AI-Generated Content: Opportunities and Challenges

Abdenour Hadid
Professor
Sorbonne Center for Artificial Intelligence (SCAI)
Sorbonne University Abu Dhabi, UAE

3 May 2024

IMPROVE 2024

IMPROVE 2024

4th International Conference on Image Processing and Vision Engineering

ANGERS, FRANCE

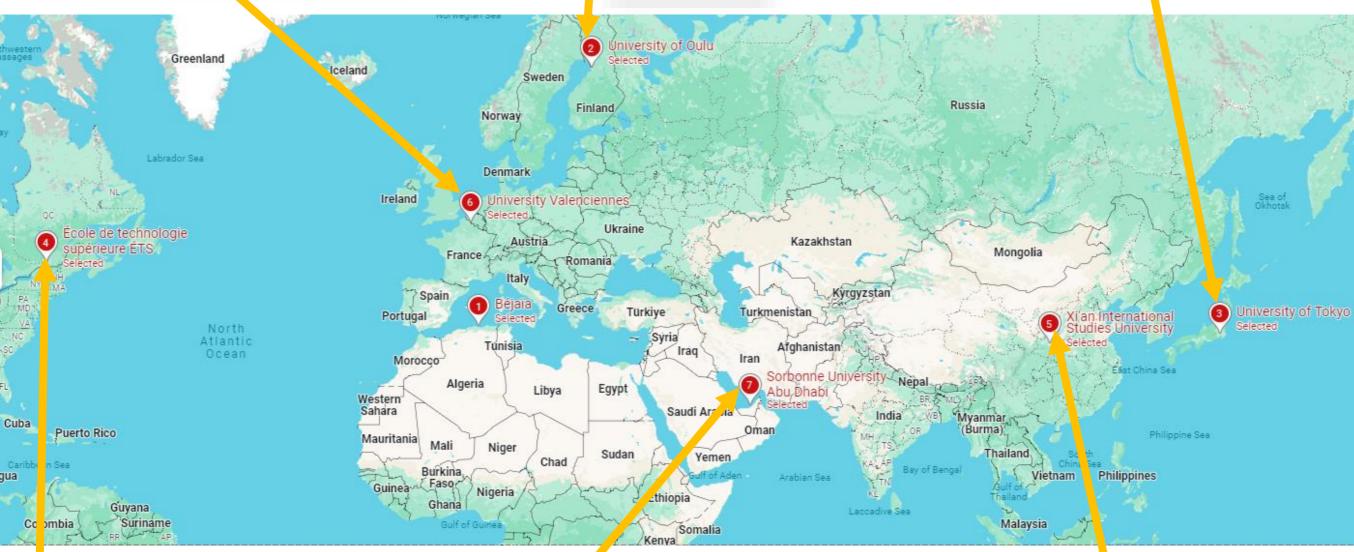
2 - 4 MAY, 2024

AI-Generated Content: Opportunities and Challenges

- 1. Background (10);
- 2. Introduction to AIGC
- 3. On the Detection of AIGC

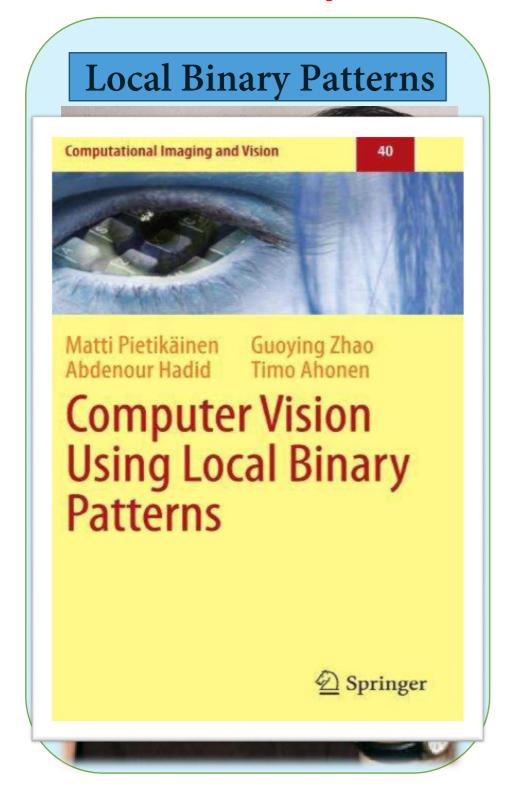
AI-Generated Content: Opportunities and Challenges

- 1. Background
- 2. Introduction to AIGC
- 3. Detection of AIGC
- 4. Our Proposed Methods
- 5. Discussion





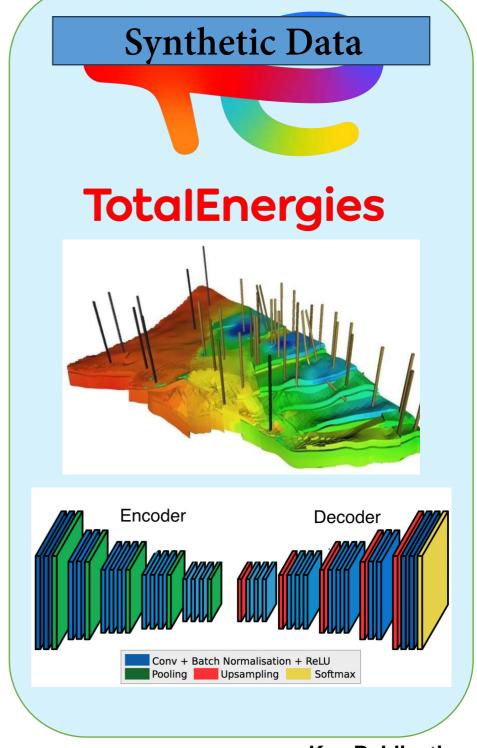
AI in Security



Key Publication:

A. Hadid, N. Evans, S. Marcel and J. Fierrez, "Biometrics Systems Under Spoofing Attack: An evaluation methodology and lessons learned," in *IEEE Signal Processing Magazine*, vol. 32, no. 5, pp. 20-30, Sept. 2015.

Al in Geoscience



Key Publication:

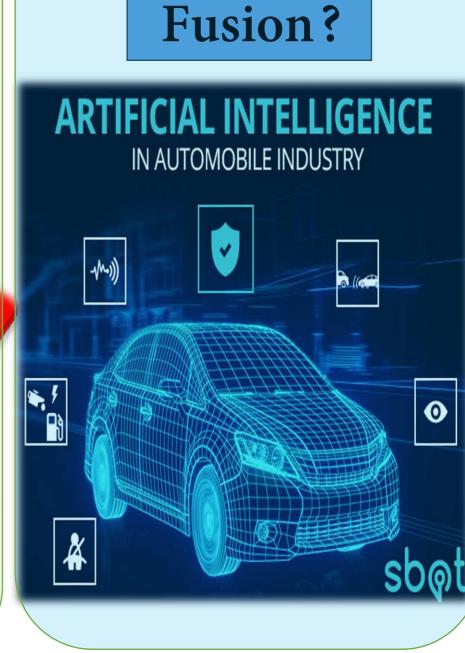
Abdenour Hadid, Tanujit Chakraborty, and Daniel Busby

"When Geoscience Meets Generative AI and Large Language Models: Foundations, Trends, and Future Challenges" ArXiv, 2024.

Al in Healthcare

Al in Mobiles

Al in Autonomous Driving



Key Publication:

Abdenour Hadid,

From Mind-Reading to Health-Reading
Machines: Towards Contactless Health Diagnosis
using Generative Artificial Intelligence,

Nafath Journal, 2024.

