

RUS

FED

BELARU

- Past: Manufacturing and AI Background
- Present: Smart Manufacturing Research
 - Remote Monitoring and Control
 - Human-Robot Collaboration
- <u>Future</u>: Research Directions

Manufacturing in a Nutshell

ROYAL INSTITUTE OF TECHNOLOGY

Current Focus:

- Sustainable manufacturing
- Cloud manufacturing
- Human-robot collaboration
- Programming-free machine control
- Additive manufacturing
- CPS in manufacturing

Manufacturing Paradigms

(Adapted from Koren and Ulsoy, "Reconfigurable manufacturing systems," ERC/RMS, University of Michigan, 1997)

A Brief History of AI

Earlier AI Applications

Garry Kasparov playing Deep Blue in 1997

Honda ASIMO walking downstairs in 2005

AlphaGo vs. Lee Sedol

AlphaGo in 2016

During the legendary matches:

- Google cloud servers in the USA using 1920 CPUs, 280 GPUs and 64 search threads.
- Big data: 30 million moves.
- Reinforcement leaning, Monte Carlo search combined with deep neural network for decision making.

Self-Learning of AlphaGo Zero

AI for Smart Manufacturing

Typical Machine Learning Models

Machine learning models	Supervised/ Unsupervised/ Semi-	Discriminative/ Generative	Deep learning/	
	supervised		not deep learning	
K-Means Clustering	Unsupervised	Generative	Not deep learning	
K-Nearest Neighbours	Supervised	Discriminative	Not deep learning	
Support Vector Machine	Supervised	Discriminative	Not deep learning	
Hidden Markov Model	Supervised	Discriminative	Not deep learning	
Random Forest	Supervised	Discriminative	Not deep learning	
XGBoost	Supervised	Discriminative	Not deep learning	
Ensemble Methods	Supervised	Discriminative	Not deep learning	
Convolutional Neural Network	Supervised	Discriminative	Deep learning	
Recurrent Neural Network	Supervised	Discriminative	Deep learning	
Long Short-Term Memory	Supervised	Discriminative	Deep learning	
Naive Bayes	Supervised	Generative	Not deep learning	
Gaussian Mixture Model	Supervised	Generative	Not deep learning	
Generative Adversarial Nets	Semi-supervised	Generative	Deep learning	

Present

Industry 4.0 and Opportunities

AMP 2.0 on Manufacturing Innovation

National Network of Mfg Innovation

Source: M Molnar, Advanced Manufacturing National Program Office, with modifications

- Regional hubs for manufacturing innovation
- Promote collaboration between institutes
- Establish common policies when appropriate
- Provide a forum for sharing best practices
- Link activities through the Manufacturing Portal

3 More Institutes founded in 2014

ROYAL INSTITUTE OF TECHNOLOGY

President Obama announced the Power Electronics Manufacturing Institute in North Carolina on *January 15, 2014*

President Obama announced the Manufacturing Institutes in Light Weight Metals Manufacturing (Detroit) and Digital Manufacturing and Design Innovation (Chicago) on *February 25, 2014*

16 Institutes as Part of NNMI

Other Innitiatives

Factories of the Future Public Private Partnership

Smart Manufacturing: CPS in Mfg

ROYAL INSTITUTE OF TECHNOLOGY

Cyber-Physical Systems Industrial Internet mart **Big Data** Internet of Things **Cloud Manufacturing** Manufacturin Embedded Syst System of CPS

Topic 1: Remote Monitoring and Control

A CPS in the Cloud

Virtual to Real via Cloud

Sensor Data Collection

In collaboration with Professor Robert Gao, CWRU

A Mini Robotic Assembly Cell

A mini robotic assembly cell

Wise-ShopFloor

Demo

Data Size Comparison

1	2	3	4	5	6	7	8	9	10	11	12	13
Relative position of 6 joints					Absolu	te posi	tion of	6 joints	6	CW		

An 8-bit VGA Camera Image 640×480 (307,200 bytes)

0.017%

One Scene in Java 3D Any size (52 bytes)

Topic 2: Human-Robot Collaboration

Human-Robot Collaboration

Key Properties of HRC Assembly

ROYAL INSTITUTE OF TECHNOLOGY

Initiative

Reference

Wang XV, Kemény Z, Váncza J, Wang L (2017) Human–Robot Collaborative Assembly in Cyber-Physical Production: Classification Framework and Implementation. *CIRP Ann - Manuf Technol* 66(1):5–8.

