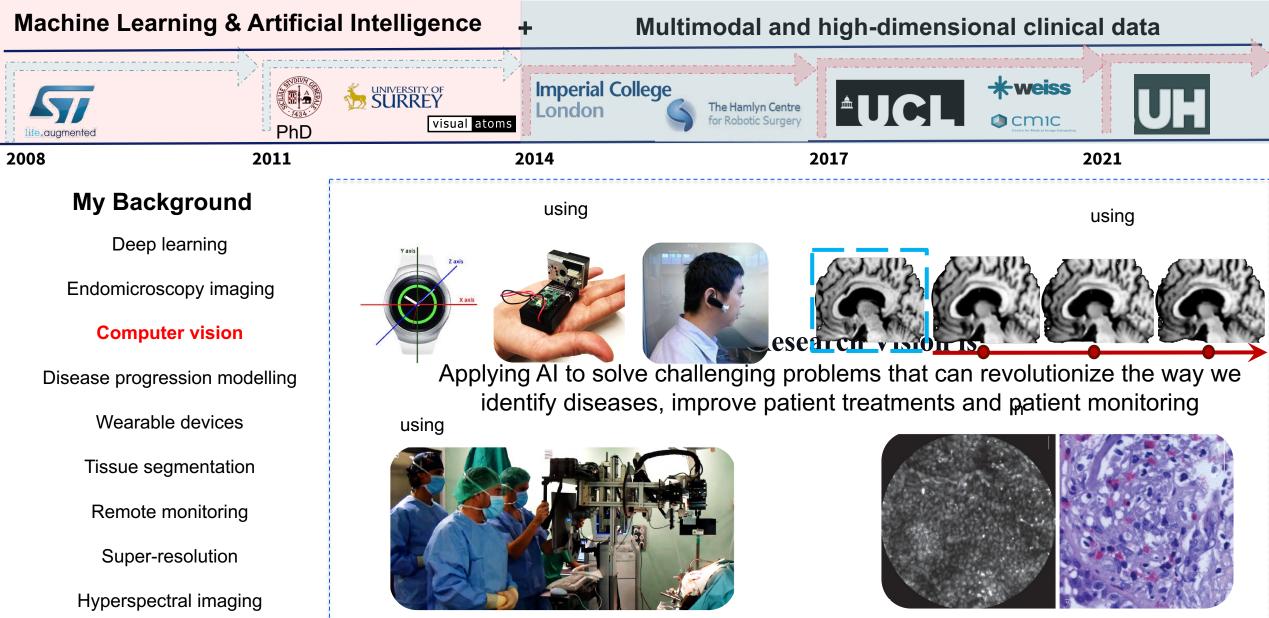
Challenges and Opportunities of Al in Medical Imaging

Dr. Daniele Ravi

University of Hertfordshire - UK School of Physics, Engineering and Computer Science

<u>d.ravi@ucl.ac.uk</u> <u>d.ravi@herts.ac.uk</u>

Who am I?



Queen Square Analytics – UCL Startup

Queen Square 101010 ANALYTICS

THE FUTURE OF MRI ANALYSIS

Next generation data analytics in neurology

WHY QSA

World leading expertise with commercial flexibility

QSA offers the latest technology in neurological image analysis supported by a team of top experts in the field leading path-breaking research projects at UCL.

Agenda

- Motivations
- Medical Imaging
 - Introduction to the Different Modalities
- Applications
 - Image Retrieval
 - Artifacts Detections
 - Tissue Segmentation
 - Super-Resolution
 - Disease Progression Modelling
 - Smart Sensing
- Conclusion

Question: How AI Is Transforming The Future Of Healthcare?

Why AI in Medical Imaging?

- National health systems in various countries facing crisis after COVID-19 pandemic
- We see everywhere overwhelmed healthcare infrastructure and lack of resources
- Crisis has exposed pre-existing issues in healthcare systems such as underfunding and staffing shortages.
- The crisis is particularly important in **low-income countries** where the healthcare system is already fragile.

• This article is more than 6 months old

Doctors forced to work overnight shifts at last minute in NHS staffing crisis

Junior medics in England being sent home from day shifts and told to come back to plug gaps at night

Letters

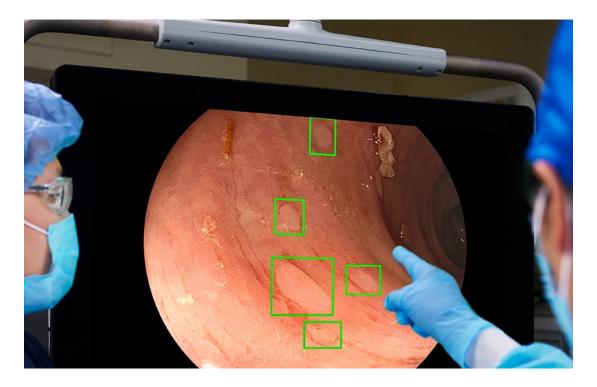
Recruitment drives alone won't fix the NHS staffing crisis

Anas Nader says the focus should be on retention, while Amanda Grantham looks to volunteer helpers. Plus Jeremy Seymour on early retirement and Dr Sharon Holland on apprenticeships

Adv

GI Genius[™] intelligent endoscopy

- The first-to-market, computer-aided polyp detection system powered by AI
 - Approved by FDA
- Detect colorectal polyps through enhanced visualization during **colonoscopy**



GI Genius[™] has been shown to increase adenoma detection rates by **up to 14.4%**.

Medical Imaging promises to improve the healthcare system

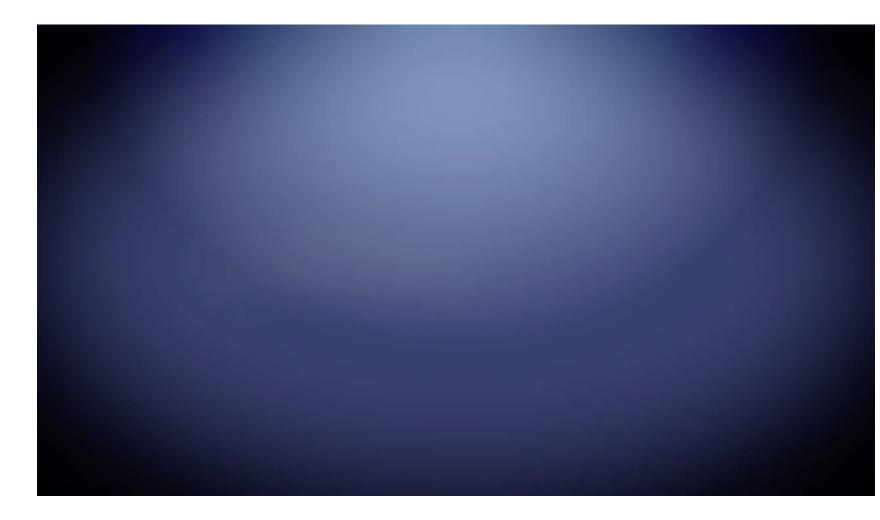
- Al can improve medical services:
- 1. Decrease the costs
- 2. Make them more efficient
- 3. Less prone to mistakes
- 4. Save lifes

