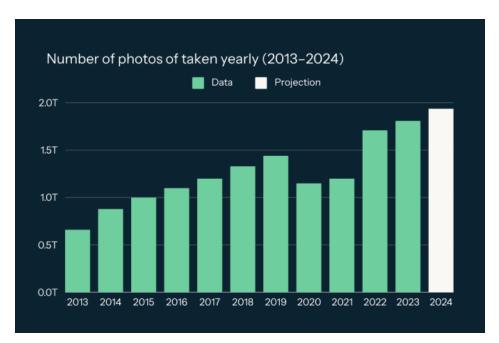


JPEG AI: The First International Standard for Image Coding Based on an End-to-End Learning-Based Approach

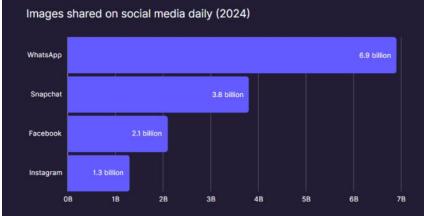
João Ascenso

Instituto de Telecomunicações - Instituto Superior Técnico, University of Lisbon

🧀 Outline


- Context and Motivation
- 2. The JPEG Al Project
- 3. JPEG Al Verification Model
- 4. Performance Evaluation
- 5. Going Forward ...

Context and Motivation


Many, Many Images....

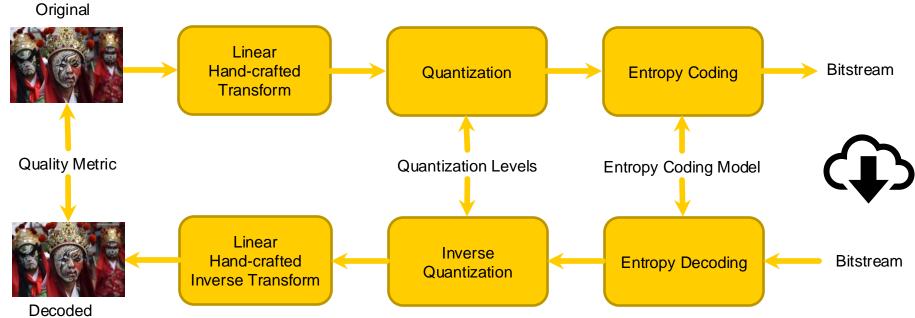
94%+

of all photos are taken by smartphone cameras, while only about 6% are taken by standard cameras.

Rich Ecosystem of Image Technologies

Image/Video Use Cases are Rather Different

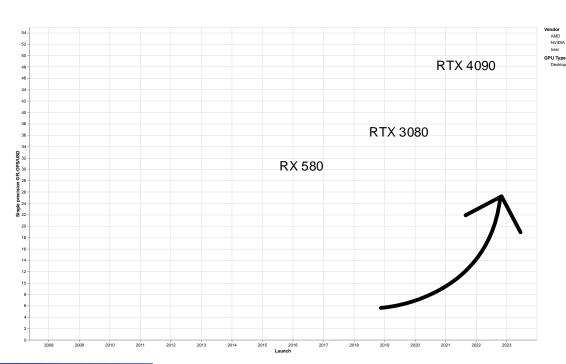
Image Compression Landscape

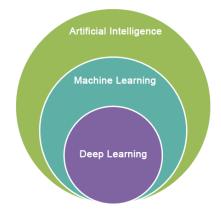


IMPROVE 2025

Classical Image Compression Pipeline

JPEG: simple, elegant, large ecosystem, interpretable, ...





Deep Learning Explosion!

Giga FLoating-point Operations Per Second that you can buy with 1 USD

1. Big Data

- Larger Datasets
- Easier Collection & Storage

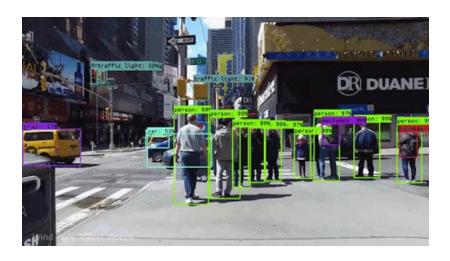
IM : GENET

2. Hardware

- Graphics
 Pro cessing Units
 (GPU s)
- M assively Parallelizable

3. Software

- Improved Techniques
- N ew Models
- Too boxes



Deep Learning Achievements: Computer Vision

- Extremely successful in computer vision tasks:
 - ✓ Image classification, object detection, semantic segmentation, ...
 - ✓ Face recognition, image generation, video understanding, ...

Image classification

Deep Learning Achievements: Image Processing

- Extremely successful in image processing tasks:
 - ✓ Denoising, super-resolution, inpainting, style transfer, segmentation, ...
 - ✓ Many other image restoration tasks (dehazing, deraining, etc.), ...

And Many Others

A white teddy bear sitting in the grass

A man in a baseball uniform throwing a ball

A woman is holding a cat in her hand

A man riding a wave on top of a surfboard

A cat sitting on a suitcase on the floor

A woman standing on a beach holding a surfboard

Visual Coding vs Neural Networks

- Learning-based image compression
 - ✓ Non-linear transformations, entropy coding models, etc.
- Learning-based video compression
 - ✓ Optical flow, motion compensation, multi-frame fusion, etc.
- Models for typical image/video compression modules
 - ✓ Intra-prediction, in/out loop-filtering, entire encoder, etc.
- Learning-based point cloud compression
 - ✓ Geometry and attribute compression methods, etc.
- Learning-based light-field compression
 - ✓ Stereoscopic and multi-view representations, NeRF, etc.
- ☐ Neural networks models and activations compression
 - Enabling the efficient transmission of large models (or activations)