Active Collision Avoidance

OF TECHNOLOGY

Deep Learning of Assembly Context

Wang P, Liu H, Wang L, Gao RX (2018) Deep learning-based human motion recognition for predictive context-aware human-robot collaboration. *CIRP Ann - Manuf Technol* 67(1):17–20.

Prediction for Robotic Assistance

ROYAL INSTITUTE OF TECHNOLOGY

Action

 Safely *adapt to* human worker's planned and unplanned interactions

Reference

Wang P, Liu H, Wang L, Gao RX (2018) Deep learning-based human motion recognition for predictive context-aware human-robot collaboration. CIRP Ann - Manuf Technol 67(1):17-20.

04

01

02

03

04

a₃ **0**₃

03

 $P(a_2 | \langle a_1, o_1 \rangle)$

 $P(o_1 | a_2, (a_1, o_1))$

01

 a_2 01

02

01

a1 01

a1 01

inference

High-order

probability

inference

Maximize

probability

chain

01

 $P(a_1 | \langle a_2, o_1 \rangle)$

 $P(o_4 | a_1, \langle a_2, o_1 \rangle)$

a₂ 0₁

02

 a_1

 $0_2 \ 0_3 \ 0_4$

 a_2

 a_4

01

02

03

0₄

 $a_4 O_3$

Robot Assisting Human in Assembly

Future

Concept of Brain Robotics

L. Wang, S. Liu, C. Cooper, X. V. Wang and R. X. Gao, "Function Block-Based Human-Robot Collaborative Assembly Driven by Brainwaves," CIRP Annals – Manufacturing Technology, Vol.70, No.1, pp.5-8, 2021.

System Architecture and Configuration

ROYAL INSTITUTE OF TECHNOLOGY

Reference

L. Wang, S. Liu, C. Cooper, X.V. Wang and R.X. Gao, "Function Block-Based Human-Robot Collaborative Assembly Driven by Brainwaves," *CIRP Annals – Manufacturing Technology*, Vol.70, No.1, pp.5-8, 2021.

From Brainwaves to Control Commands

ROYAL INSTITUTE OF TECHNOLOGY

Base wavelet selection: according to the mean values of energy-to-entropy ratio of B-Spline (80), Bump (66), Morlet (172), Morse (130) and Shannon (149), Morlet is chosen in this research.

Reference

L. Wang, S. Liu, C. Cooper, X. V. Wang and R. X. Gao, "Function Block-Based Human-Robot Collaborative Assembly Driven by Brainwaves," *CIRP Annals – Manufacturing Technology*, Vol.70, No.1, pp.5-8, 2021.

Macro-Micro Robot Control by FBs

ROYAL INSTITUTE OF TECHNOLOGY

Reference Wang L, Schmidt B, Givehchi M, Adamson G (2015) Robotic assembly planning and control with enhanced adaptability through function blocks. *Int J Adv Manuf Technol* 77(1–4):705–715.

Stimulus-free Brainwave-driven HRC Assembly

and Perception," Journal of Manufacturing Systems, Vol.61, pp.530-535, 2021.

Human-Centric Assembly in the Future

https://youtu.be/_0lPxs0rYls (complete version)

SYMBIO-TIC project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 637107.

Lihui Wang

Director, Centre of Excellence in Production Research Chair Professor of Sustainable Manufacturing KTH Royal Institute of Technology • Stockholm • Sweden

www.kth.se/profile/lihuiw/ • lihui.wang@iip.kth.se

