

Digital Twin for Assembly Line Fitness Analytics

Oleg Gusikhin Ford Global Data Insight & Analytics Dearborn, Ml <u>ogusikhi@ford.com</u>

Presentation Outline

- Introduction
- 109 years of assembly line evolution
- Assembly Line Planning
- Assembly Line Digital Twin
- Workcell Layout and Operator Walk Pattern
 Analysis
- Precedence Constraints Generation
- Assembly Line Balancing
- Predicting Operator Overload and
 Interference
- Summary

Assembly Line

an arrangement of machines, tools, and workers in which a product is assembled by having each perform a specific, successive operation on an incomplete unit as it passes by in a series of stages organized in a direct line.

Ford Model T Assembly Line at Highland Park

Assembly Line 1940th

Dearborn Assembly Plant 1954

F-Series Production

Dearborn Truck Plant 2000

Dearborn Truck Plant 2000

Dearborn Truck Plant 2000

e-Workcell for workstation layout

VRML-based interactive 3D tool for assembly workcell layout

Lean Manufacturing tool developed to support the launch of Dearborn Truck Assembly

Provides direct interface to existing database systems

Universally accessible and intuitive. Used by engineers and assembly line operators

Detailed Modeling

- Pitch, vehicle size
- Workstation dimension
- Line speed
- Part/tool location
- Vehicle zone
- Operator Synchronization

F150 Lightning Production

F150 Lightning Production

F150 Lightning Production

F150 Lightning Advanced Manufacturing

Automotive Assembly Line Planning

Precedence graph for assembly process

Precedence graph for assembly process

Workstation Layout Problem

- Each operator has their own workcell
- Each workcell contains part bins necessary for the operator's work.
- Each operator has a set of tasks that must be performed
- Each operator must determine how to arrange the part bins in the workcell

Vehicle Assembly Planning

Automotive Assembly Line Planning Challenges

- No formalized precedence constraints
- Operation Times dependent on the work cell layout
- Operation's time estimation accuracy
- Loose interface with vehicle sequencing
- Input requires multiple heterogenous data sources
- Problem complexity

Model Generation

Synchronization with Plant Floor Data

Vision-Based Synchronization

Work Instructions

	Operation	Seq#	Steps	Feature Code	Time (sec)
П	1	10	Walk to part	CDH-FC	5
eh.1 -	1	20	Get part	CDH-FC	2
	1	30	Install part	CDH-FC	4.5
đ	2	40	Walk to tool	CDH-FCCHAAL	5
h a [2	50	Grasp tool	CDH-FCCHAAL	2
1.2	2	60	Walk to veh.	CDH-FCCHAAL	5
	2	70	Tighten the screw	CDH-FCCHAAL	3.5

	Build Start	
	Read next build in sequence	
Grab Part A	Grab Part B	Grab Part C
Install Part A	Install Part B	Install Part C
A	Build Complete	

Vehicle Sequence

Rotation NBR	Options	Feature Code			
0017	4Door +Moon Roof	CDH-FCCHAAL			
0018	5Door + Park Assist	CDH-HCJ3AKB			
0019	5Door + Moon Roof + Park Assist	CDH-HCCHAALJ3AKB			

Sensor-Based Synchronization

Task Time Distribution

12:30-1:30 p.m.

11:00-11:59 p.m.

Operator Walk Pattern Animation

Cell Layout Analysis

Interactive Balance Board

▶ び 🖸 🖽 美 ØCenter ⊕ Global 共 🕨 🕨 🕨	
e ▼ Free Aspect ▼ Scale ●	Maximize On Play Mute Audio Stats Gizmo
fa Exit PH: ? N/C Handle Stock & Dunnage for Spare Tire Heat Shield Clip: 3.4 remove top from full carton of stock & aside to empty carton on linefeed-re	emove empty carton of stock from linefeed & aside to return line-pull full carton of stock onto linefeed
East	Weighted Elements
	⊘ALL ⊘*167" FRAME" ⊘DESEL
612B	ØGA\$ 157 ØGA\$ 145
East (
Vest (⊘ALL ⊘GAS ⊘MUCKET ⊘HEV
509F	
East	
Vest	⊘ALL ⊘GAS ⊘DIESEL
	© "157" FRAME ⊘GAS 157 ⊘GAS 145
East	
Vest) ØALL ØGAS Ø4X4
305F () () () () () () () () () (

Line Animation and Analysis

Simultaneous line balancing and layout

Practical Precedence Constraints Graph Generation

	Contents lists available at SciVerse ScienceDirect	EURO
	European Journal of Operational Research	
VIFR	journal homepage: www.elsevier.com/locate/ejor	

Discrete Optimization

ARTICLE INFO

Article history:

ELS

On a learning precedence graph concept for the automotive industry

Hanne Klindworth, Christian Otto, Armin Scholl*

Friedrich-Schiller-University of Jena, Chair of Management Science, Carl-Zeiß-Straße 3, D-07743 Jena, Germany

Target graph Maximum graph Minimum graph Graph of potential independencies

Fig. 5. Example for precedence graph types and transitive closures.

Fig. 4. Relationships and contributions of different graph types.