Medical Imaging Applications:

- 1. Improved Diagnostic Accuracy
- 2. Enhanced Patient Care
- 3. Shortening Hospitalization
- 4. Increased Healthcare Professional Efficiency
- 5. Clinical Decision Making Support
- 6. Image-Guided Surgery
- 7. Clinical Trial Assistance
- 8. Telemedicine Capabilities

Image-guided robotic surgery: Da Vinci Robot

- Surgical robots can achieve superhuman performance during minimally invasive surgery
- AI can boost the capability of surgical robotic systems in perceiving complex environments, conducting decisionmaking, and performing the desired tasks



Applications in Image-guided robotic surgery

Minimally Invasive Robotic Surgery

Post-operative care Telemedicine & Smart Sensing

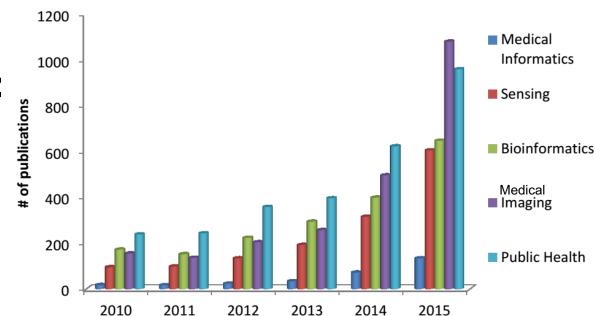
Pre-operative simulation & planning

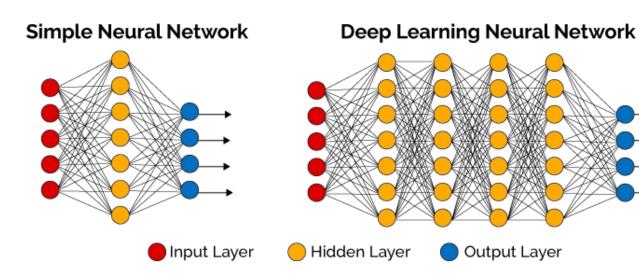
Intra-operative guidance & AR

AI & Deep Learning

Rapid uptake in healthcare due to:

- 1. Many medical centers that collect and organize large sets of patient data
- 2. Computational hardware improvements
 - High performance computing
 - Cloud computing
 - GPUs
 - Fast data storage

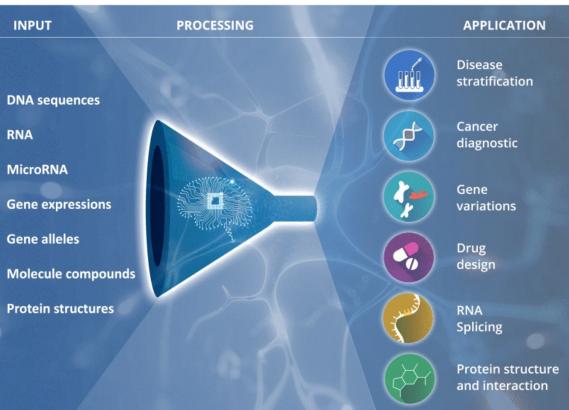




Ravì, Daniele, et al. "Deep learning for health informatics." *IEEE journal of biomedical and health informatics* 21.1 (2016): 4-21

Applications of AI in Health Informatics

	Applications	Input Data			
Bioinformatics	Cancer diagnosis Gene selection/classification Gene variants Drug design	Gene expression MicroRNA Microarray data Molecule compounds			
Bioin	Compound-Protein interaction RNA binding protein DNA methylation	Protein structures Molecule compounds Genes/RNA/DNA sequences			
Medical Imaging	3D brain reconstruction Neural cells classification Brain tissues classification Alzheimer/MCI diagnosis	MRI/fMRI Fundus images PET scans			
	Tissue classification Organ segmentation Cell clustering Hemorrhage detection Tumour detection	MRI/CT Images Endoscopy images Microscopy Fundus Images X-ray images Hyperspectral images	Ρ		

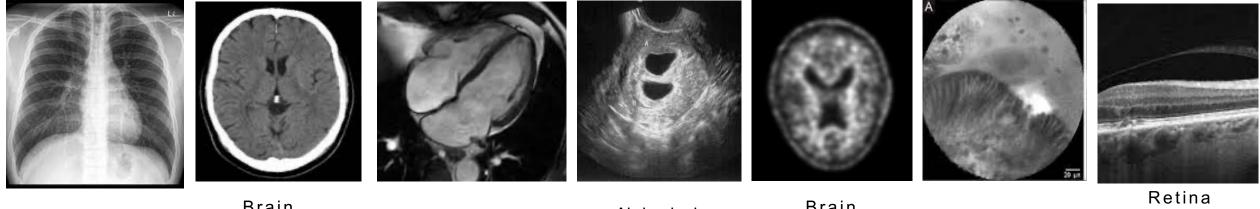


Applications of Al in Health Informatics

	Applications	Input Data		
50	Anomaly detection Biological parameters monitoring	EEG ECG Implantable device	2	
Pervasive Sensing	Human activity recognition	Video Wearable device		
	Hand gesture recognition Obstacle detection Sign language recognition	Depth camera RGB-D camera Real-Sense camera	R	
	Food intake Energy expenditure	Wearable device RGB Image Mobile device		
Medical Informatics	Prediction of disease Human behaviour monitoring Data mining	Electronic health records Big medical dataset Blood/Lab tests	IM	
Public Health	Predicting demographic info Lifestyle diseases Infectious disease epidemics Air pollutant prediction	Social media data Mobile phone metadata Geo-tagged images Text messages		B

What is Medical imaging?

Encompasses a range of techniques used to obtain tissue information, with the goal of **aiding diagnosis**, **monitoring**, **and treatment of various health conditions**.



Chest X-rays

Brain Computed Tomography

And many more.....