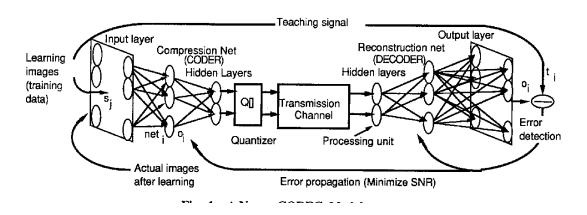
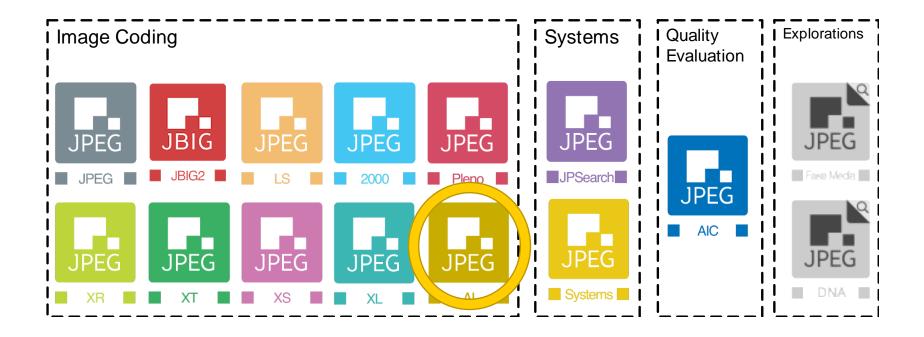


Image Compression with Neural Networks

- Very recent and promising field
 - N. Sonehara, M. Kawato, S. Miyake, K. Nakane, Image data compression using neural network model, Proceedings of the International Joint Conference On Neural Networks, Washington DC, 1989, pp. 35–41.
 - ✓ G.L. Sicurana, G. Ramponi, Artificial neural network for image compression, Electron. Lett. 26, (7) (1990) 477–479.

As old as JPEG !!!



The JPEG Al Project

JPEG Family of Standards

JPEG AI Achievements

- JPEG AI Project (ISO/IEC 6048) within the JPEG standardization group develops and standardize learning-based image compression
 - ✓ Joint standardization effort between SC29/WC1 and ITU-T SC16
 - ✓ Active since 2019, International Standard in publication phase
- Call for Evidence combined with MMSP Workshop Grand Challenge
 - √ 6 codecs submitted (out of 8 registered)
- Some relevant public documents:
 - ✓ White Paper on JPEG AI Scope and Framework
 - ✓ JPEG AI Uses Cases and Requirements
 - ✓ JPEG AI Training and Test Conditions
 - ✓ JPEG AI Call for Proposals
 - ✓ And many more ...
- Check for more information: https://jpeg.org/jpegai/

JPEG AI Use Cases

- Cloud storage
- Visual surveillance
- Autonomous vehicles and devices
- Image collection storage and management
- Live monitoring of visual data
- Media distribution

S

JPEG AI Scope

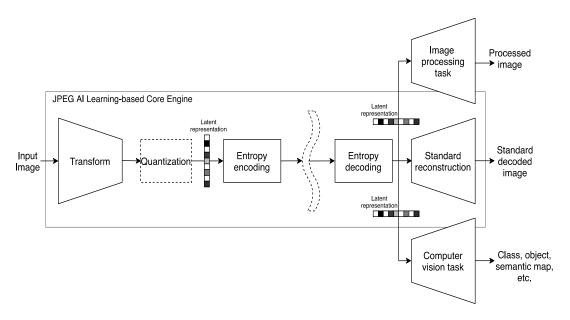

The JPEG AI scope is the creation of a learning-based image coding standard offering a single-stream, compact, compressed domain representation, targeting both human visualization, with significant compression efficiency improvement over image coding standards in common use at equivalent subjective quality, as well as effective performance for image processing and computer vision tasks, with the goal of supporting a royalty-free baseline

Image processing tasks	Computer vision tasks
Super-resolution	Image retrieval and classification
Low-light	Object detection and recognition
enhancement	
Color correction	semantic segmentation
Exposure	Event detection and action
compensation	recognition
Inpainting	Face detection and recognition

JPEG AI Framework

- Advantages for image processing and computer vision task:
 - ✓ Single-stream representation: same compressed stream is also useful for decoding
 - ✓ Energy efficient: reduces the resources needed to perform these tasks
 - High accuracy: allows performing these tasks using features extracted from the original instead of the lossy decoded images

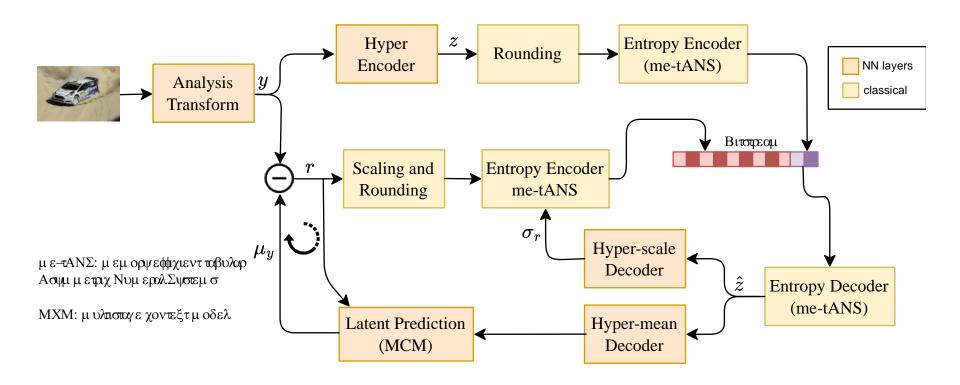
Application-driven Requirements

- High coding efficiency is important for many applications such as cloud storage or media distribution
- Content understanding is vital for many applications such as visual surveillance, autonomous vehicles, image collection management, etc
 - Objects may need to be recognized
 - ✓ Images may need to be classified for organization purposes
 - Actions or events may need to be recognized
- Content is not consumed by humans in the same way as the original reference in many applications such as in media distribution
 - Noise can be reduced
 - Resolution can be increased
 - Colors can be corrected

