

interactions 

Example: probabilistic modeling of human action and intention
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Prediction for Robotic Assistance

Reference Wang P, Liu H, Wang L, Gao RX (2018) Deep learning-based human 
motion recognition for predictive context-aware human-robot 
collaboration. CIRP Ann - Manuf Technol 67(1):17–20.
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Robot Assisting Human in Assembly

2022-11-02 KTH Sustainable Manufacturing • www.kth.se • © Lihui Wang 35

Reference
J. Zhang, H

. Liu, Q. Chang, L. W
ang and R. X. Gao, "Recurrent N

eural N
etw

ork for M
otion Trajectory 

Prediction in H
um

an-Robot Collaborative Assem
bly," CIRP Ann -M

anuf Technol, 69(1), 9-12, 2020.
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Future



Concept of Brain Robotics
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hand

Monitored area

Parts of the scene 
considered as 
background

Collaboration 
modes can be 
specified by 

operator’s voice 
commands

Following

Monitored 
distance

Part to be 
assembled

Brainwave 
command

Robot actions

EEG station

AI-based
convertor

EEG 
electrode

Human thought

Signal processing

Signal
acquisition

Feature
extraction

Training & classification

Function block (FB)

 Working with robot during 
assembly

Part to be 
assembled

Sensor 
headset

Gripper 
Parts of the scene 
considered as background 

Reference L. Wang, S. Liu, C. Cooper, X. V. Wang and R. X. Gao, "Function Block-Based Human-Robot Collaborative Assembly Driven by Brainwaves," CIRP 
Annals – Manufacturing Technology, Vol.70, No.1, pp.5-8, 2021.



System Architecture and Configuration
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L. Wang, S. Liu, C. Cooper, X.V. Wang and R.X. Gao, “Function Block-Based Human-Robot Collaborative Assembly Driven by Brainwaves,” 
CIRP Annals – Manufacturing Technology, Vol.70, No.1, pp.5-8, 2021.

Reference
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From Brainwaves to Control Commands

2022-11-02 KTH Sustainable Manufacturing • www.kth.se • © Lihui Wang 39

cw 1






S

P

O

t

µV
Signals

Wavelet transform

cw 2

cw 3

cw: command word

Command 
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Example:

A control command

 

    

  

Control 
Execution 
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Internal 
variables 

Algorithms 

    

    

  

Robot 
command

Trigger FBs


𝑡𝑡1 𝑡𝑡2 𝑡𝑡3

A command phrase

 

: Subject/executor
: Predicate/action
: Object/component

𝑡𝑡0

CWT
t-f conversion

𝐶𝐶 =
1
𝑠𝑠
�
−∞

∞
𝑥𝑥 𝑡𝑡 𝛹𝛹∗ 𝑡𝑡 − 𝜏𝜏

𝑠𝑠
𝑑𝑑𝑡𝑡

t

Hz 
t-f images

 Base wavelet selection: according to the mean values of energy-to-entropy ratio of B-Spline (80), Bump (66), 
Morlet (172), Morse (130) and Shannon (149), Morlet is chosen in this research.

Reference L. Wang, S. Liu, C. Cooper, X. V. Wang and R. X. Gao, "Function Block-Based Human-Robot Collaborative Assembly Driven by Brainwaves," CIRP 
Annals – Manufacturing Technology, Vol.70, No.1, pp.5-8, 2021.



Macro-Micro Robot Control by FBs
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Reference Wang L, Schmidt B, Givehchi M, Adamson G (2015) Robotic assembly planning and control with enhanced adaptability through function blocks. 
Int J Adv Manuf Technol 77(1–4):705–715.

Function 
Blocks



Stimulus-free Brainwave-driven HRC Assembly
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From Technologies to Values
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Physical 
World

Virtual 
World

• Human-
machine 
interaction

• Digital 
twins & 
simulation

• Bio-inspired 
technologies & 
smart materials

• Energy 
efficiency & 
autonomy

• Data 
transmission, 
storage & analysis

• Artificial 
intelligence

Enabling Technologies

Policy
Agility, 

interrelations & 
systemic view

Value Generation

Economy
Profitability, scalability, 

business models

Ecology
CO2 reduction, 

circular economy

Society
Societal challenges, 

human-centricity

Industry 5.0

… promotes talents, diversity
and empowerment 

… is agile and resilient with flexible 
and adaptable technologies 

… leads action on sustainability
and respects planetary boundaries

X. Xu, Y. Lu, B. Vogel-Heuser and L. Wang, "Industry 4.0 and Industry 5.0—Inception, Conception 
and Perception," Journal of Manufacturing Systems, Vol.61, pp.530-535, 2021.

Reference



Human-Centric Assembly in the Future
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Augmented Robot
(Exoskeleton)

Energise

Cognitive System
(Intelligent Agent) 

Advise

Mixed Reality
(AR + Digital Twin) Support Co-Intelligence

(AI + Human Intelligence) Empower

Brain Robotics
(Brain-Controlled Robot)

Thoughts

Assisting Human-Centric 
Assembly

Knowledge



EASE

TASK

Sensing

Maximise Teamwork in Smart FactoriesSustainable Resilient

HUMAN

L. Wang, "A Futuristic Perspective on Human-Centric Assembly," Journal of Manufacturing Systems, Vol.62, pp.199-201, 2022.Reference



Symbiotic HRC Assembly in Action
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https://youtu.be/_0lPxs0rYls(com
plete version)

https://youtu.be/_0lPxs0rYls
https://youtu.be/_0lPxs0rYls
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