- 1. Functional MRI- fMRI
- 2. Hyperspectral imaging
- 3. Diffusion MRI

Cardiac MRI Abdominal Ultrasound Brain Positron emission tomography Tissue Endomicroscopy Retina Optical Coherence Tomography

- 4. Endoscopy
- 5. Fluoroscopy
- 6. Angiography
- 7. Mammography

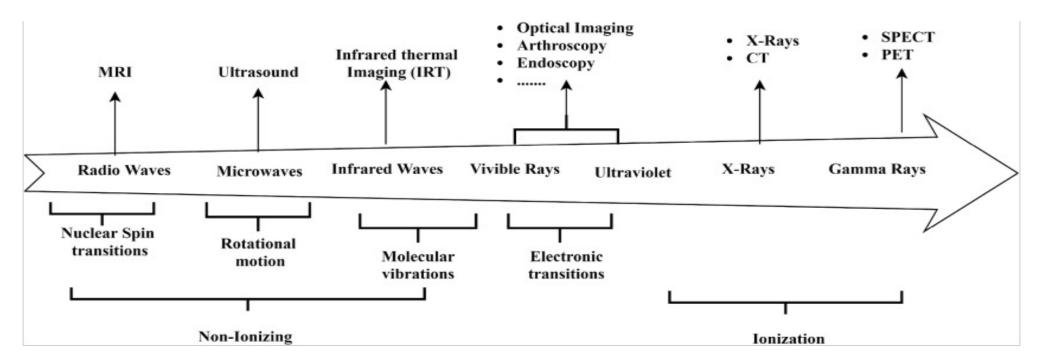
Image Modalities: Taxonomy

Different imaging modalities vary in:

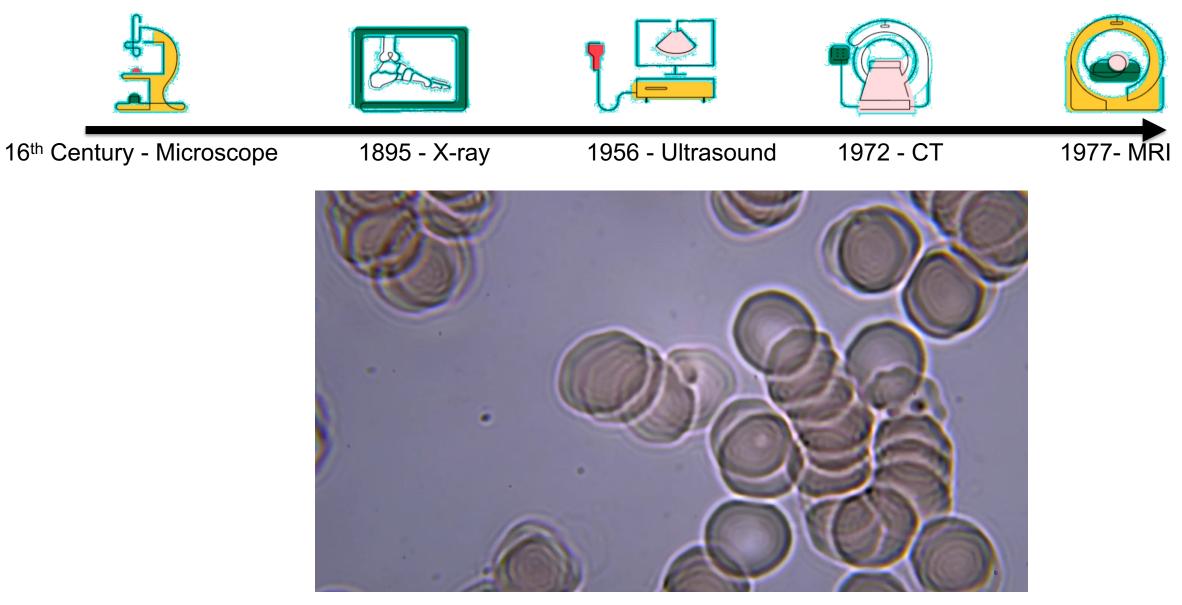
- Acquisition scanner
- Image resolution
- Tissue properties captured
- Invasiveness of the associated procedure
- Ionizing properties of the associated scanner

These differences result in:

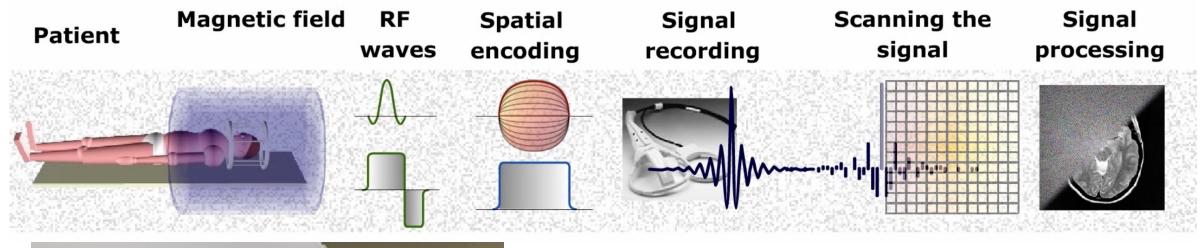
- Varying costs
- Different image quality
- Different diagnostic capabilities
- Different surgical procedures
- Potential risks



Milestones in Medical Imaging



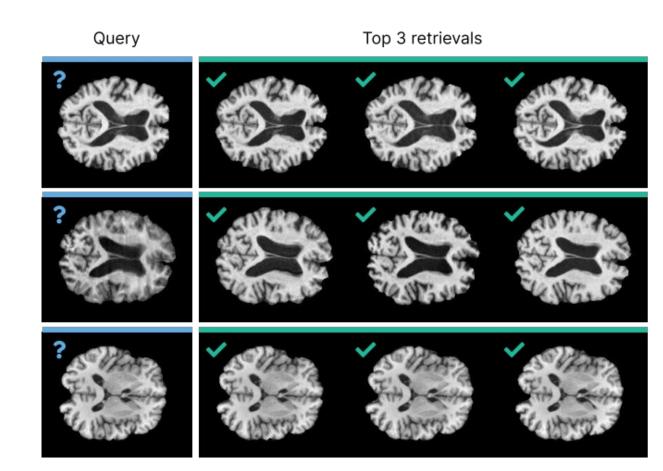
Magnetic Resonance Imaging



Movements Magnetic susceptibility Folding / Aliasing Gibbs' artifact Image: Description of the susceptibility Image: Descriptibility Image: Descripti

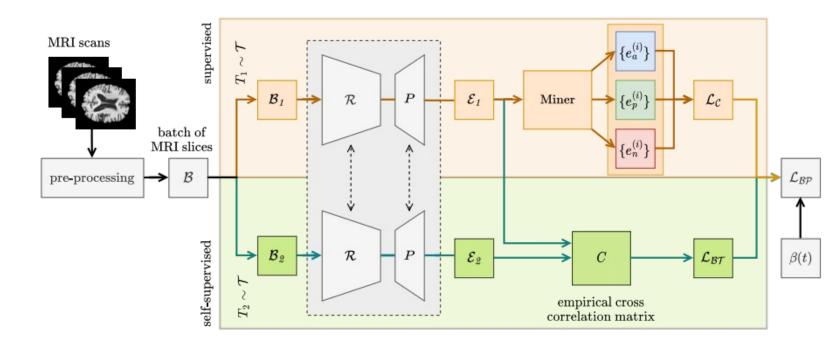
DeepBrainPrint: AI-Powered Medical Imaging Retrieval Framework

- Recent advances in MRI have led to the creation of large datasets
- Difficulty in locating previous scans of the same patient within these datasets
- Re-identification is the process of locating previous scans of the same patient within large datasets



DeepBrainPrint: Proposed Architecture

 Combining selfsupervised and supervised paradigms to create an effective brain fingerprint from MRI scans that can be used for real-time image retrieval



 Introduction of new imaging transformations to improve retrieval robustness in the presence of intensity variations, age, and disease progression in patients.