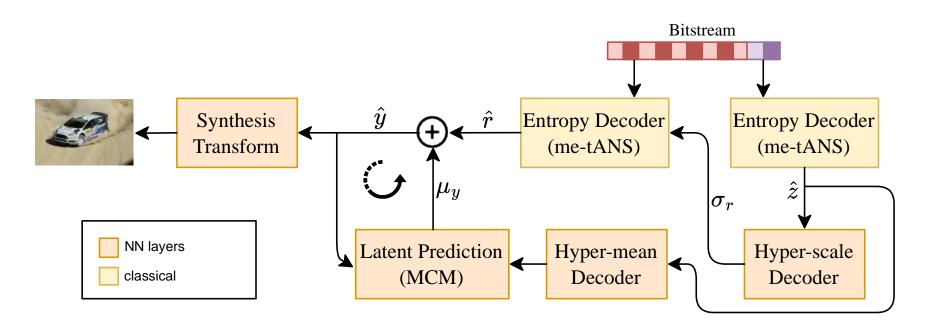

JPEG Al Verification Model

JPEG AI VM High Level Architecture

- New architecture never proposed before
 - ✓ Works with YUV BT.709 colour space and supports 4:4:4 and 4:2:0
 - Exploits spatial correlation with the analysis and synthesis transforms
 - ✓ Probabilistic latent model is obtained from side information (hyper-prior)
- Two encoding pipelines are present, one for luma and another for chroma
 - ✓ Chroma pipeline encodes UV in half of the resolution of Y (and has less depth)
 - ✓ Independent pipelines using networks with same architecture, but different number of channels


JPEG AI Key Characteristics

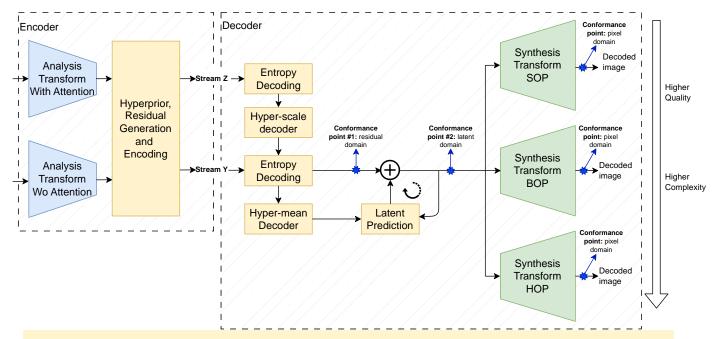
- Probability table for entropy coding is modelled with $\mathbb{N}(0,\sigma)$ for every latent element
- Latents are predicted and only the residual is coded and transmitted
 - Exploits spatial correlation at the latent domain
- Entropy decoding is decoupled of latent prediction and reconstruction
 - Entropy decoding of a latent doesn't depend on previously decoded latents
- Hyper scale decoder
 - Provides estimation of the variance of the entropy coding model distribution
- Hyper "mean" decoder
 - ✓ Provides estimation of the mean (explicit prediction) of the latent


JPEG AI VM Encoder Architecture

JPEG AI VM Decoder Architecture

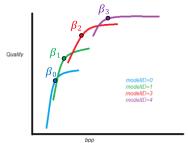
Addressing Complexity Issues

- Three operating points are supported:
 - CPU operating point targeting legacy devices
 - ✓ Base operating point targeting mobile devices
 - ✓ High operating point for more hardware-capable devices with powerful GPUs and no energy constraints
- Base operating point should provide 10-15% compression efficiency gains over
 VVC Intra with approx. 22 kMAC/px
- ☐ High operating point should provide 25–30% compression efficiency gains over VVC Intra with approx. 220 kMAC/pxl

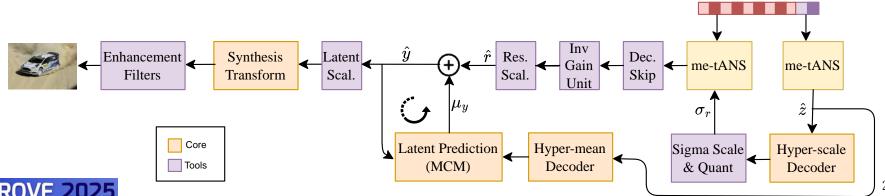


JPEG AI Multi-branch Decoding

Receiver can support just one decoder (operating point) to decode any stream

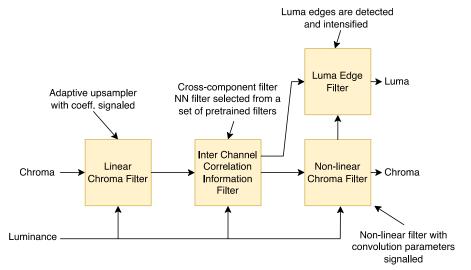


JPEG AI VM supports



JPEG AI has Several Flag-enabled Tools

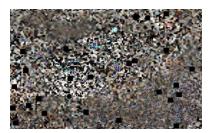
- Skip mode allows skip writing/parsing from the bitstream residual latent elements which can be identified by encoder and decoder to be zero
- Variable rate coding with Gain Units
 - Model parameters defined by ModelID
 - "Gain" factor for residual & variance defined by $\Delta \boldsymbol{\beta}$ (signalled)
- Residual and the standard deviation parameter scaling
- Enhancement filters increase mostly the chroma quality


Bitstream

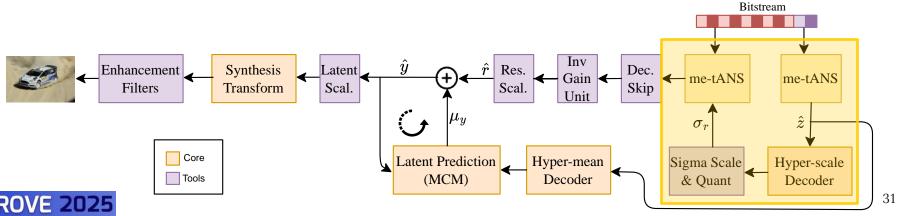
Tool Example: Enhancement Filter Technologies

- Enhancement filters bring 26% gain in Chroma PSNR
- Linear chroma filter and non-linear chroma filter use signalled parameters and perform upsampling/color correction
- Inter channel correlation information filter provides enhancement of colour information exploiting correlation with luminance
- Luma edge filters adaptively enhances (scale) edges to improve decoded quality

Device Reproducibility


Due to the use of floating-point arithmetic and different orders for the operations the result depends on platform heavily.