Accepted 11 September 2011 Available online 29 September 2011

Keywords: Assembly line balancing Precedence graph Learning approach Production process Decision support

Received 30 March 2011

ABSTRACT

Assembly line balancing problems (ALBP) consist in assigning the total workload for manufacturing a product to stations of an assembly line as typically applied in automotive industry. The assignment of tasks to stations is due to restrictions which can be expressed in a precedence graph. However, (automotive) manufacturers usually do not have sufficient information on their precedence graphs. As a consequence, the elaborate solution procedures for different versions of ALBP developed by more than 50 years of intensive research are often not applicable in practice.

Unfortunately, the known approaches for precedence graph generation are not suitable for the conditions in the automotive industry. Therefore, we describe a new graph generation approach that is based on learning from past feasible production sequences and forms a sufficient precedence graph that guarantees feasible line balances. Computational experiments indicate that the proposed procedure is able to approximate the real precedence graph sufficiently well to detect optimal or nearly optimal solutions for a well-known benchmark data set. Even for additional large instances with up to 1,000 tasks, considerable improvements of line balances are possible. Thus, the new approach seems to be a major step to close the gap between theoretical line balancing research and practice of assembly line planning.

© 2011 Elsevier B.V. All rights reserved.

Mining of Precedence Constraints

Fragment of F150 Precedence Constraints

Automatic and Interactive Line Balancing

Automatic Line Balancing with Fixed Operations

Predicting Operator Overload and Interference

Vehicle Sequence Impact on Operator Workload

- a. An operator will often be able to handle Red high-content units (going over *takt* time) followed by a Green low-content (under *takt* time) without ever needing to stop the line.
- b. There are only two choices when high-content units are together, no matter how many low-content units came before: stop the production line, or do not complete the operation.

Movements of an Operator

Case I: Overcycle and Propagation of Delays

Several vehicles with high content options are consecutive in the sequence leading to overcycle problems and propagation of delays.

Case II: Overcycle and Interference

interfere with the another operator.

Walkover Distance:

$$\Delta x = x(i) - L_x = v_c t_I(i) + z_x(j) - L_x$$

Algorithm for identifying interference conditions:

```
If \Delta x > 0 (Walkover or Overcycle)

If z_x(i,n) = z_x(i+1,1)

then

{there is operator interference} "Type I"

else if z_x(i,n) < z_x(i+1,1)

then

{over-cycle but no interference} "Type II"

{Idle > 0}

Elseif \Delta x \le 0(No Overcycle)

If T_{finish} + t_{return} < T_{cycle}

then

{Idle > 0}

Else

then

{Idle = 0 (there is overcycle)}
```


Operator Walk Pattern Calculations

Dynamic Modeling of Operator Overload

Plant Floor System

Rotati NBR	on Op	tions	Fe	ature Code					
0017	4Door +	Moon Roof 🛛 🤇	CDH-FC	CHAAL					
0018	5Door +	Park Assist	CDH-HC	J3AKB					
0019	5Door + 1 Parl	Aoon Roof + G	CDH-HC	CHAALJ3AKB					
All	ocatio	n Plar	nning	Tool					
	Operation	Seq#	Steps	Feature Code	Time (sec)				
ſ	1	10 Walk to	part	CDH-FC	5			I Г	
veh.1 –	1	20 Get part	t	CDH-FC	2			· ·	
	1	30 Install p	oart	CDH-FC	4.5	Socion	00	· ·	
ſ	2	40 Walk to	tool	CDH-FCCHA	AAL 5	Sequen	ce	· ·	7:0 700
veh 2	2	50 Grasp to	ool	CDH-FCCHA	AAL 2		0	· ·	Lig-Lag
	2	60 Walk to	veh.	CDH-FCCHA	AAL 5	NIODEIII	ng &	· ·	
	2	70 Tighten	the screw	CDH-FCCHA	AAL 3.5		0		Diagram &
			PF 09F			Operate Work P Analysi	or Pattern S		Over Cycle Report

Workstation	VIN	Rotation #	Work Over Time	% Work Over Time	Work Over Distance	% Interference Distance	Type of Interference *
408W	CL194686	0005	0.6259091 mins	76.46%	5.26283 ft	29.24%	2
411W	CL194686	0005	0.5810264 mins	70.98%	0.77605 ft	4.31%	1
411W	CL196746	0006	0.9897427 mins	120.91%	7.90446 ft	43.91%	1
411W	CL196860	0007	1.943457 mins	237.41%	27.09179 ft	150.51%	1
			•••			•••	•••

*Type=1: Operator works over cycle time but there is no interference with the work in the downstream workstation.

Type=2: Operator works over cycle time and also interfere with operator in the next station because they work on the same point on the vehicle.

Assembly Line Fitness Analytics

Descriptive

- Eliminate as much manual tasks as possible.
- Full representation of the floor operations
- Slice and dice the data for quick insights
- Combine data from other manufacturing systems for real time analytics.
- Modify time studies

Predictive

- Highlight existing problematic operations
- Predict problematic operations
- View the effect of decisions

Prescriptive

- Optimize cell layout and line layout in rebalance
- Create what-if scenarios
- Automatically generate sequencing constraints
- Suggest better ways to rebalance cells

Summary

- Data-Driven Assembly Line Model Synchronized
 with Plant Floor
- Incorporates historical and real time data and provides descriptive, predictive and prescriptive analytics capabilities
- Empowers multiple stakeholders to analyze, visualize and interact with the data and facilitates collaboration
- Standardizes interfaces for different optimization models