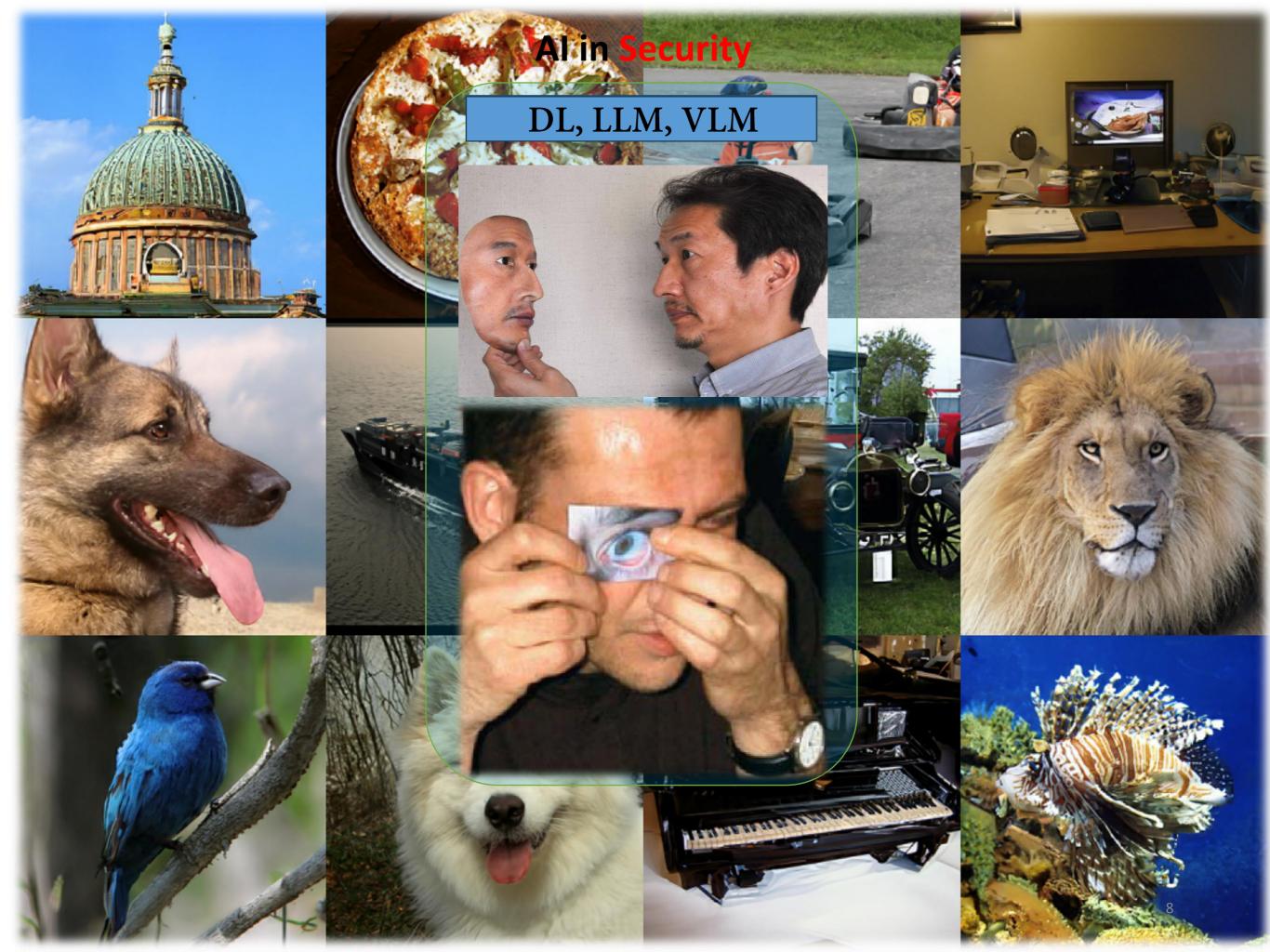
Key Publication:

Abdenour Hadid et al.

Al Powered Smart Roads for Future Smart Cities

International Workshop on Information

Technology & Communication for a Smart City - IWITIC'2021



Abdenour Hadid

SUIVRE

Full Professor, Sorbonne Center for Artificial Intelligence (SCAI)
Adresse e-mail validée de ieee.org
Artificial Intelligence Computer Vision Deep Learning

TITRE	CITÉE PAR	ANNÉE
Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows Z Elabid, D Busby, A Hadid ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and		2024
Harnessing the Power of Large Vision Language Models for Synthetic Image Detection M Keita, W Hamidouche, H Bougueffa, A Hadid, A Taleb-Ahmed arXiv preprint arXiv:2404.02726		2024
Bi-LORA: A Vision-Language Approach for Synthetic Image Detection M Keita, W Hamidouche, HB Eutamene, A Hadid, A Taleb-Ahmed arXiv preprint arXiv:2404.01959		2024
Generation and detection of manipulated multimodal audiovisual content: Advances, trends and open challenges H Liz-Lopez, M Keita, A Taleb-Ahmed, A Hadid, J Huertas-Tato, Information Fusion 103, 102103	2	2024
COVID-19 Infection Percentage Estimation from Computed Tomography Scans: Results and Insights from the International Per-COVID-19 Challenge		2024

OBTENIR MON PROPRE PROFIL

Citée par		TOUT AFFICHER	
	Toutes	Depuis 2019	
Citations	24218	10570	
indice h	58	45	
indice i10	143	112	
		2100	
1111	ш	1575	
	ш	1050	
	ш	525	
2017 2018 2019 2	020 2021 2022	2023 2024 0	
Accès public		TOUT AFFICHER	
12 articles		46 articles	
non disponibles	disponibles disponibles		

Sensors 24 (5), 1557

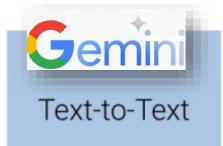
F Bougourzi, C Distante, F Dornaika, A Taleb-Ahmed, A Hadid, ...

https://scholar.google.com/citations?user=Obhn AkAAAAJ&hl=en

On the Detection of AI-Generated Images and Videos

- 1. Background
- 2. Introduction to AIGC
- 3. On the Detection of AIGC
- 4. Our Proposed Methods
- 5. Discussion

Nowadays, it is extremely easy to generate text, images, videos, music - most recent models being based on Diffusion-like models.



- ChatGPT
- Bard
- LLaMa (Meta)
- PaLM 2
- Claude
- ...many more

Text-to-Image

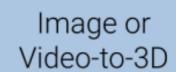
- Midjourney
- DALL-E 3
- Stable Diffusion
- Muse
- Imagen
- Bard