Leads to wrong interpretation of the parsed symbols in arithmetic coder


How does effect look like?

Encoded and decoded on same device

Encoded and decoded on different devices

Hyper Scale Decoder

Bit-exact behavior in entropy part must be guaranteed!

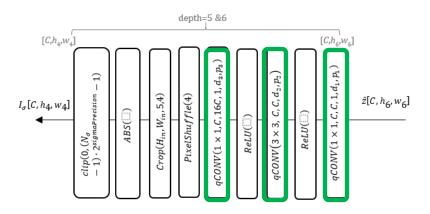
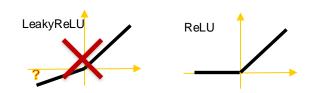



Figure 10.3-1 - Hyper Scale Decoder

convolution layer

CONV

...

$$out[c_{out}, i, j] = \frac{bias[c_{out}] + \sum_{c_{in}=0}^{c_{in}} weigth[c_{in}, c_{out}] * input[c_{in}, s \cdot i, s \cdot j];}{i = 0, \dots, h_{out} - 1; j = 0, \dots, w_{out} - 1; c_{out} = 0, \dots, C_{out} - 1}$$

where "*" is 2D **cross-correlation operator** with kernel size $K_{ver} \times K_{hor}$

quantized convolution layer

aCONV

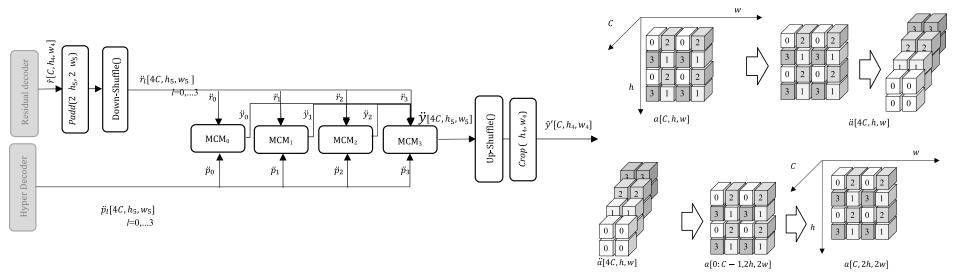
... three-steps operation:

$$\begin{split} temp[c_{in},i,j] &= clip(-d,d-1,input[c_{in},i,j]), \\ i &= 0,...,h_{in}-1; j = 0,...,w_{in}-1; c_{in} = 0,...,C_{in}-1; \\ R[c_{out},i,j] &= \frac{bias[c_{out}] + \sum_{c_{in}=0}^{c_{in}-1} weigth[c_{in},c_{out}] \star temp[c_{in},s\cdot i,s\cdot j];}{c_{in}} \end{split}$$

where "*" is 2D cross-correlation operator with kernel size $K_{ver} \times K_{hor}$.

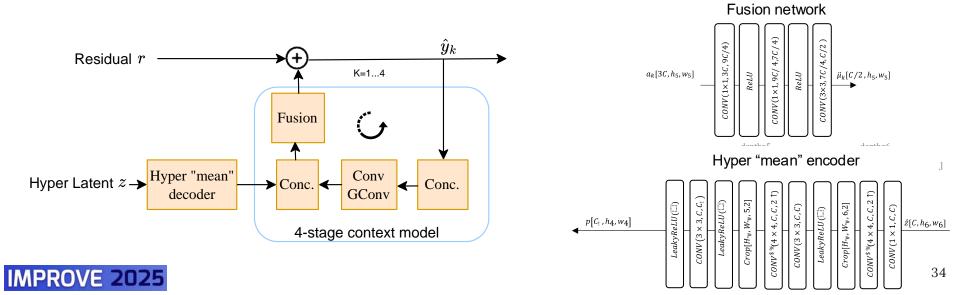
$$out[c_{out}, i, j] = (R[c_{out}, i, j]) \gg p[c_{out}];$$

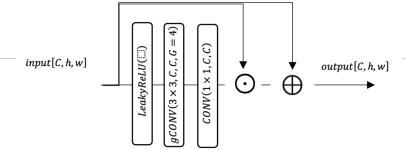
 $i = 0, ..., h_{out} - 1; j = 0, ..., w_{out} - 1; c_{out} = 0, ..., C_{out} - 1$


The tensor weigth of shape $[C_{in}, C_{out}, K_{ver}, K_{hor}]$ contains learnable **8-bit integer** weights, the tensor bias of shape $[C_{out},]$ contains learnable **31-bit integer** biases. All parameters weigth and bias are part of learnable quantized model.

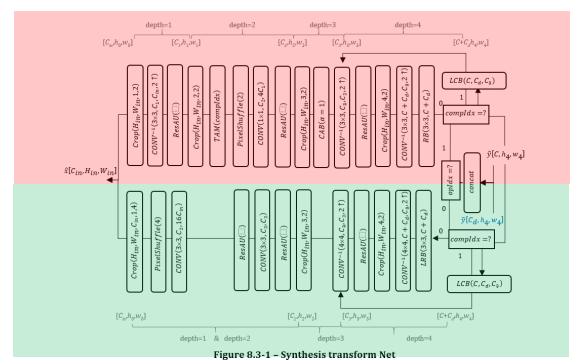
The combination of clipping value d, de-scaling shifts $p[c_{out}]$ and magnitude for the quantized model parameters allows control over bit depth of register $R[c_{out},i,j]$ (guaranteed to be within 32 bits).

Spatial Prediction @ Latent Domain


- Aims to predict the mean of \tilde{y} using the explicit prediction and residual decoded data \checkmark 3D chess-board split of the tensor
- Significant complexity reduction (minimizes serial processing) in comparison to previous approaches such as wavefront parallelizable models with masked convolutions


Multistage (4-stage) Context Model

- Hyper-mean encoder provides an explicit prediction derived from the hyper latent tensor
- 4-stage context model: concatenates and process already reconstructed latent sample groups which are fused together with the explicit prediction of the hyper mean decoder



Synthesis Transform

High Operation Point ~180 kMAC/pxl

Base Operation Point ~20 kMAC/pxl

Network is deeper for primary component (Luma)

Bring the Attention!