Puglisi, L., Barkhof, F., Alexander, D.C., Parker, G.J., Eshaghi, A. and **Ravì, D., 2023.** DeepBrainPrint: A Novel Contrastive Framework for Brain MRI Re-Identification. *Accepted at MIDL 2023*

DeepBrainPrint: Experimental Results

Tested on:

- 1. a large dataset of T1-weighted brain MRIs from (ADNI)
- a synthetic dataset designed to evaluate retrieval performance with different image modalities

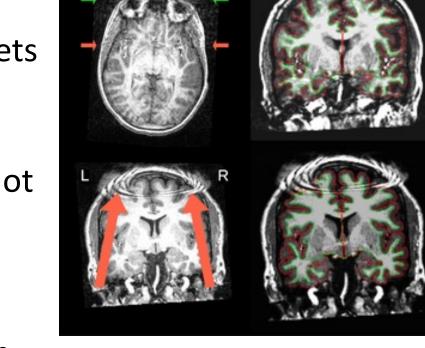
• Results:

 Our approach outperforms previous methods, including simple similarity metrics and more advanced deep learning frameworks.

	Settings		ADNI		SYNT-CONTR		
Method	$\widehat{\mathbf{FS}}$	$\widehat{\mathbf{SS}}$	$\widehat{\mathbf{DT}}$	R@3	mAP@3	R@3	mAP@3
SSIM-based [20]	N	o train	ing	96.89	90.21	76.68	48.86
3D SIFT-Rank 5	N	o train	ing	100.00	100.00	81.77	63.71
Barlow Twins [13]		\checkmark		73.06	45.35	48.70	25.52
Barlow Twins with our transformations		\checkmark	\checkmark	97.41	90.47	92.23	79.62
SimCLR 14		\checkmark		68.39	38.47	51.30	24.55
SimCLR with our transformations		\checkmark	\checkmark	87.05	67.63	70.98	39.94
NCA [21]	\checkmark		\checkmark	96.89	90.34	72.02	48.10
MLKR [22]	\checkmark		\checkmark	96.37	90.03	72.02	48.07
SoftTriple 9	\checkmark		\checkmark	98.45	91.97	96.89	87.64
Proxy-NCA [10]	~		\checkmark	98.45	90.80	94.82	84.86
InfoNCE [11]	~		\checkmark	96.89	94.04	95.34	86.95
DeepBrainPrint (Proposed)	\checkmark	\checkmark	\checkmark	99.48	95.54	98.96	91.00

Quality Control System based on Generative Al

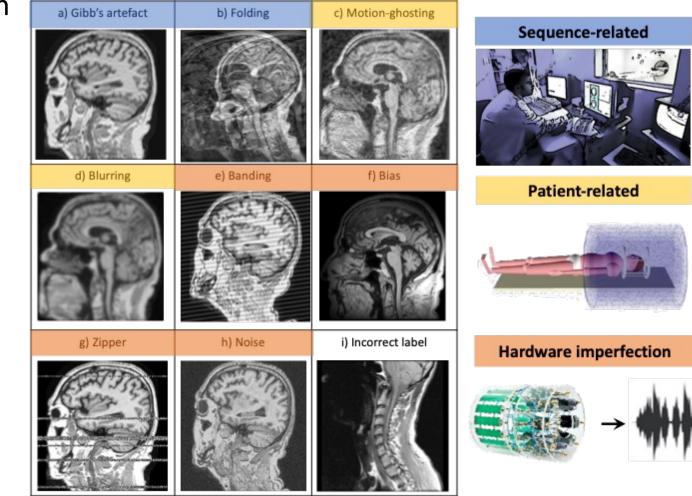
- Brain MRI artefacts can impact diagnosis and treatment planning, highlighting the need for quality control.
- Quality control is necessary to ensure each sample meets minimum quality requirements
- Automatic artefact detection methods often require a lot of data
- Scarcity of artefact-containing scans hinders the implementation of machine learning in clinical research



Ravi, D., Barkhof, F., Alexander, D.C., Parker, G.J. and Eshaghi, A., **2023.** An efficient semi-supervised quality control system trained using physics-based MRIartefact generators and adversarial training. *Under review at MEDIA 2023*

Proposed method: Artefact Simulations based on Generative Al

- We propose a novel framework based on an artefact generators to corrupt brain MRI scans
- We have identified 9 different common artefacts for T1-weighted MRI
 - Hardware imperfection artefacts
 - Patient-related artefacts
 - Sequence-related artefacts
 - Incorrect labelling
- Our AI solution has the advantage of using only artefact-free images with the benefit of requiring limited training labels



Experimental Results: Artefact detection

Approach			Accuracy (%)	F1(%)	F2(%)	Precision(%)	Recall(%)
Features	Classifier	Augm.					
F	PCA-based	X	83.44 ± 29.29	90.08 ± 35.34	86.35 ± 35.63	97.06 ± 3.03	84.03 ± 35.84
F	Autoencoder	X	83.33 ± 13.65	90.35 ± 10.84	87.31 ± 13.59	95.92 ± 5.55	85.39 ± 15.21
F	An and Cho (2015)	X	84.28 ± 16.25	90.61 ± 14.83	87.65 ± 17.37	96.01 ± 5.07	85.78 ± 18.60
F	Zenati et al. (2018)	X	86.36 ± 17.98	91.84 ± 14.86	88.90 ± 18.77	$\textbf{97.18} \pm \textbf{2.47}$	87.05 ± 20.72
(Schlegl et al., 2019)	Sb	X	87.17 ± 11.30	93.00 ± 6.73	91.22 ± 8.80	96.13 ± 4.19	90.07 ± 10.14
(Sadri et al., 2020)	Sb	X	83.62 ± 22.70	86.00 ± 25.87	84.76 ± 26.11	88.14 ± 25.96	83.96 ± 26.35
(Schlegl et al., 2019)	Ss	\checkmark	87.57 ± 12.94	93.61 ± 8.45	92.47 ± 12.14	95.58 ± 5.15	91.72 ± 14.33
(Sadri et al., 2020)	Ss	\checkmark	92.20 ± 5.29	96.00 ± 2.91	96.30 ± 3.31	95.51 ± 5.35	96.49 ± 4.33
Szegedy et al. (2016)	Szegedy et al. (2016)	\checkmark	92.43 ± 5.19	94.89 ± 4.22	94.94 ± 4.52	94.79 ± 3.56	94.98 ± 4.09
Proposed	Proposed	✓	94.76 ± 5.36	96.37 ± 2.89	96.99 ± 1.81	95.34 ± 5.49	$\textbf{97.42} \pm \textbf{2.02}$

- Tested on:
 - 1) a large dataset of scans with artificially-generated artifacts
 - 2) a real world multiple sclerosis clinical trial
- Proposed pipeline outperforms traditional supervised and unsupervised methods
- Data augmentation increases by up to 12.5% on accuracy, F1, F2, precision and recall

Hyperspectral Imaging: Cancer Detection

Ravi, D., Fabelo, H., Callic, G.M. and Yang, G.Z., 2017. Manifold embedding and semantic segmentation for intraoperative guidance with hyperspectral brain imaging. *IEEE transactions on medical imaging*, 36(9), pp.1845-1857.