Image-to-Text

- ChatGPT
- Flamingo
- Visualart

Image-to-3D

- Dream Fusion
- Magic3D



- CSM AI

Text-to-Audio

- AutoLM
- Jukebox

Text-to-Code

- Codex
- Alphacode

Image-to-Science

- Galatica
- Minerva

Text-to-video

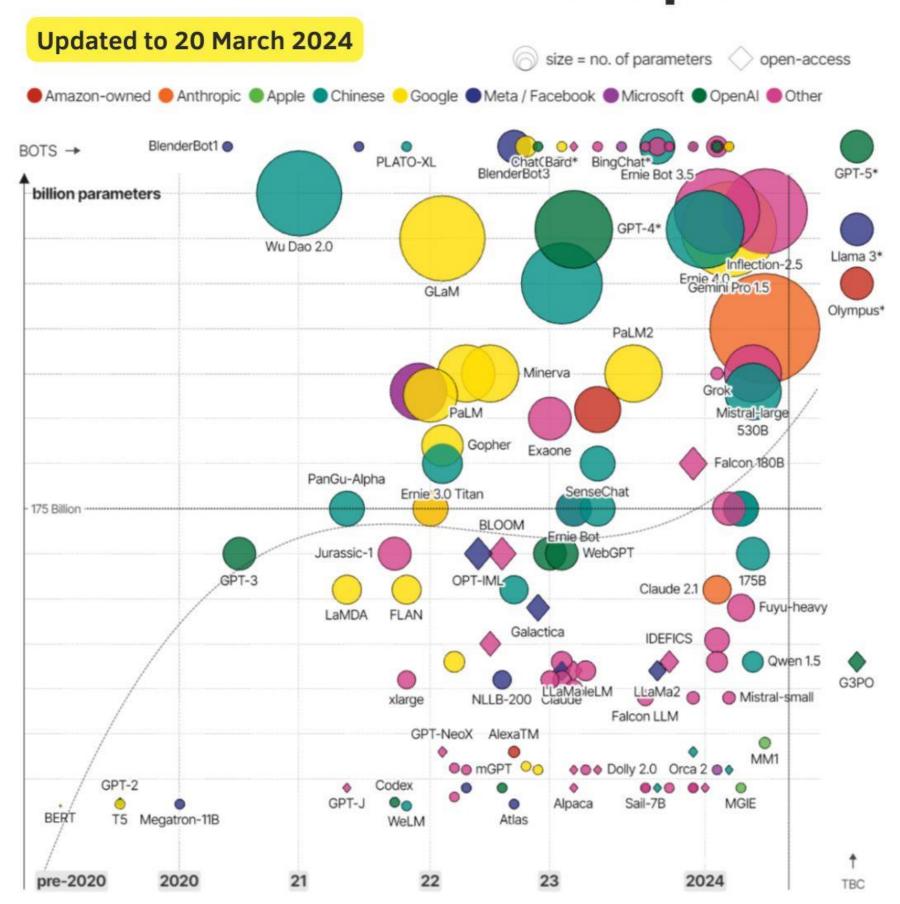
- Runway
- Cuebric
- Phenaki