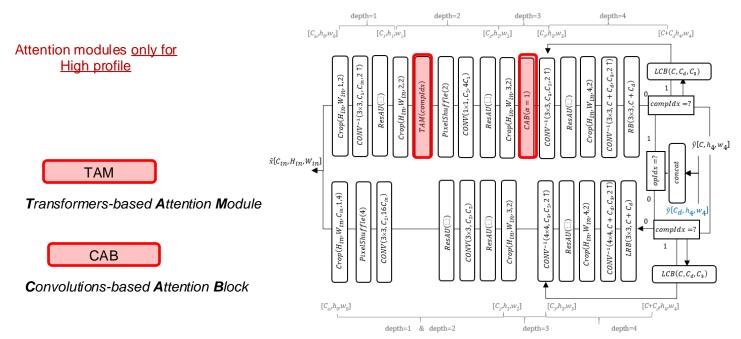
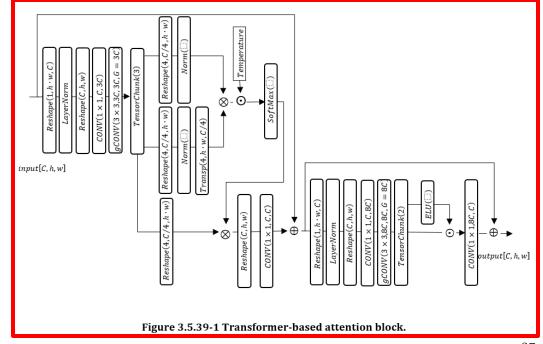


Figure 8.3-1 - Synthesis transform Net



Attention Blocks: Convolutional vs Transformer

Three branches to represent skip, feature and mask (to improve receptive field)

input[C, h, w] output[C, h,

Three branches to represent query, key and value Transposed-attention map A of size CxC is computed

JPEG AI Region of Interest Decoding

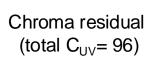
The residual is multiplied by a gain tensor for local quality control.

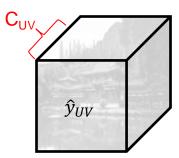
Quality index map is predicted, coded and inserted into the codestream

JPEG AI VM3.4 - 0.12 bpp

JPEG AI VM3.4 + ROI coding - 0.10 bpp

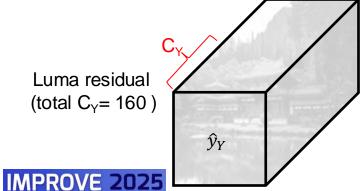
Original image


ROI mask (white)

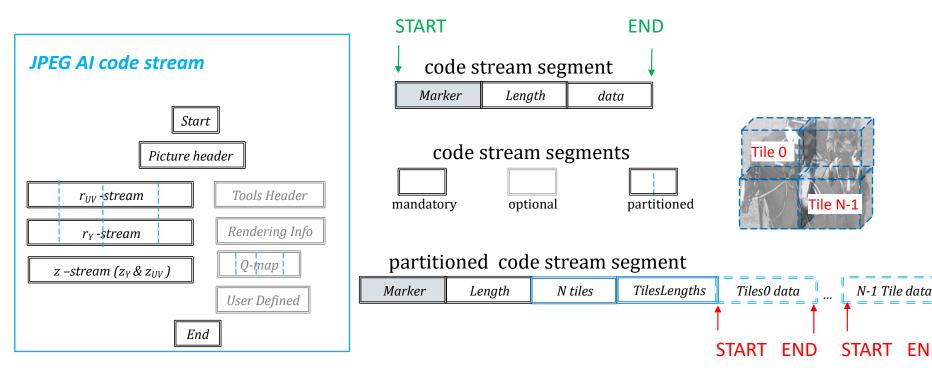

Allocating more bits on the ROI and fewer bits on the background

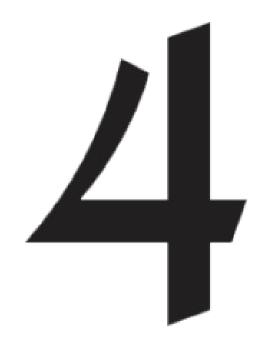
JPEG AI Progressive Decoding

Partial decode part of the 160 channels of residual can reduce the time used for decoding.



Luma residual (total $C_{\rm Y}$ = 160)