Hyperspectral Imaging: Cancer Detection

Х

X

X

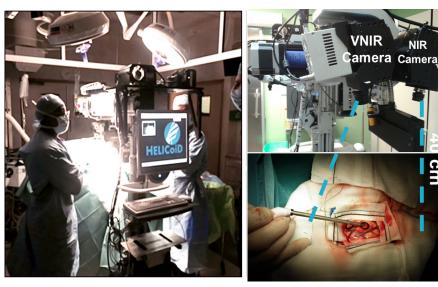
- Brain tumours resection is challenging:
 - hard to delineate the exact boundaries

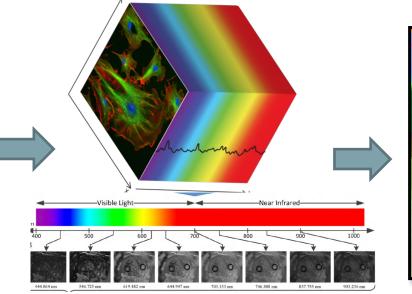
- Current technologies:
 - MRI/CT
 not ready yet during surgery
 - Neuro-navigation plagued by brain shift
 - Fluorescence techniques based on subjective visual assessment

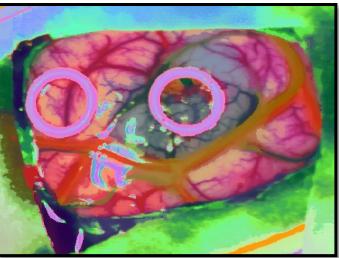
Glioma resection

Intraoperative Tissue Classification: Hyperspectral imaging

- Hyperspectral imaging is a non-ionizing and minimally-invasive sensing technique
- Can differentiate between tissue types in real-time
- The amount of data to analyze is high-dimensional:
 Its real-time processing is not straightforward

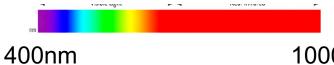






Acquisition System

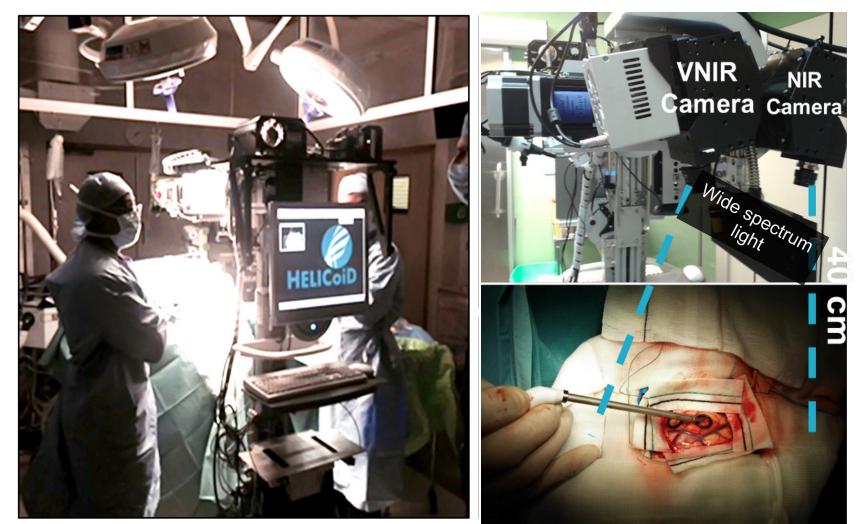
- VNIR camera
 - 826 spectral bands



1000nm

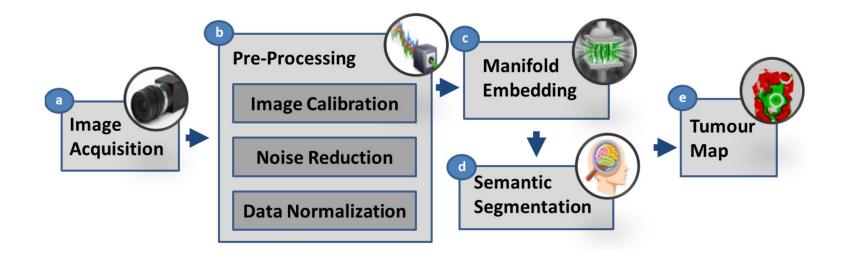
- NIR camera
 - 172 spectral bands





Hyperspectral imaging: Proposed Pipeline

- Manifold embedding based on deep learning is used to allow real-time processing
- Semantic segmentation is used to obtain the tumour map



Ravì, D et al. "Manifold embedding and semantic segmentation for intraoperative guidance with hyperspectral brain imaging." 2017 IEEE TMI

Hyperspectral imaging: Database

- 33 hyperspectral images
 - in-vivo brain

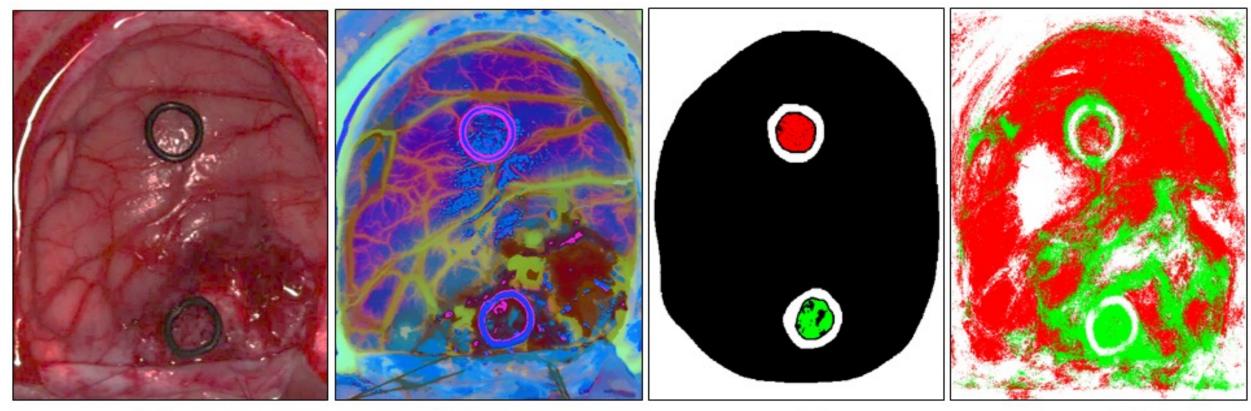
18 different patients

Acquisition protocol:

- 1. Two fiducial markers are placed in the brain
- 2. Hyperspectral images are acquired
- 3. Tissue samples are collected
- 4. Pathologic diagnosis is carried out (ground truth)