Audio-to-text

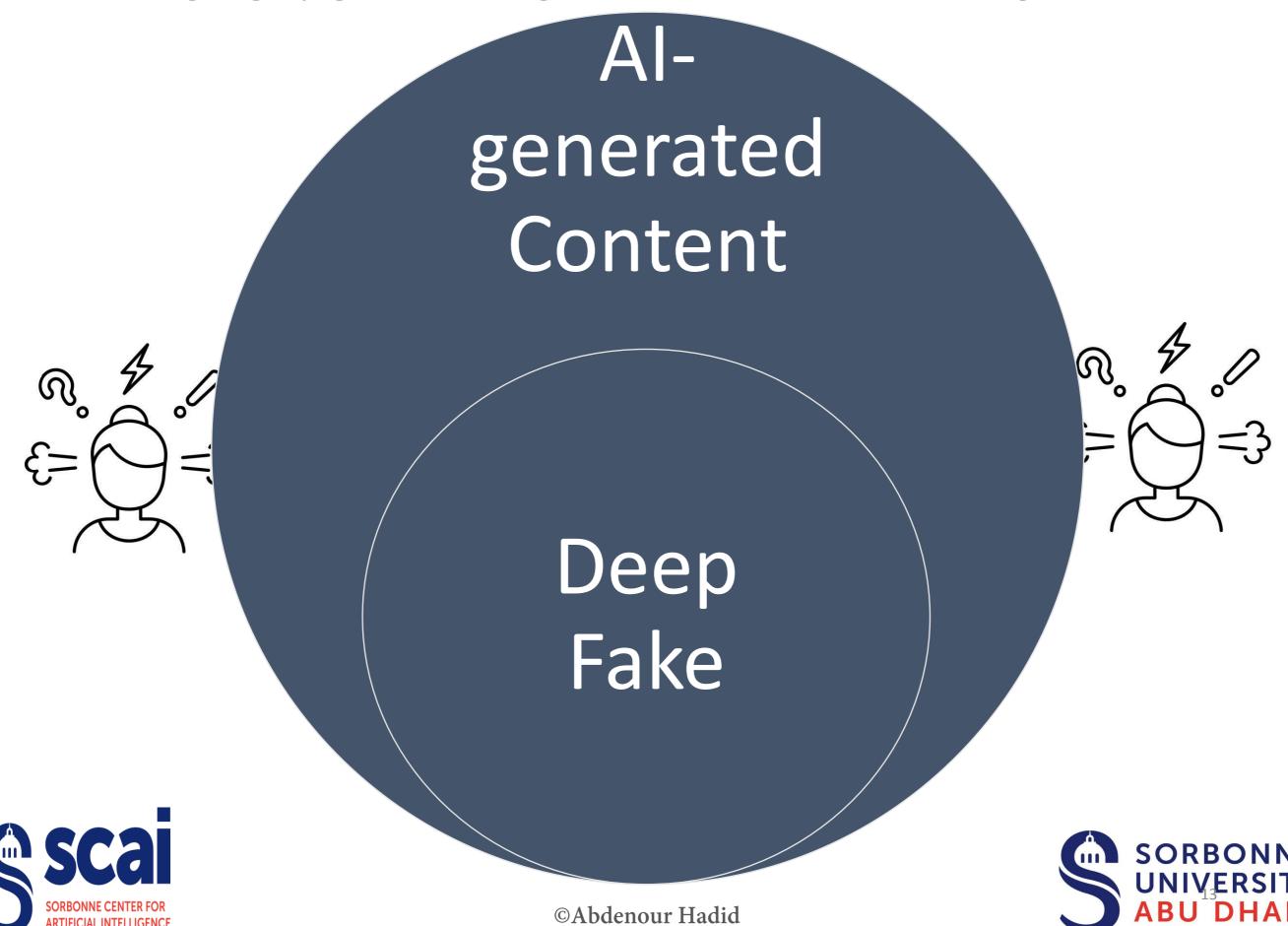
- Whisper

©Abdenour Hadid

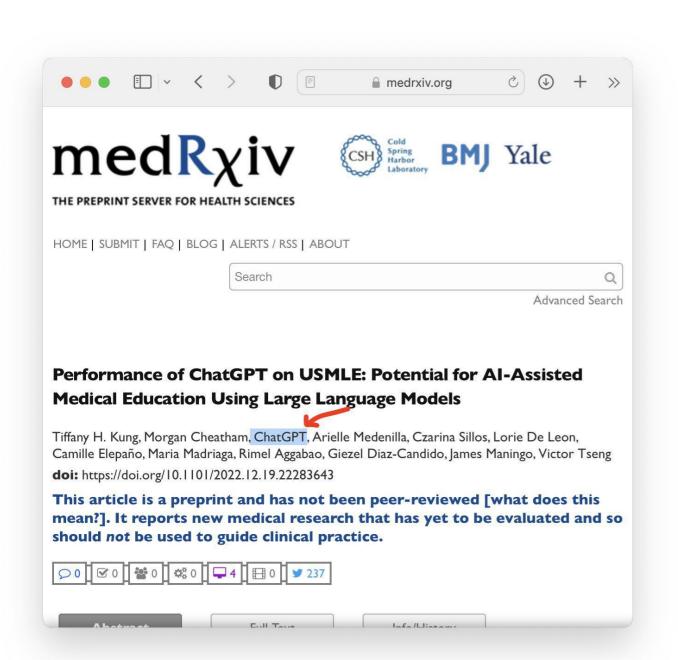
LLMs Landscape

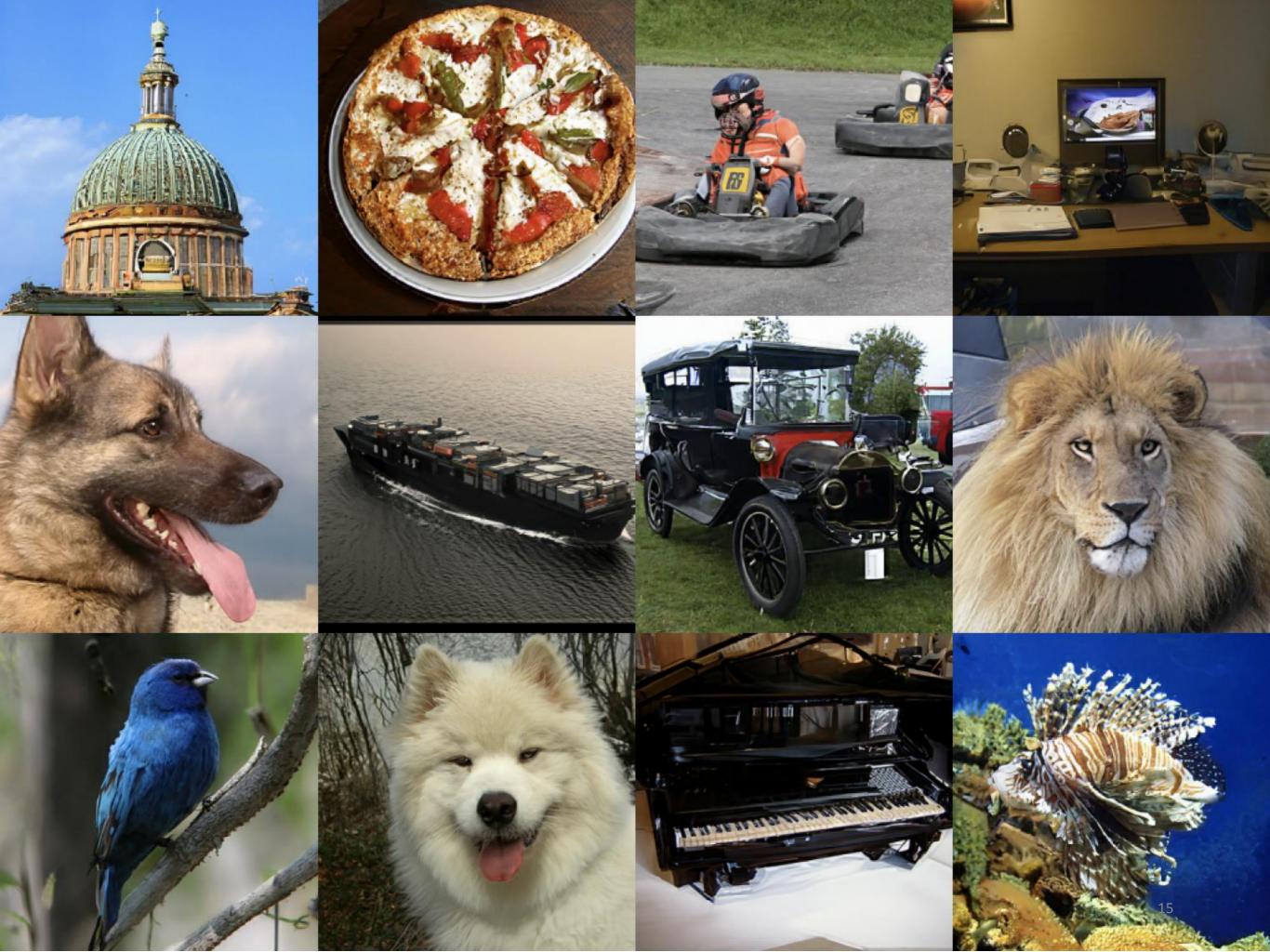


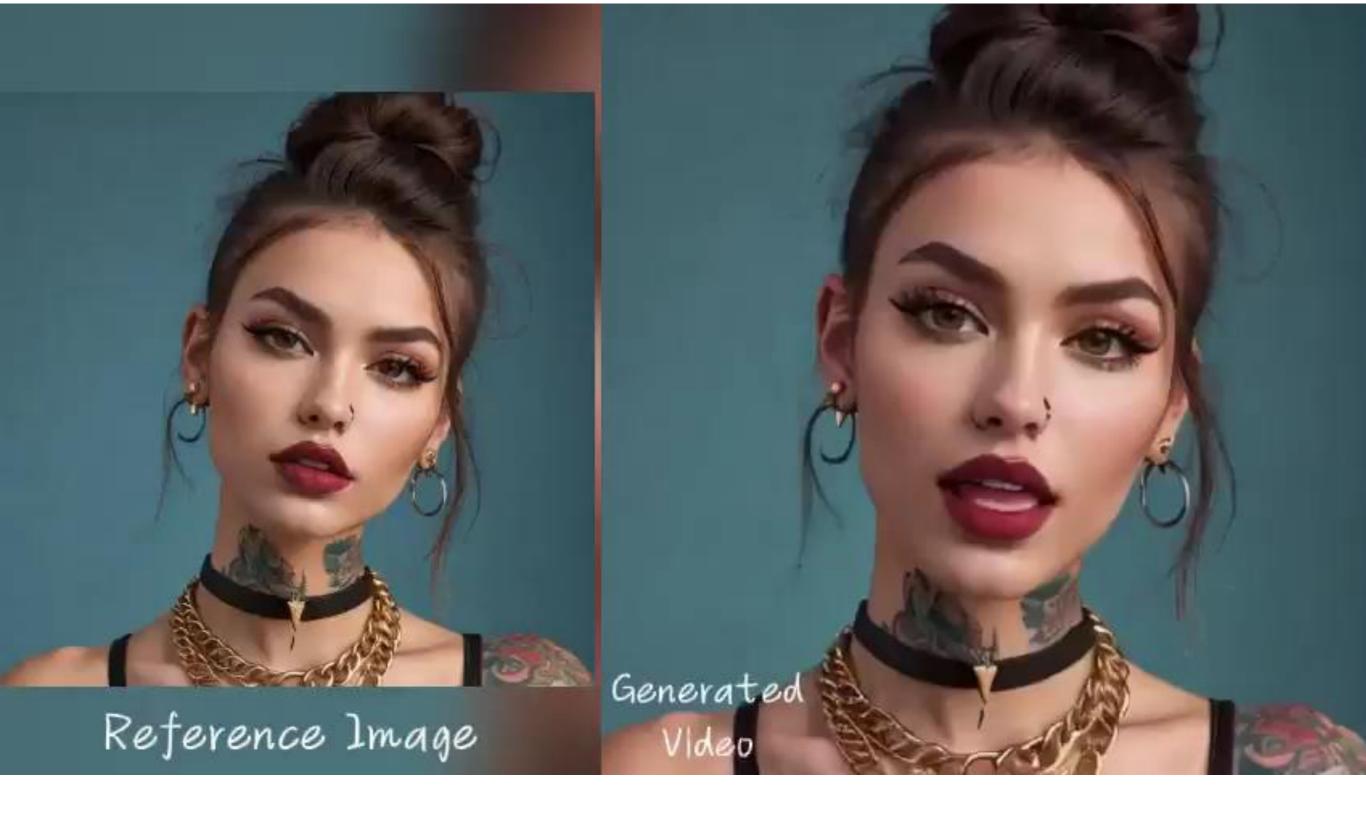
Creating highly good looking content (text, videos, images) with AI