JPEG AI Bitstream Structure

Performance Evaluation

JPEG AI Natural Images Dataset

400 8bit sRGB

00002_TE_2144x1 424_8bit_sRGB

296 8bit sRGB

00005_TE_1336x8 72_8bit_sRGB

000 8bit sRGB

320_8bit_sRGB

312 8bit sRGB

JPEG AI Test Set: 50 camera captured images

016 8bit sRGB

00012_TE_1920x1 280 8bit sRGB

456 8bit sRGB

640_8bit_sRGB

00033 TE 2120x

608 8bit sRGB

32 8bit sRGB

48 8bit sRGB

00020_TE_3680x2

456 8bit sRGB

024_8bit_sRGB

080 8bit sRGB

00030 TE 560x88 8_8bit_sRGB

00040 TE 7394x4 932 8bit sRGB

Training Set: 5000+ images Validation Set: 350+ images

520_8bit_sRGB

00041_TE_3374x5 055 8bit sRGB

00042_TE_2787x4 004_8bit_sRGB

00032 TE 7680x5

00043_TE_945x84 0 8bit sRGB

834 8bit sRGB

00034 TE 1072x9

897 8bit sRGB

00035 TE 877x16

58 8bit sRGB

00046_TE_2816x1 878 8bit sRGB

00036 TE 998x16

75 8bit sRGB

00037 TE 5616x3

744 8bit sRGB

00038 TE 8160x6

120_8bit_sRGB

667 8bit sRGB

00039 TE 5464x3

640 8bit sRGB

00050_TE_3976x2 652 8bit sRGB

JPEG AI Additional Datasets

36 synthetic images

11001_TE_2560x1 440 8bit sRGB

12002 TE 1920x1

016_8bit_sRGB 2_8bit_sRGB

13002_TE_2000x2 496 8bit sRGB

14002_TE_1920x1 496 8bit sRGB

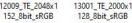
11004_TE_2864x1 872_8bit_sRGB

12005_TE_1920x1

080_8bit_sRGB

11005_TE_1016x7 60 8bit sRGB

11006_TE_2560x1 600 8bit sRGB



20 8bit sRGB

11008_TE_1920x1

12001_TE_1848x1

080 8bit sRGB

14001_TE_1024x1 024 8bit sRGB

14010_TE_1764x2 572 8bit sRGB

12 HDR images

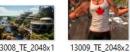
11002_TE_1180x1 612 8bit sRGB

11003_TE_1400x1 048 8bit sRGB

12004_TE_1024x7

68 8bit sRGB

12006_TE_1920x1 080_8bit_sRGB



12008_TE_3840x2

160_8bit_sRGB

13008_TE_2048x1 148_8bit_sRGB

048 8bit sRGB

13003_TE_6068x3 412 8bit sRGB

14003_TE_624x90 8 8bit sRGB

13004_TE_1072x1

14004_TE_1304x1 940_8bit_sRGB

13005_TE_2800x1

400 8bit sRGB

14005_TE_3000x3 000 8bit sRGB

13006_TE_3072x2

304 8bit sRGB

14006_TE_3328x2 156 8bit sRGB

13007_TE_1920x1

920 8bit sRGB

14007_TE_1200x1 500 8bit sRGB

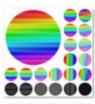
454 8bit sRGB

512 8bit sRGB

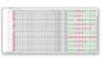
JPEG AI Crash Dataset

14014_TE_1280 x800_8bit_sRGB .png

15003_TE_1280 x800_8bit_sRGB .png


15004_TE_1920 x1920_8bit_sRG B.png

15005_TE_1280 x800_8bit_sRGB .png

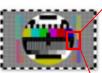

16002_TE_640x 443_8bit_sRGB.

16003_TE_1280 x1280_8bit_sRG B.png

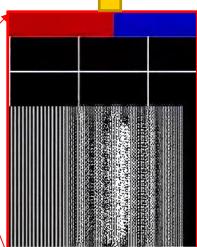
17001_TE_1920 x1160_8bit_sRG B.png

17002_TE_1920 x920_8bit_sRGB

.png

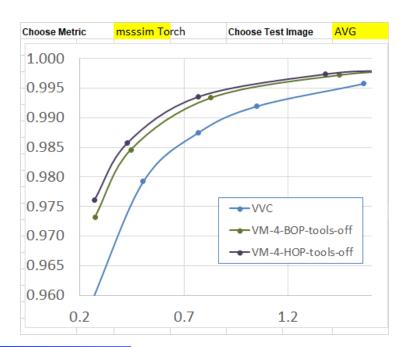

17003_TE_1920 x920_8bit_sRGB .png

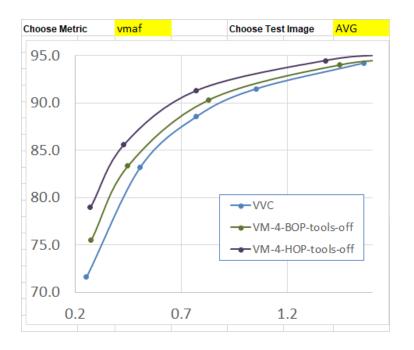
17004_TE_1920 x1472_8bit_sRG B.png



17005_TE_1920 x999_8bit_sRGB .png

17006_TE_1920 x1200_8bit_sRG B.png





JPEG AI RD Performance

tools-off: only "off-line trained", no content adaptation, no encoder search,

JPEG AI VM4 RD Performance

RVS – Residual and Variance Scale Filters – Adaptive re-sampler, ICCI (cross-color filter), LEF (luma edge filter) and non-linear chroma filter

LSBS – Latent Scale Before Synthesis

CWG – Channel-Wise Gain

Base operating point!

		5 points BD-rate (0.06, 0.12, 0.25, 0.5, 0.75)								10%						
		BD rate vs VVC								Max	Dec. complexity					c. comple:
		msssim			into the					Bit	MAX	AVG	Time	Model	ModelS	Time
Test	AVG	Torch	vif	fsim	nlpd	iw-ssim	vmaf	psnrHVS	Monotonicity	Dev.	kMAC/pxl	kMAC/pxl	GPU, x	Model	Models	GPU
v4.4-tools-off-GPU	-10.6%	-28.6%	-1.2%	-13.0%	-9.8%	-24.7%	-0.7%	3.9%	TRUE	317%	22	22	0.10	2.93E+06	1.17E+07	0.001
v4.4-tools-on-GPU	-16.2%	-27.3%	1.8%	-28.6%	-13.4%	-24.7%	-26.4%	5.5%	TRUE	393%	29	26	0.18	3.38E+06	1.32E+07	0.002
v4.4-tools-off-GPU-LH	-11.4%	-29.3%	-2.0%	-13.8%	-10.6%	-25.3%	-1.6%	3.0%	TRUE	314%	0	#DIV/0!	#VALUE!	2.93E+06	1.17E+07	0.001
v4.4-only-RDLR	-12.4%	-30.6%	-3.1%	-14.5%	-11.3%	-26.0%	-3.4%	1.8%	TRUE	317%	22	22	0.10	2.93E+06	1.17E+07	0.001
v4.4-only-ResVarScale0	-13.6%	-29.1%	-1.5%	-19.6%	-13.2%	-25.4%	-8.6%	1.9%	TRUE	343%	22	22	0.12	2.93E+06	1.17E+07	0.001
v4.4-only-ResVarScale1	-14.2%	-28.6%	-0.2%	-22.5%	-14.4%	-25.1%	-10.5%	1.8%	FALSE	380%	22	22	0.12	2.93E+06	1.17E+07	0.001
v4.4-only-EnhancementFilters	-11.2%	-28.4%	-0.9%	-14.3%	-9.0%	-24.6%	-5.8%	4.7%	TRUE	318%	28	25	0.14	3.38E+06	1.32E+07	0.002
v4.4-only-LSBS	-11.5%	-28.7%	-1.6%	-12.1%	-9.4%	-24.7%	-8.4%	4.6%	TRUE	317%	22	22	0.11	2.93E+06	1.17E+07	0.001
v4.4-only-ECThread8	-10.6%	-28.6%	-1.2%	-13.0%	-9.8%	-24.7%	-0.7%	3.9%	TRUE	317%	22	22	0.10	2.93E+06	1.17E+07	0.001
v4.4-only-CWG	-12.9%	-28.9%	-0.7%	-20.9%	-12.0%	-25.6%	-5.6%	3.4%	TRUE	328%	22	22	0.10	2.93E+06	1.17E+07	0.001