Description			Number of Patients	Number of Images	
Normal			11	17	
IV Grade		Glioblastoma	8	12	
Primary	III Grade	Oligodendroglioma anaplsigo	1	4	
	I Grade	Ganglioglioma	1	2	
		Meningioma	1	1	
Secondary		Lung Carcinoma	2	2	
		Lung Adenocarcinoma	1	1	
		Renal Carcinoma	1	1	
		Breast Meta Carcinoma	1	3	

Hyperspectral imaging: Visual Results



RGB image

Embedded output

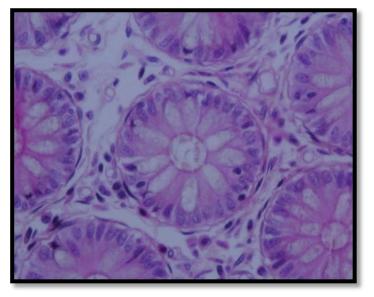
Ground truth

Classification map

Endoscope vs Endomicroscopy

Endoscope

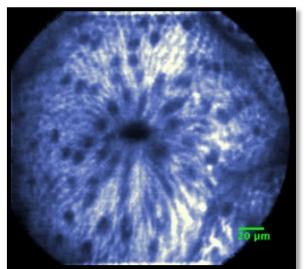
Days or Weeks



Optical Biopsies

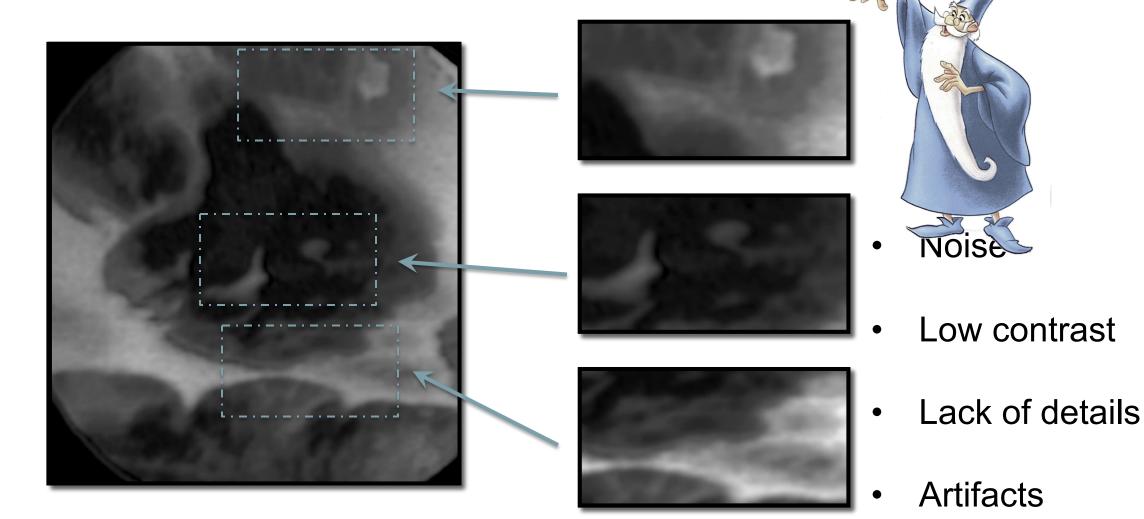
Endomicroscopy

Real-Time



Endomicroscopy Provides Limited Image Quality

Accurate diagnoses are partially hampered by the low image quaity



Example-Based Super-Resolution

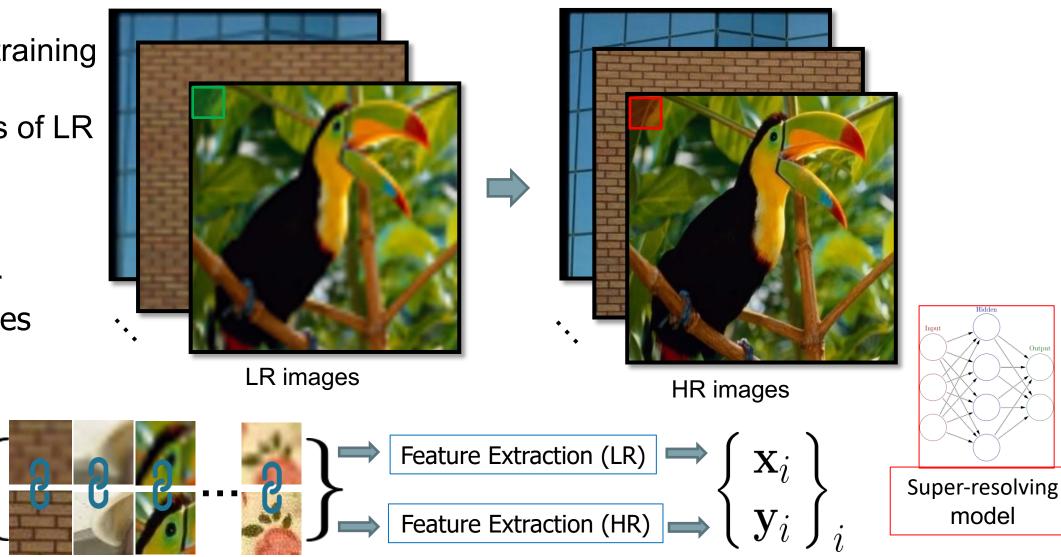
Supervised training

Aligned pairs of LR and HR are required

Designed for natural images

Matching

patch-pairs



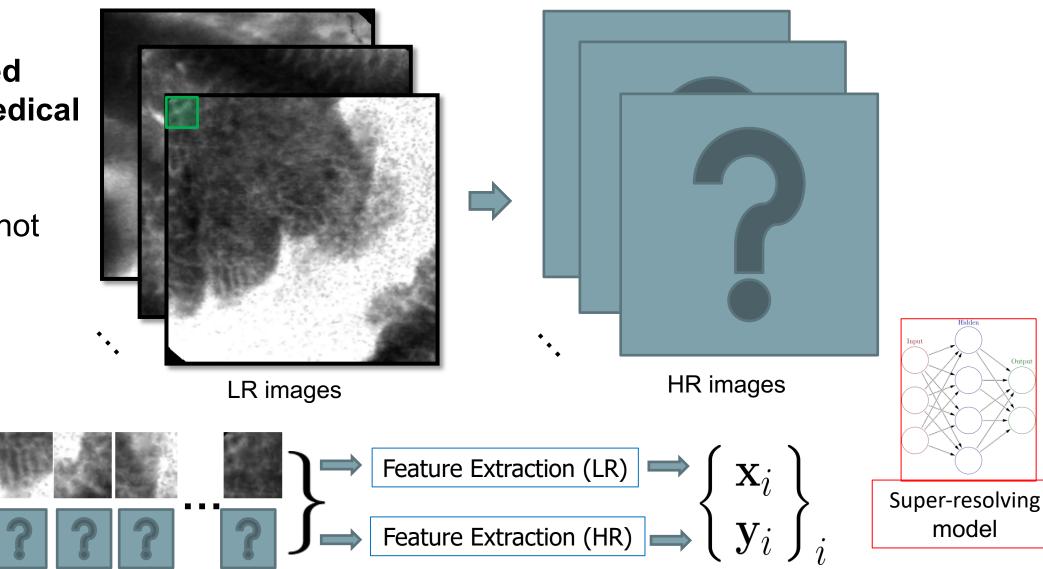
