

Trends in Transportation and Logistics and the Role of Optimization

M. Grazia Speranza University of Brescia

IN4PL 2022

Optimization in transportation and logistics

1960's and 70's

"Transportation science" emerged

"Transportation" meant traffic and public transportation

"Logistics" referred to physical distribution and inventory management

The contributions

The contributions: efficiency

Efficient use of scarce resources

Scarcity is a fact of life. While people's desire for goods is unlimited, the resources to produce them are limited

The contributions: systemic approach

The contributions: looking ahead

Anticipation of consequences

The contributions: in one word

Technology

Trends in transportation

Moreover...

Meeting the needs of the present without compromising the ability of future generations to meet their needs

Technology and optimization

Transportation (freight and people)

Freight-empty returns:31% for companies23% for logistic companies

People-use of personal cars: 70-75%

Waste of capacity

Unnecessary emissions

Directions in research

Systemic

Data-driven

Technology-driven

Collaborative

Dynamic

Freight

0

Ο

 \square

 \mathbf{O}

Pick-up

Delivery

0

0

Archetti, Christiansen, Speranza, EJOR, 2018

 \bigcirc

- Sequential policy: each customer independent
- Coordinated policy

	% total cost (average)	% total cost (max)
T=3	40.47	63.19
T=6	27.66	40.28
Low inventory cost	36.36	52.97
High inventory cost	34.67	63.19
All	35.54	63.19

Reduction of emissions: 35.54%

Archetti, Feillet, Mor, Speranza, EJOR, 2020 Archetti, Feillet, Mor, Speranza, COR, 2018

	Avg.	Avg.	Avg.	Avg.	Avg.	Avg.		
	Deterministic	Stochastic	R	RD	RDW	"myopic"		
$\delta = 0$	2.69	0.72	1.77	1.68	1.67		11.96	
$\delta=$ 0.5	2.96	1.40	2.35	2.17	2.02		14.74	
$\delta = 1$	3.10	1.34	3.03	2.39	2.25		10.85	
$\beta = 0.5$	1.91	1.28	1.67	1.61	1.51		24.22	
eta = 1	3.79	0.90	2.37	2.56	2.11		11.10	
$\beta = 1.5$	3.05	1.29	2.40	2.09	2.02		2.23	
Avg.	2.92	1.16	2.14	2.09	1.88		12.52	

Iterated local search

Reduction of emissions: 13%

Causes of double parking:

- Scarcity of L/U areas
- Need to deliver
- Individual routes and schedules

Consequences of double parking:

- One less lane available
- Queues of vehicles
- Emissions

A vehicle makes a booking of the L/U areas

Windows of (un)availability for the following vehicles

Mor, Speranza, Viegas, TR E, 2020

OF BRESC

Fixed and flexible starting time

Fixed starting time of the route: $T_0 = q$

(the vehicle decides the starting time of the route)

Routing only

Flexible starting time of the route: $T_0 \ge q$ and $T_0 \le q+f$

(the starting time of the vehicle is between q and q+f)

Routing + Scheduling

Computational experiments

Lisbon: 560m x 260m

Tests

Independent vehicles: TSP for each vehicle (Lin-Kernighan heuristic)

Sequential booking with fixed starting time (formulation solved with CPLEX 12.6)

Sequential booking with flexible starting time (formulation solved with CPLEX 12.6)

Trade-off between routing time and number of double parked vehicles

Results (up to 50 vehicles)

People

Emissions and occupation of space

Public transportation

Personal car

Shared taxi

A simulation/optimization model

Input:

- Origins
- Destinations
- Request time
- Desired departure time
- Flexibility factor

Archetti, Speranza, Weyland, ITOR, 2018

Reduction of emissions: more than 50%

Fair collaboration

Shared taxi service (reservation-based)

Multiple companies

Collaboration initiative

Fair collaboration

UNIVERSITY OF BRESCIA

M.Grazia Speranza

Routes without collaboration

Fair collaboration

Routes with full/ unconstrained collaboration Routes with fair/constrained collaboration

The problem: basic formulation

$$\min z = \sum_{i \in V} \sum_{j \in V} \sum_{k \in K} c_{ij} x_{ij}^k$$

+ Routing constraints

+ Time windows and maximum time on board constraints

- + Capacity constraints
- $\begin{array}{lll} y_c^k \in \{0,1\} & k \in K \quad c \in C \\ x_{ij}^k \in \{0,1\} & k \in K \quad i \in V \quad j \in V \\ w_i^k \in \mathbb{N} & k \in K \quad i \in V \\ u_i^k \geq 0 & k \in K \quad i \in V \\ r_c \geq 0 & c \in C. \end{array}$

Unconstrained optimization

The problem: time balance

The problem: customer balance

Adaptive large neighborhood search

while $T_{\rm max} > 1$ do $-q := resizeNeighborhood(E, w, q, q_{min}, q_{max}, p);$ Draw a destroy and a repair operator; - Destroy the current solution x; - Repair the destroyed solution and obtain x'; - if $cost(x') \ge cost(x^*)$ then | -w = w + 1;-u randomly drawn in U(0,1); A worse solution may be if $u < e^{\frac{cost(x^*) - cost(x')}{T_{\max}}}$ then accepted (with decreasing -x = x': probability) if $cost(x') < cost(x^*)$ then $-x^* = x'$: - if r > R then -r = 0: – Set destroy and repair operators' scores to initial values; else Update destroy and repair operators' scores -r = r + 1; $-T_{\max} = T_{\max} * \gamma;$ return x^* :

Instances

Map-based 142 instances (real travel time with Graphhopper)

112 instances (2 to 10 companies, 4 to 10 customers)
4 cities (Paris, Berlin, London, Rome)
4 sizes
7 demand scenarios per city

30 instances - Paris only – 5 different demand scenarios for:

- E1: 6 companies, 50 customers
- E2: 3 companies, 100 customers
- E3: 2 companies, 150 customers
- E4: 1 company with 150 customers, 3 with 50
- E5: 1 company with 150 customers, 1 with 100, 1 with 50
- E6: 1 company with 200 customers, 2 with 50

Savings on large instances

Acceptable % of more or less time or customers							
Model	α (%)	Group	Group E				
UC	-	Avg. 18.05	Max. 25.30	Std. 3.07			
T-CDARP	10	17.08	24.56	3.55	14		
	$\frac{20}{30}$	$\frac{17.73}{18.1}$	24.79 25.14	$\frac{3.25}{2.98}$			
C-CDARP	10	15.19	23.14 22.32	3.76			
	20	16.6	23.16	3.93			
	30	17.03	25.21	3.32			
TC-CDARP	10	15.01	22.30	3.71			
	20	16.57	23.16	2.75			
	30	16.97	24.26	3.48			

Reduction of emissions: 15%

Traffic assignment

 $t_{ij}^{FF} \left[1 + 0.15 \left(\frac{x_{ij}}{u_{ij}}\right)^4\right]$

Travel time on arc (i,j) with flow x_{ij}

Min Total travel time on <u>paths of limited length</u>

Non linear optimization problem

on an exponential number of paths

Min Total travel time (piecewise approximation)

LP and MILP with exponential number of binary variables (FP-UC-SO and L-UC-SO)

Reduction of emissions: 20%

The future

Ridesharing in the sky

The future