High operating point!

		5 points BD-rate (0.06, 0.12, 0.25, 0.5, 0.75)								10%						
		BD rate vs	VVC							Max	Dec. complexity				c. complex	
227 - 15	0.0000.000	msssim		Zeny			t ting	12.000.000		Bit	MAX	AVG	Time	Model	ModelS	Time
<u>Test</u>	AVG	Torch	vif	fsim	nlpd	iw-ssim	vmaf	psnrHVS	Monotonicity	Dev.	kMAC/pxl	kMAC/pxl	GPU, x	Model	Modolo	GPU
v4.4-tools-off-GPU	-25.2%	-38.7%	-16.3%	-26.6%	-24.1%	-35.9%	-22.8%	-11.7%	TRUE	368%	212	207	0.37	9.97E+06	3.99E+07	0.002
v4.4-tools-on-GPU	-28.6%	-36.4%	-13.4%	-38.1%	-25.6%	-34.6%	-43.0%	-9.0%	TRUE	445%	230	221	0.49	1.04E+07	4.14E+07	0.003
v4.4-tools-off-GPU-LH	-25.9%	-39.3%	-17.0%	-27.4%	-24.9%	-36.5%	-23.5%	-12.4%	TRUE	364%	0	#DIV/0!	#VALUE!	9.97E+06	3.99E+07	0.002
v4.4-only-RDLR	-25.7%	-39.5%	-17.2%	-26.8%	-24.4%	-36.3%	-23.3%	-12.3%	TRUE	368%	212	207	0.37	9.97E+06	3.99E+07	0.009
v4.4-only-ResVarScale0	-27.3%	-38.8%	-16.3%	-31.6%	-26.6%	-36.2%	-28.9%	-12.9%	TRUE	392%	212	207	0.38	9.97E+06	3.99E+07	0.002
v4.4-only-ResVarScale1	-27.6%	-38.3%	-15.4%	-32.4%	-27.3%	-35.9%	-30.5%	-13.1%	FALSE	435%	212	207	0.39	9.97E+06	3.99E+07	0.002
v4.4-only-EnhancementFilters	-25.6%	-38.4%	-16.0%	-28.6%	-23.4%	-35.7%	-26.7%	-10.7%	TRUE	369%	218	209	0.40	1.04E+07	4.14E+07	0.003
v4.4-only-LSBS	-25.7%	-38.7%	-16.6%	-25.8%	-23.8%	-35.9%	-28.4%	-11.0%	TRUE	368%	212	207	0.38	9.97E+06	3.99E+07	0.002
v4.4-only-ECThread8	-25.2%	-38.7%	-16.3%	-26.6%	-24.1%	-35.9%	-22.8%	-11.7%	TRUE	368%	212	207	0.36	9.97E+06	3.99E+07	0.002
v4.4-only-CWG	-26.9%	-38.4%	-15.7%	-34.2%	-25.5%	-36.1%	-27.0%	-11.7%	TRUE	376%	212	207	0.35	9.97E+06	3.99E+07	0.002

Performance with Multi-branch Decoding

Only differ in the analysis and synthesis transforms

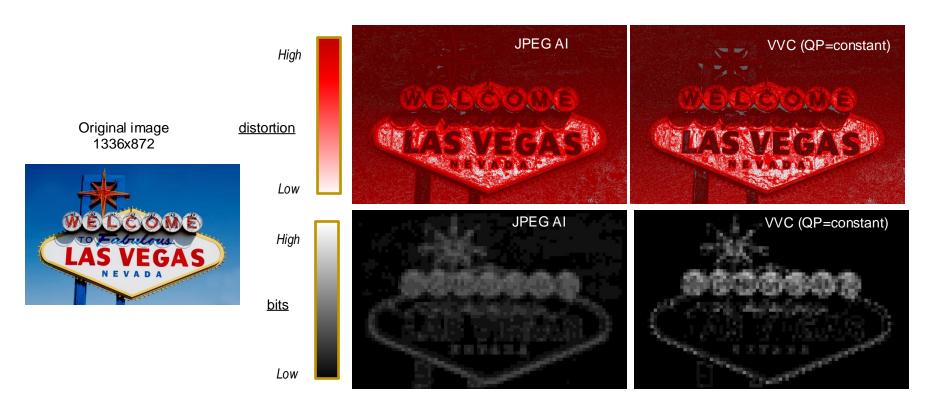
- Enc0 Synthesis Transform without attention
- Enc1 Synthesis Transform with attention
- SOP Simple operating point
- BOP Base operating point
- HOP High operating point