Text Generation





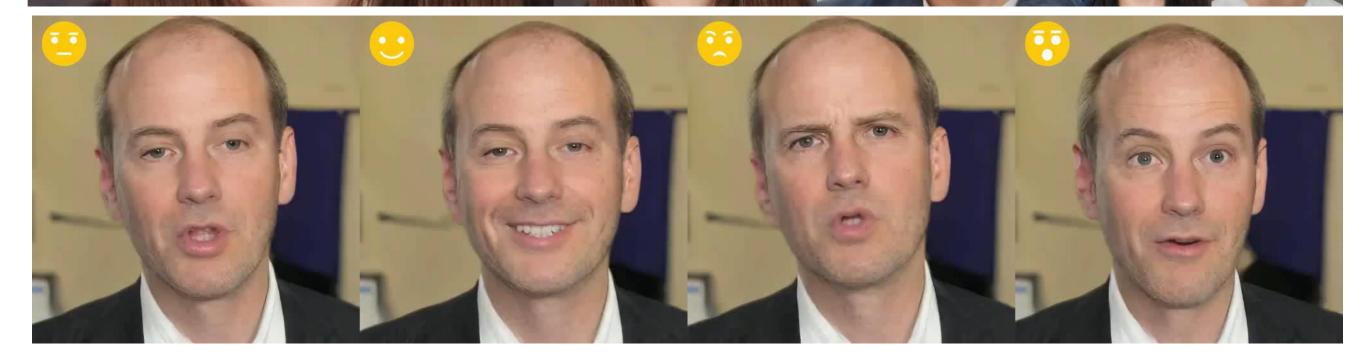


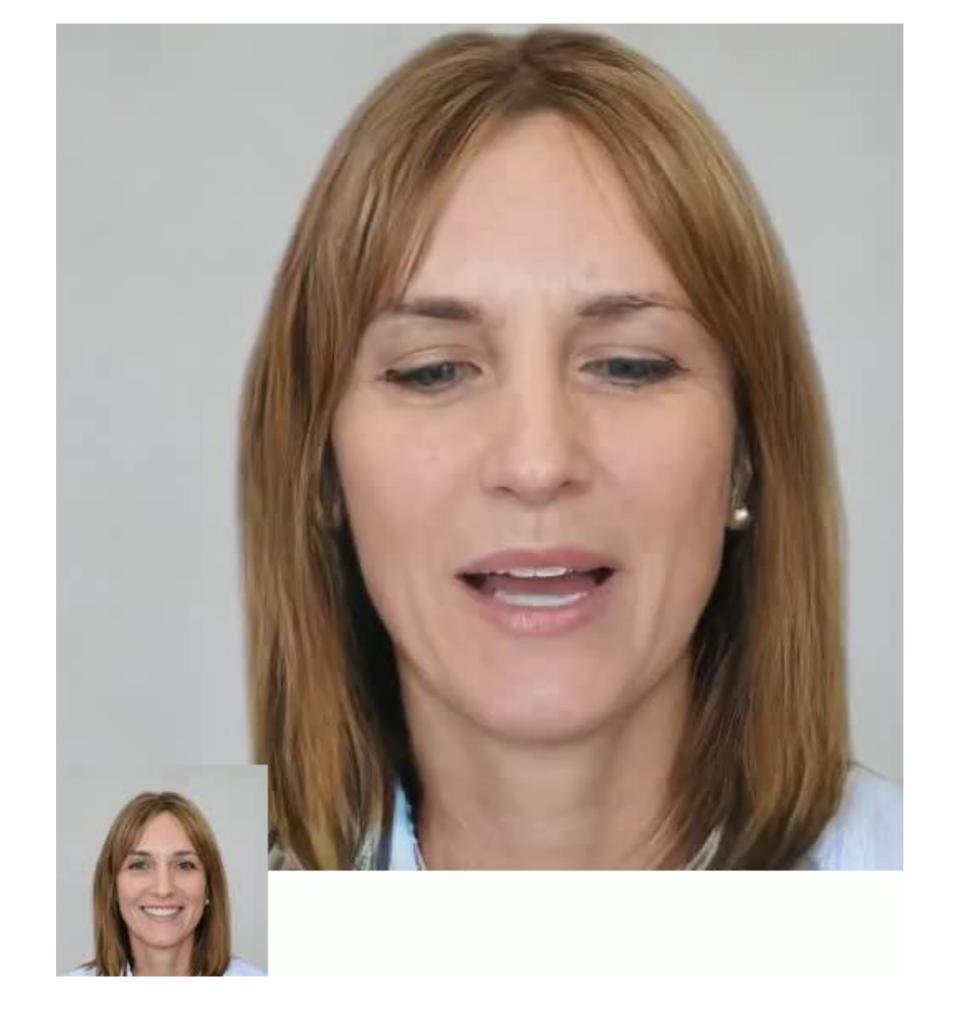
EMO: Emote Portrait Alive - Generating Expressive Portrait Videos with Audio2Video Diffusion Model under Weak Conditions

EMO: Emote Portrait Alive - Generating Expressive Portrait Videos with Audio2Video Diffusion Model under Weak Conditions

Linrui Tian, Qi Wang, Bang Zhang, Liefeng Bo Institute for Intelligent Computing, Alibaba Group

Microsoft





Number of Al-Created Images* **EVERYPIXEL** Models based on Stable Diffusion DALL-E 2 916 million **12.590** billion \$ Adobe Firefly Midjourney 964 million 1 billion 15.470 billion Sources: Adobe; our estimates, based on Photutorial, OpenAI, Civitai *As of August 2023

Pros of AI-Generated Content

Generative AI in Content Generation

Text Generation

Write blog posts, social media updates, and more.

Design unique graphics and visual content.

Voice Generation

Create realistic voiceovers for videos and podcasts.

Video Generation

Produce engaging video content from scratch.

Biases and Hallucinations

Explainable models

Explainability & Trustworthiness

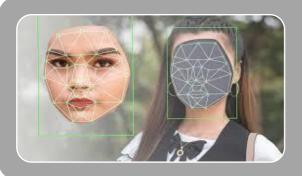
• Explainable Models

Generation Latency

Data Efficient Modeling

High Computational Power

Al and ML Accelerators



Impersonation, fraud and miss-use

Robust detection models

AI-Generated Content: Opportunities and Challenges

- 1. About my Background
- 2. Introduction to AIGC

- 4. Our Proposed Methods
- 5. Discussion

CONTENT

The Incident: A Deepfake Scam in Hong Kong

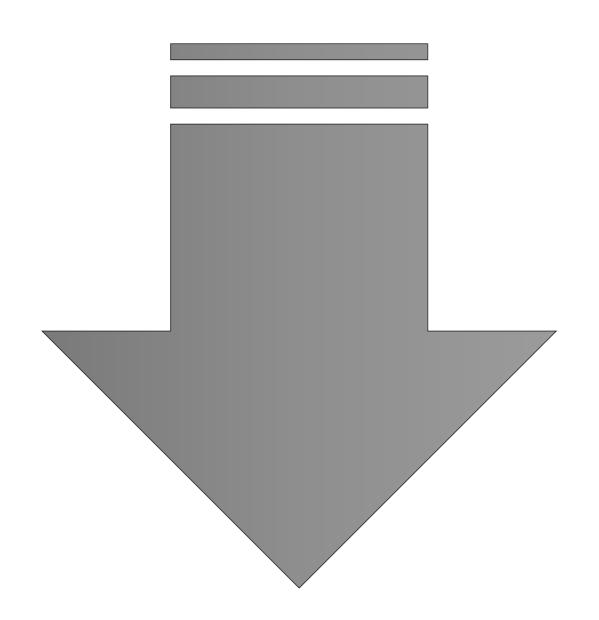
Morgan Freeman?

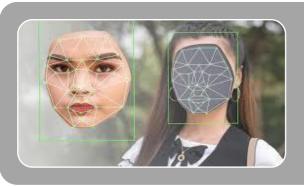
AI-Generated Content: Opportunities and Challenges

Abstract

It is becoming quite easy to generate realistic images and videos especially using diffusion-like models (e.g. DALL-E, GLIDE, Midjourney, Imagen, VideoPoet, Sora, Genie, etc.) due to their impressive generative capabilities. This creates a huge potential for a wide range of applications such as image editing, video production, content creation and digital marketing. Moreover, synthetically generated images and videos can be very useful for enhancing the training of AI models which usually require a large amount of data. However, these advances have also raised concerns about the potential misuse of these images and videos, including the creation of misleading content such as fake news and propaganda. So, one of the critical challenges associated with these advancements is the development of effective detection methods of synthetic images and videos. In the talk, we present the advances in automatically generating and editing images and videos, and discuss the limitations and challenges of such AI-generated content.

It is extremely easy to generate text, images, videos, music - most recent models being based on Diffusion-like models.

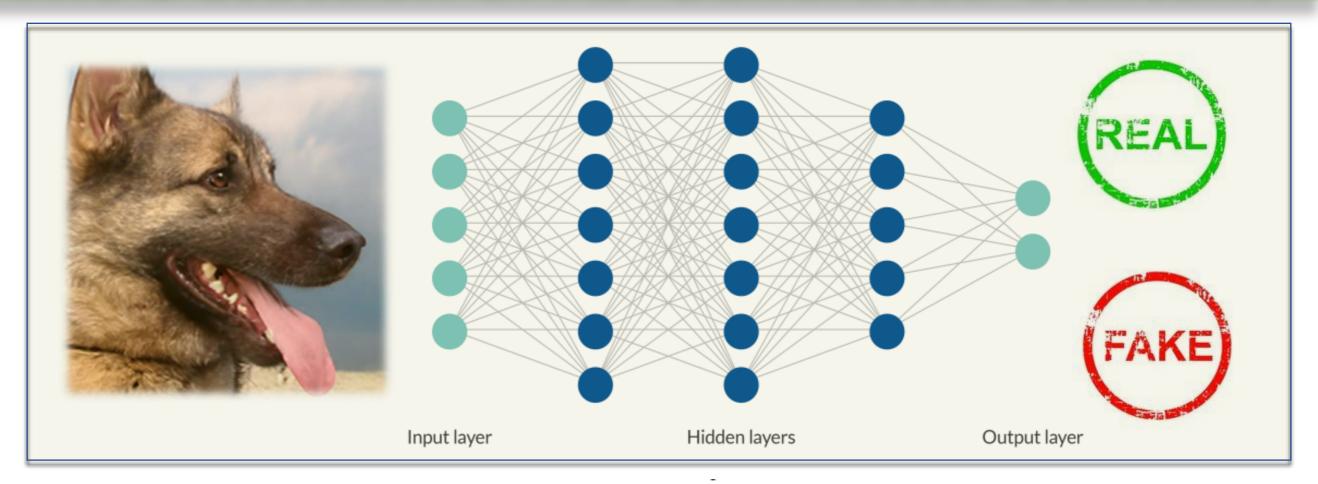




Impersonation, fraud and miss-use

Robust detection models

The Detection of AI-Generated Content

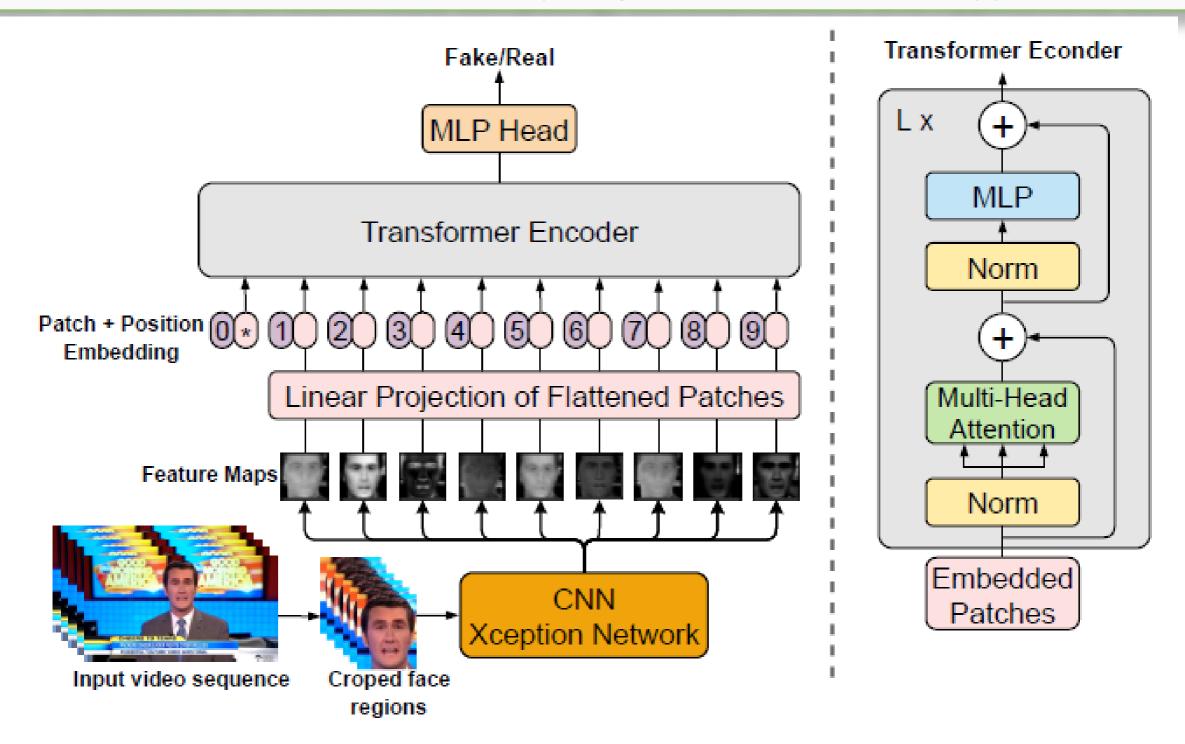


Objective: develop a model \mathcal{M} that learns

$$f: \mathbf{I} o \mathbf{Y}$$
 $I_i \in \mathbf{I} = \mathbb{R}^{d imes d} \qquad y_i \in \mathbf{Y} = \{0, 1\}$
 $D = \{(I_i, y_i) | 1 \le i \le n\}$
 $\hat{y} = f_{m{ heta}}(I)$

Deepfake Detection Using Spatiotemporal Transformer

B Kaddar, SA Fezza, Z Akhtar, W Hamidouche, A Hadid, J Serra-Sagrist, ACM Transactions on Multimedia Computing, Communications and Applications, 2023



The proposed HCiT method for deepfake video detection. In HCiT (CNN-ViT), the features extracted by the CNN module are used as inputs by ViT for the binary classification task.

Deepfake Detection Using Spatiotemporal Transformer

B Kaddar, SA Fezza, Z Akhtar, W Hamidouche, A Hadid, J Serra-Sagrist, ACM Transactions on Multimedia Computing, Communications and Applications, 2023

Mothod Training on		Testing	Testing on			
Method	DF	FS	F2F	NT	DFDC-p	Celeb
	✓				55.01	53.75
Xception		✓			37.74	14.80
			\checkmark		16.31	21.39
				\checkmark	35.52	37.88
	✓				39.96	49.23
ViT		\checkmark			21.71	17.63
			\checkmark		25.67	19.47
				✓	53.76	65.10
	✓				57.02	54.03
HCiT		✓			48.45	21.47
			✓		28.33	24.26
				\checkmark	55.04	68.81
100					Friedly (Inc.)	-
(30)	2 10		(B)	20.	(2)	400
						100
				- 97		
			_			A SECOND
-				100		ALC: U
2						1
-						SI BELL
USB 3					2.0	
to all			A STATE OF	-77		N AN
			-			
1000			ments.		-	

(c) ViT

(d) HCiT

(b) Xception

(a) Fake image

Deep Fake (DF) FaceSwap (FS) Face2Face (F2F) NeuralTexture (NT)

Architectures and features of state-of-the-art Al-synthesized images detection models

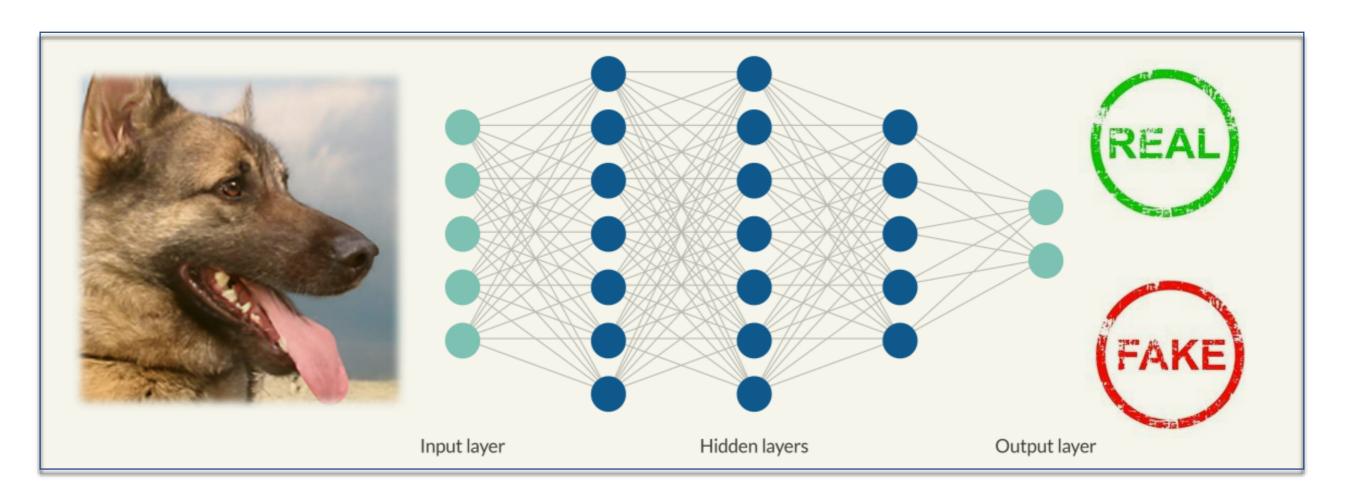
Authors	Architecture	Task		
Sha et al. 4 (2022) [58]	CNN, CLIP + MLP	binary classification		
Coccomini et al. (2023) [60]	CNN, CLIP + MLP	binary classification		
Guarnera et al. 4 (2023) [61]	CNN	binary classification		
Amoroso et al. ♣ (2023) [62]	CNN	binary classification		
Wu et al. (2023) [63]	CLIP + MLP	binary classification		
Xi et al. 4 (2023) [64]	CNN	binary classification		
Lorenz et al.♣ (2023) [65]	CNN + RF	binary classification		
Ju et al. (2023) [66]	CNN	binary classification		
Sinitsa et al. (2023) [67]	rule-based method	binary classification		
Guo et al. 4 (2023) [68]	CNN	binary classification		
Cozzolino et al. (2023) [69]	CLIP + SVM	binary classification		
Wang et al. (2023) [70]	CNN	binary classification		
Ma et al. (2023) [71]	statistical-based approach, CNN	binary classification		

Deep feature. Diffusion models unique attribute.