			5 p								
		BD rate v	s VVC-012	-025-050-0	75-100				Dec. cor	nplexity	Enc. Comp.
		msssim							kMAC/px	Time	
<u>Test</u>	AVG	Torch	vif	fsim	nlpd	iw-ssim	vmaf	psnrHVS		GPU, x	Time GPU
v5.1-Enc0-SOPDec-tools-off-GPU	-12.4%	-31%	2.8%	-15%	-13%	-27%	-5%	0.9%	8	0.1	0.0004
v5.1-Enc0-SOPDec-tools-on-GPU	-17.5%	-32%	4%	-24%	-15%	-28%	-28%	0.4%	13	0.2	0.0017
v5.1-Enc0-BOPDec-tools-off-GPU	-16.3%	-33%	-2.2%	-20%	-16%	-29%	-11%	-3%	22	0.1	0.0004
v5.1-Enc0-BOPDec-tools-on-GPU	-21.0%	-33%	-1.2%	-28%	-18%	-30%	-32%	-4%	26	0.2	0.0017
v5.1-Enc1-HOPDec-tools-off-GPU	-24.0%	-38%	-12%	-30%	-22%	-34%	-21%	-11%	214	0.4	0.0010
v5.1-Enc1-HOPDec-tools-on-GPU	-28.0%	-38%	-11%	-38%	-24%	-34%	-40%	-11%	216	0.4	0.0023


For the CPU platform, the decoder complexity is 1.6x/3.1x times higher compared to VVC Intra (reference implementation) for the simplest/base operating point.

VVC 0.50 bpp VMAF = 80.3 PSNR-Y 31.4 MS_SSIM = 0.987

VM3.4-HOP-tools-on 0.44 bpp VMAF=88.07 PSNR-Y=30.6 MS_SSIM = 0.992



Bits Allocation by JPEG AI and VVC

JPEG AI Decoder on Smartphones

Main targets:

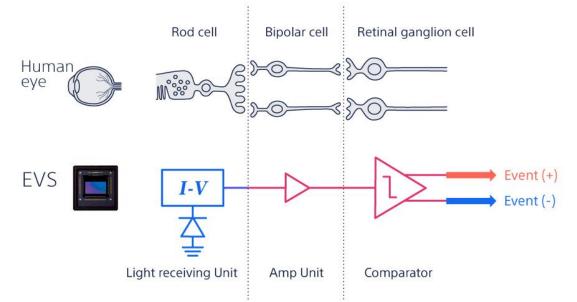
- Demonstrate to the world that JPEG AI can fly on smartphone right now even without dedicated chip
- Identify JPEG AI design issues preventing deployment on mobile platform as early as possible
- Verify device interoperability of JPEG AI standard

- Configuration: JPEG AI CE6.1/VM3.4 base operating point
- Device #1: Huawei Mate50 Pro with Qualcomm Snapdragon 8+ Gen1
- Device #2: iPhone 14/15 Pro Max, 1K patch images

JPEG AI Smartphone Demos

Huawei Mate50 Pro

Iphone 14 Pro Max


Going Forward ...

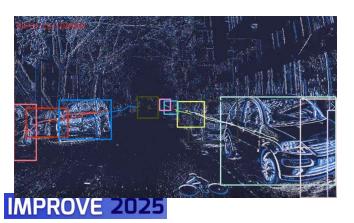
Biological Inspired Acquisition

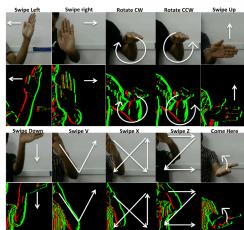
Deep learning already disrupted compression! What about sensing?

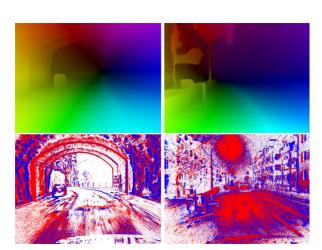
Differential visual sampling model in which time-domain changes in the incoming light intensity are pixel-wise detected and compared to a threshold, triggering an event if it exceeds the threshold.

Event-based or Neurmorphic Imaging

- Event cameras each sensor pixel is in charge of controlling the light acquisition process in an asynchronous and independent way
 - ✓ According to the dynamics of the visual scene
 - ✓ Producing a variable data rate output
- Relevant advantages:
 - ✓ High temporal resolution
 - ✓ Very high dynamic range
 - ✓ Low latency
 - ✓ Low power consumption
 - ✓ No fixed frame rate







Machine Consumption

- Eye tracking, localization and mapping and gesture recognition for AR/VR headsets
- Obstacle avoidance, localization and mapping,
- Motion capture, gesture recognition and visual interfaces
- Presence detection, object detection and action recognition
- Industrial machine vision

Human Consumption

- Still image deblur
- Motion deblur
- Super slow-motion
- Very high-dynamic range

High dynamic range video reconstruction

New Exploration Activity!

The scope of JPEG XE is the creation and development of a standard to represent Events in an efficient way allowing interoperability between sensing, storage, and processing, targeting machine vision applications.

JPEG AI Next Steps

- Profile/level and conformance discussion is ongoing
- Version 1 addresses several (but not all) JPEG AI 'core' and 'desirable' requirements with emphasis on compression efficiency for standard reconstruction
- ☐ Version 2 will address/include:
 - ✓ JPEG AI requirements not yet addressed in version 1, e.g. related to processing and computer vision tasks
 - ✓ Significantly improved solutions for JPEG AI requirements already addressed in Version 1, e.g. compression efficiency

Part	Title	WD	CD	DIS	FDIS	IS
1	JPEG AI: Core coding system	-	23/11	24/04	-	24/10
2	JPEG AI: Profiling	-	24/07	25/01	-	25/07
3	JPEG AI: Reference software	-	24/07	25/01	-	25/07
4	JPEG AI: Conformance	-	24/10	25/04	-	25/10
5	JPEG AI: File format	-	24/07	25/01	-	25/07

Final Remarks

- The first learning-based image compression international standard is under active development!
 - ✓ Significant higher compression efficiency compared to the best performing conventional image coding solutions, notably H.266/VVC and H.265/HEVC
 - ✓ Can be efficiently deployed in resource-constrained mobile devices
 - ✓ Much less encoding complexity, online encoder search is now done offline
- Main challenge is to have a multi-purpose bitstream (THE visual language) that is good for a multitude of visual tasks!
 - ✓ Not only image compression but for content understanding and image enhancement!
- "Artificial Intelligence" can be brought to the sensing process to have an even more rich visual data representation!