The datasets used in the evaluations of state-of-the-art AI-synthesized images detection models

Authors	Dataset				
Sha et al. 4 (2022) [58]	DE-FAKE				
Coccomini et al. 4 (2023) [60]	Diffusers				
Guarnera et al. 4 (2023) [61]	Level up the DeepFake detection				
Amoroso et al. 4 (2023) [62]	COCOFake				
Wu et al. (2023) [63]	LSUN, Danbooru, ProGAN, SD, BigGAN, GauGAN, styleGAN, DALLE, GLIDE, Guided Diffusion, Latent Diffusion, ImageNet, VISION, Artist, DreamBooth, Midjourney, NightCafe, StableAI, YiJian				
Xi et al. 4 (2023) [64]	AI-Gen Image				
Lorenz et al. ♣ (2023) [65]	CiFAKE, ArtiFact, DIffusionDB, LAION-5B, SAC, SD-v2.1, LSUN-Bedroom				
Ju et al. (2023) [66]	LSUN, ProGAN, DF ³				
Sinitsa et al. (2023) [67]	Laion-5B, SD v-1.4, SD v-2.1, DALL-E-Mini, GLIDE [20], DALL-E-2, MidJourney, CycleGAN, ProGAN _e , ProGAN _t , BigGAN, StyleGAN, StyleGAN2, GauGAN, StarGAN				
Guo et al. 4 (2023) [68]	HiFi-IFDL				
Cozzolino et al. (2023) [69]	ProGAN, StyleGAN2, StyleGAN3, StyleGAN-T, GigaGAN, (Score-SDE, ADM, GLIDE, eDiff-I, Latent and Stable Diffusion, DiT, DeepFloyd-IF, Stable Diffusion XL, DALL-E 2, DALL-E 3, Midjourney v5, Adobe Firefly, LSUN, FFHQ, ImageNet, COCO, LAION, RAISE				
Wang et al. (2023) [70]	DiffusionForensics				
Ma et al. (2023) [71]	CIFAR10, TinyImageNet, CelebA				

The Detection of AI-Generated Content



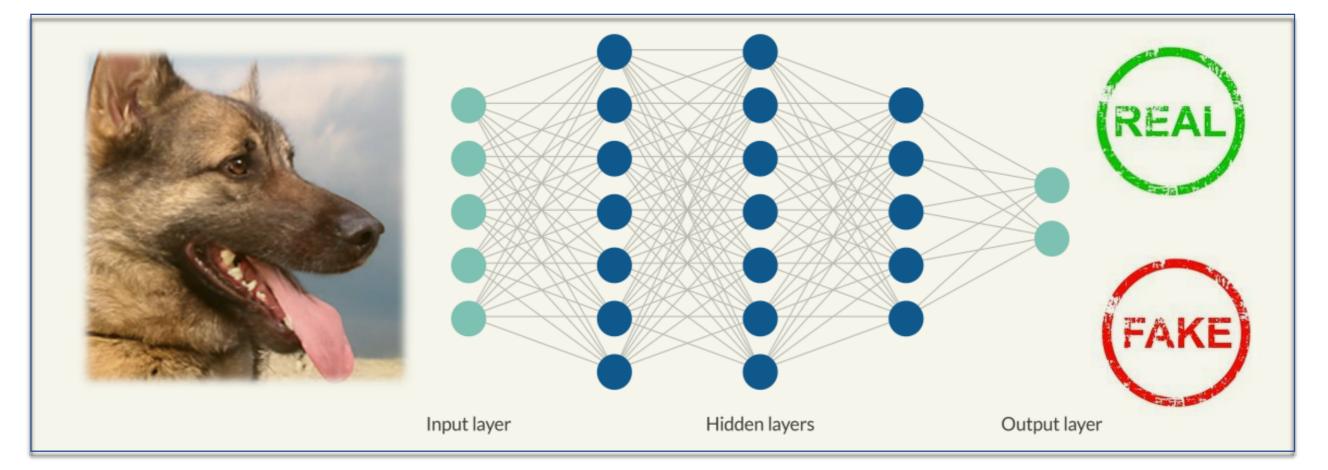
Poor Generalization to Diffusion Models

Approaches based on binary classification are shown a serious lack of efficiency in generalizing to accurately discriminate new diffusion-generated images that have never been encountered before.

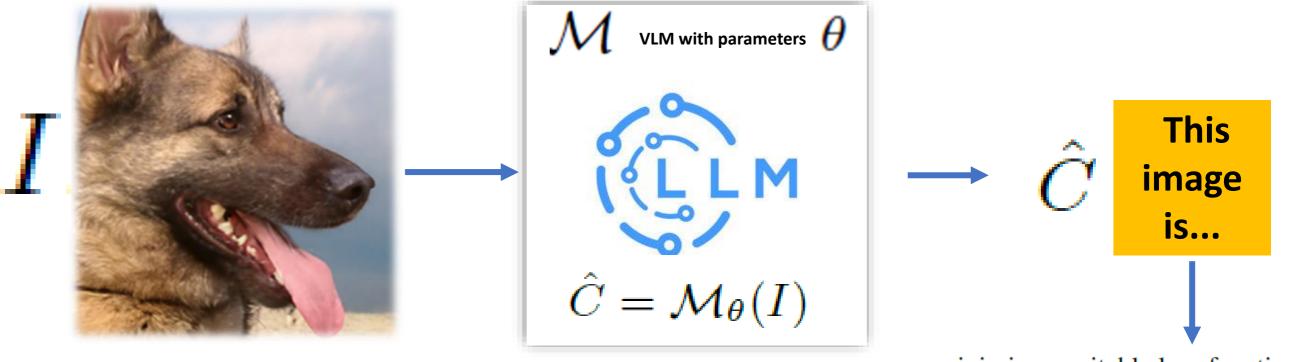
AI-Generated Content: Opportunities and Challenges

- 1. About my Background
- 2. Introduction to AIGC
- 3. Detection of AIGC: SOTA
- 4. Our Proposed Methods
- 5. Discussion

CONTENT



Frame deepfake detection as a image captioning task:



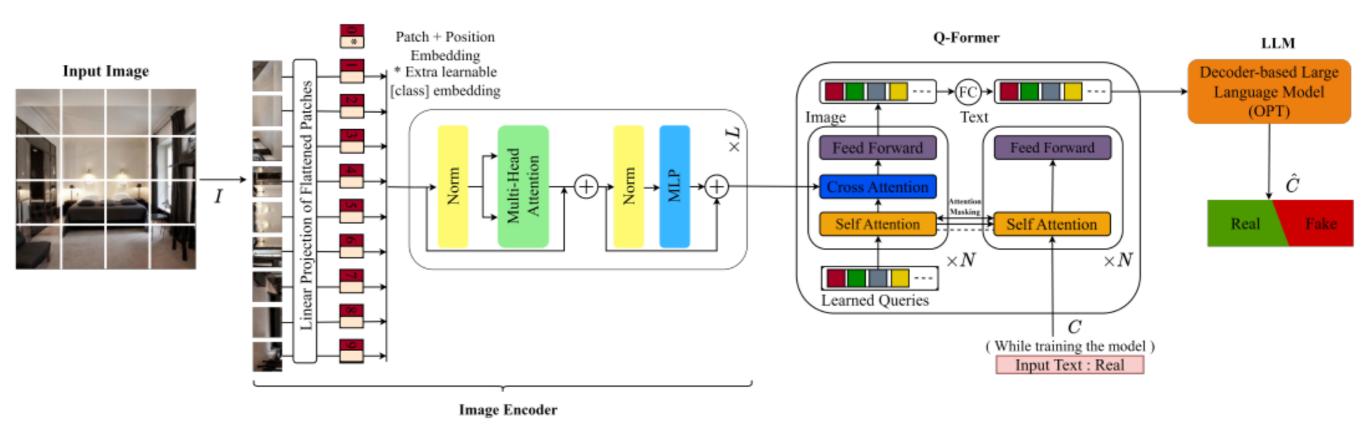
$$D = \{(I_i, C_i) | 1 \le i \le n\}$$

minimize a suitable loss function \mathcal{L}

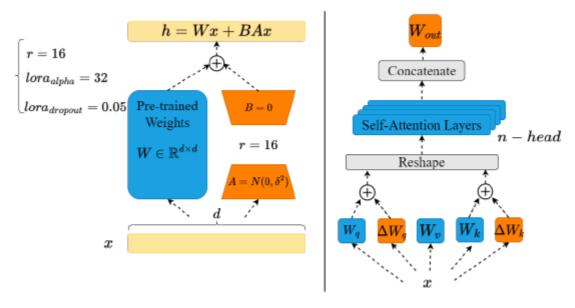
$$\theta^* = \arg\min_{\theta} \sum_{i=1}^n \mathcal{L}(\mathcal{M}_{\theta}(I_i), C_i)$$

Bi-LORA: A Vision-Language Approach for Synthetic Image

<u>Detection</u> M Keita, W Hamidouche, HB Eutamene, A Hadid, A Taleb-Ahmed, https://arxiv.org/abs/2404.01959



Proposed methodology for synthetic image detection based on the BLIP-2 architecture.



BLIP-2 fine-tuning with LoRA.

Bi-LORA: A Vision-Language Approach for Synthetic Image

<u>Detection</u> M Keita, W Hamidouche, HB Eutamene, A Hadid, A Taleb-Ahmed, https://arxiv.org/abs/2404.01959

Table 1: Results of different methods trained on LDM and evaluated on different testing subsets. We report ACC (%) / F1-Score (%).

Method	Testing Subset						Avg	
	LDM*	ADM^{\oplus}	$DDPM^\oplus$	IDDPM⊕	$PNDM^{\oplus}$	SD v1.4*	GLIDE*	(%)
ResNet50	99.92 / 99.92	72.33 / 61.83	75.26 / 67.21	88.96 / 87.61	77.20 / 70.52	75.47 / 67.57	73.10 / 63.28	80.32 / 73.99
Xception	99.96 / 99.96	52.05 / 7.98	58.60 / 29.41	54.62 / 16.99	60.01 / 33.43	63.84 / 43.41	58.92 / 30.35	64.00 / 37.36
DeiT	99.83 / 99.83	50.40 / 2.01	50.18 / 1.17	50.14 / 1.01	56.25 / 22.54	96.02 / 95.86	98.15 / 98.11	71.56 / 45.79
ViTGPT2	99.40 / 99.40	70.84 / 59.21	69.60 / 56.72	84.08 / 81.20	95.40 / 95.22	99.54 / 99.55	99.27 / 99.27	88.30 / 84.37
BLIP-2	99.12 / 99.13	85.24 / 82.97	98.47 / 98.47	97.02 / 96.97	99.22 / 99.23	77.68 / 71.79	97.09 / 97.05	93.41 / 92.23

^{*} Text-To-Image diffusion-based model. $^{\oplus}$ Unconditional diffusion-based model.

Method	(%)		
ResNet50	80.32 / 73.99		
Xception	64.00 / 37.36		
DeiT	71.56 / 45.79		
ViTGPT2	88.30 / 84.37		
BLIP-2	93.41 / 92.23		

Bi-LORA: A Vision-Language Approach for Synthetic Image

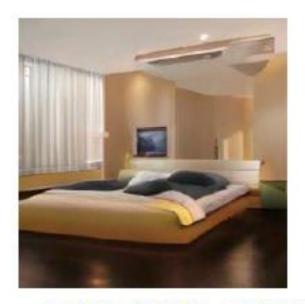
<u>Detection</u> M Keita, W Hamidouche, HB Eutamene, A Hadid, A Taleb-Ahmed, https://arxiv.org/abs/2404.01959

(a) Real - 0|0|0|0|0

(e) Fake (IDDPM) - 1|0|0|0|1

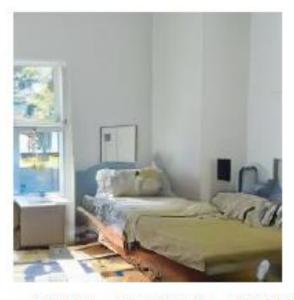
(b) Fake (ADM) - 0|0|0|0|1

(f) Fake (SD) - 0|1|0|1|1

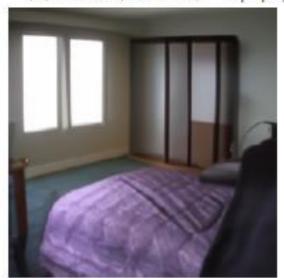


(c) Fake (LDM) - 1|1|1|1|1

(g) Fake (PNDM) - 0|0|0|1|1



(d) Fake (DDPM) - 0|0|0|1|1

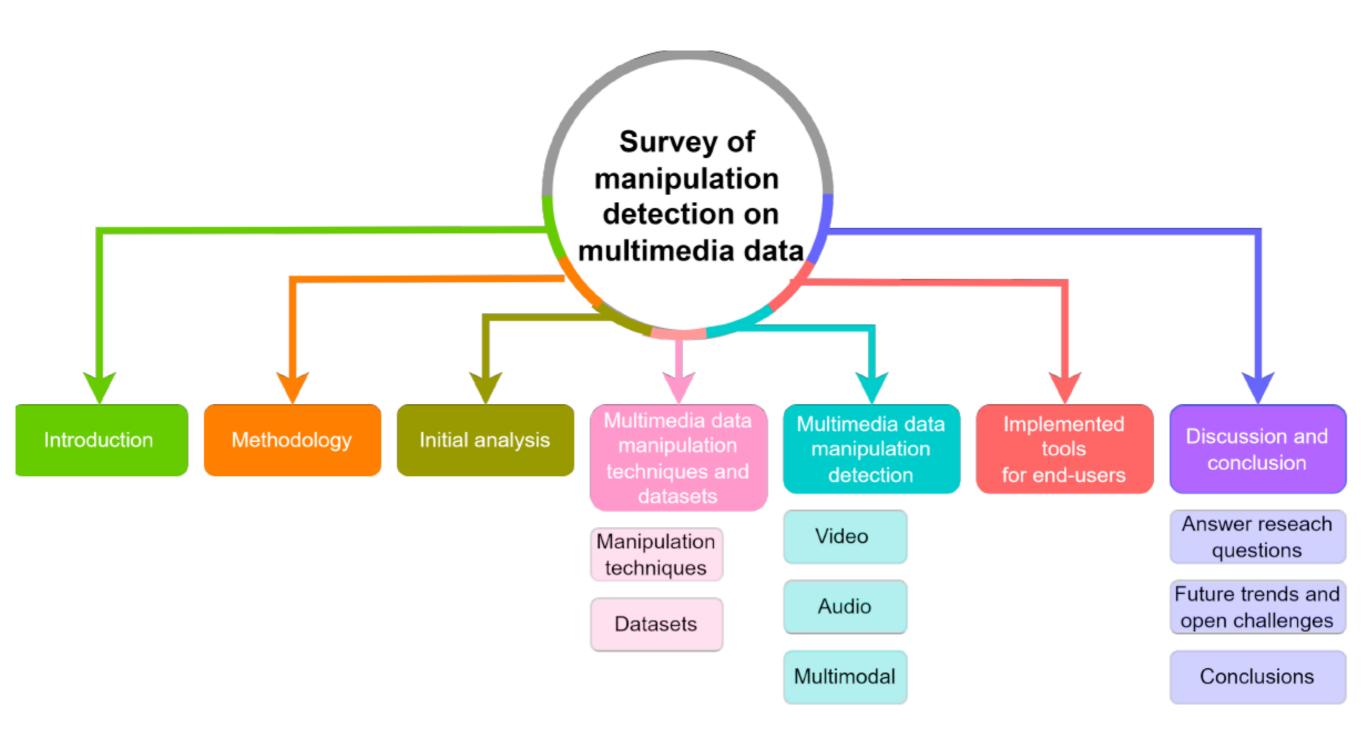


(h) Fake (GLIDE) - 0|0|1|1|1

The 5-digit binary code shows results from ResNet, Xception,

DeiT, ViTGPT2, and BLIP2 models, where '0' means real and '1' means fake.

Multimodal Analysis



Generation and detection of manipulated multimodal audiovisual content: Advances, trends and open challenges

H Liz-Lopez, M Keita, A Taleb-Ahmed, A Hadid, J Huertas-Tato, Information Fusion, 2024 https://www.sciencedirect.com/science/article/abs/pii/S1566253523004190

AI-Generated Content: Opportunities and Challenges

- 1. About my Background
- 2. Introduction to AIGC
- 3. Detection of AIGC: SOTA
- 4. Our Proposed Methods
- 5. Discussion

CONTENT

Take home messages

- 1. Nowadays, it is extremely easy to generate text, images, short videos, music most recent models being based on diffusion-like models.
- 2. Impersonation, fraud and miss-use are serious threat. So, robust detection models are needed.
- 3. Perfect generalization is never garranted. Updates are always needed (horse race). Universal detectors?
- 4. Models-based on VLMs sound appealing.

AI is a risky game that humanity should play!

Merci

Prof. Abdenour Hadid

<u>abdenour.hadid@Sorbonne.ae</u>

<u>abdenour.hadid@ieee.org</u>