Example-Based Super-Resolution

Lack of paired images in medical imaging

HR are often not available

Matching

patch-pairs



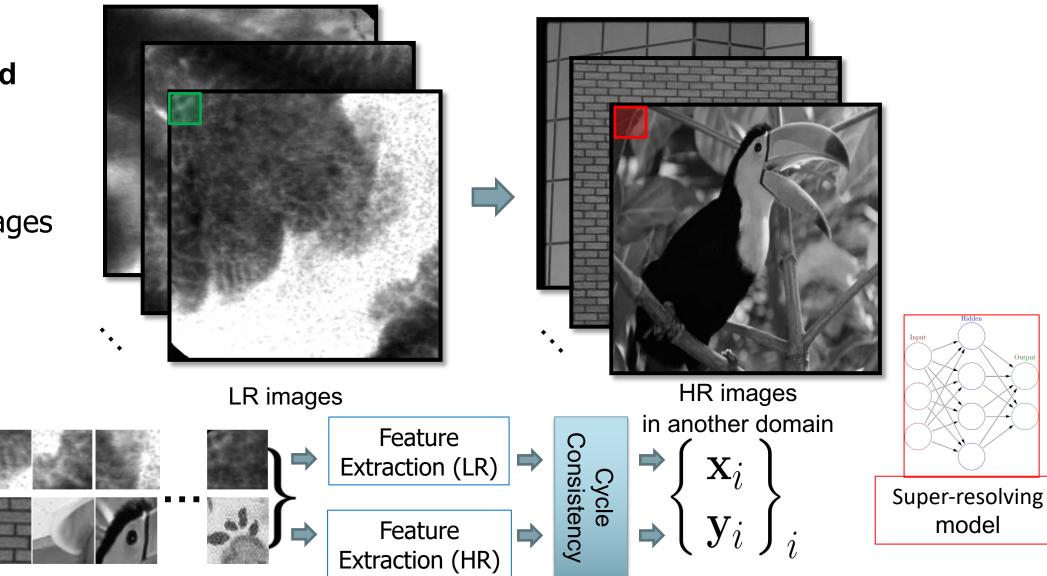
Example-Based Super-Resolution

Use Un-Paired training images

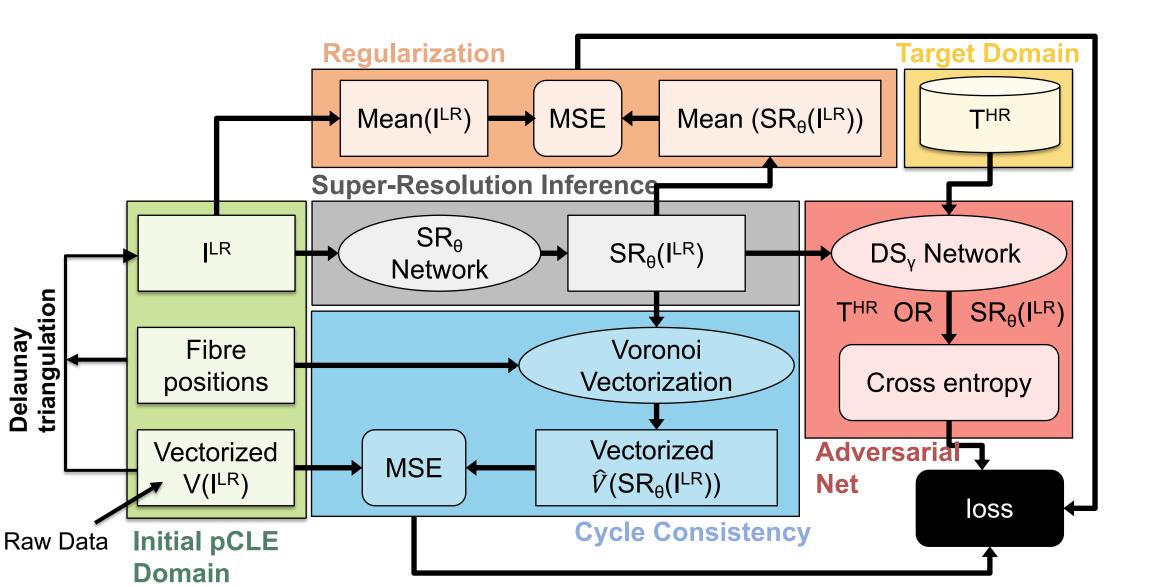
Exploit HR images from another domain

Un-Matching

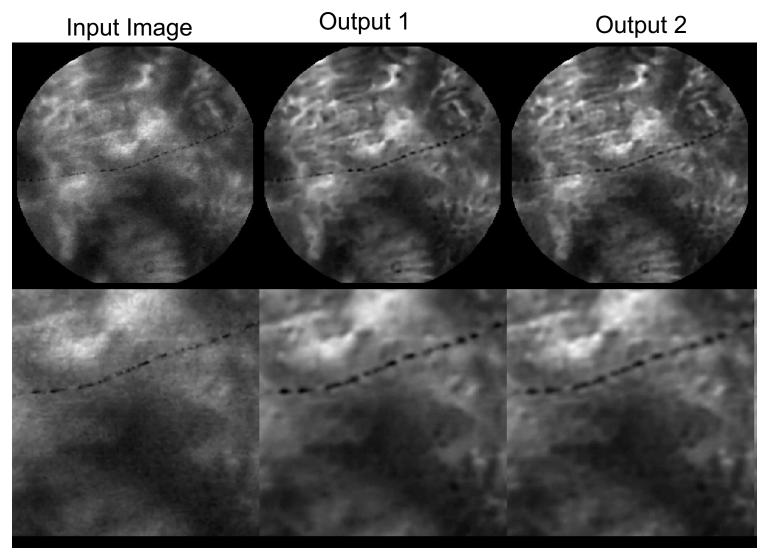
patch-pairs



Proposed Pipeline: Adversarial Training with Cycle Consistency

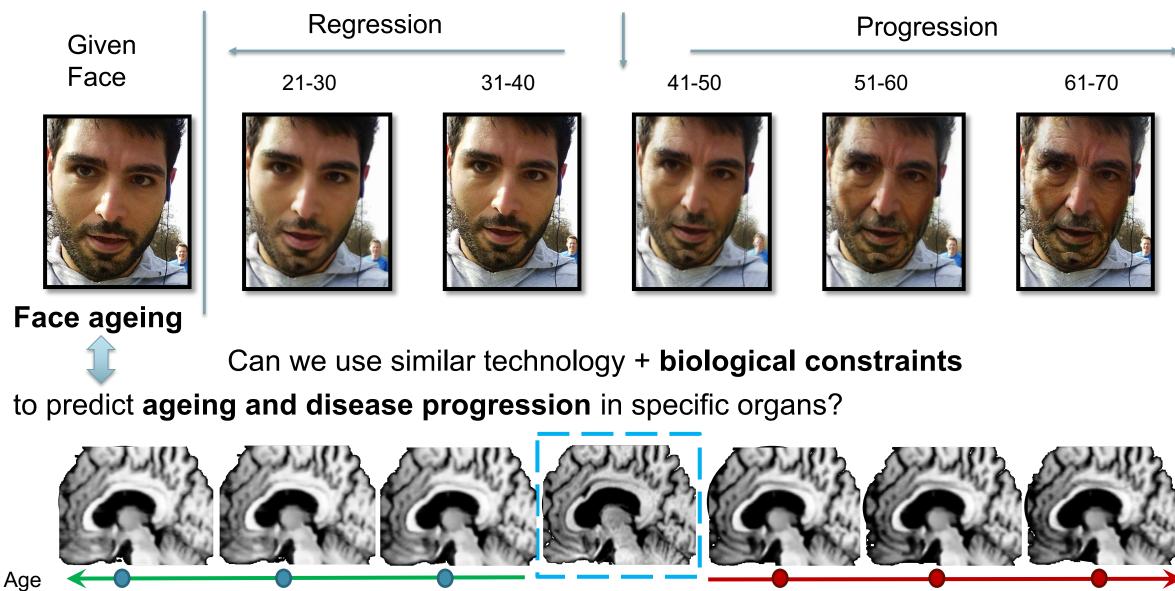


Examples of Super-Resolution in Endomicroscopy Images



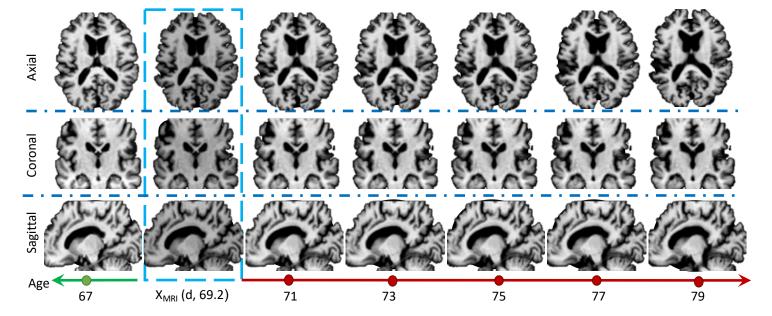
Ravì, D., Szczotka, A. B., Pereira, S. P., & Vercauteren, T. (2019). Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy. *Medical image analysis*, *53*, 123-131.

Image-Based Disease Progression Modelling



X_{MRI} (d, 75.4)

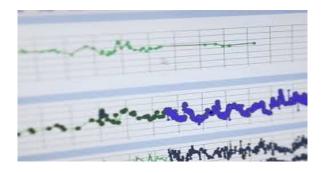
Image-Based Disease Progression Modelling



• Aims:

- Learn and simulate disease progression in MRI
- Challenges:
 - High dimensional problem (3D \rightarrow 3D+time)
 - High-resolution images
 - Subject-specific prediction

Ravi, D., et al. "Degenerative Adversarial NeuroImage Nets for 4D Simulations: Application in Longitudinal MRI." *MedIA* 2021



Predict patient outcomes

Motivations:

- 1. Privacy / data augmentation
- 2. Improve personalized treatments
- 3. Select patients in clinical trials
- 4. Validate other hypothetical models

What is DANI-Net Able to Model?

- 1. Deformations that preserve individuality
- 2. Realistic brain structures
- **3. Conditioning** on different diagnosis
- 4. Temporal smoothing
- 5. Mimic **biological constraints** (atrophy, volume shrinking)

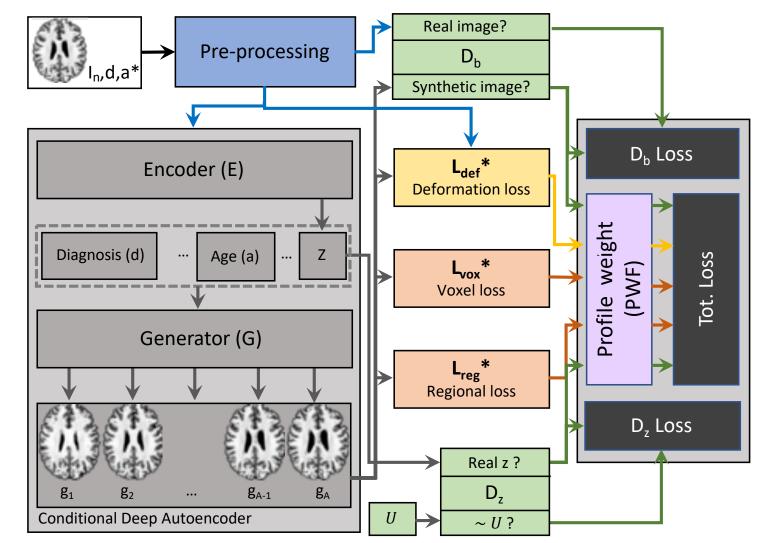


Image-Based Disease Progression Modelling: Dataset

ADNI Alzheimer's Disease Neuroimaging Initiative

- 12386 T1-weighted MRI (1mm)
- 1216 patients (aged between 63 to 87)
- 3 different diseases + normal ageing

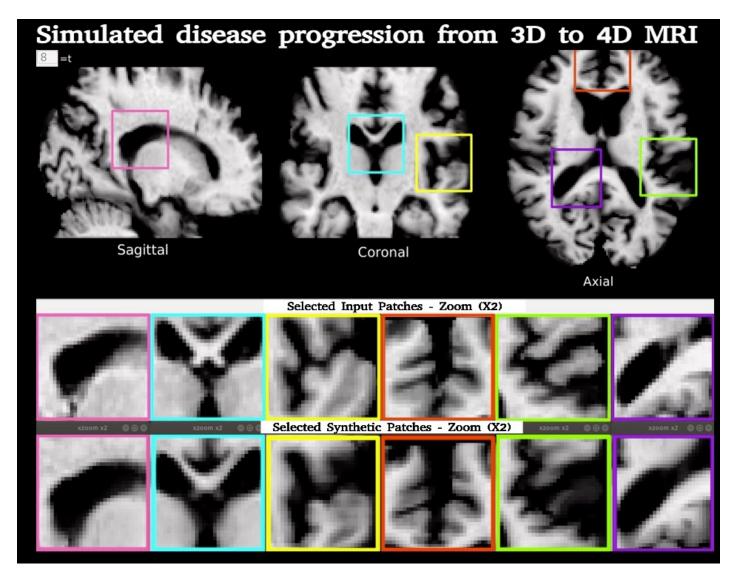
- Training: 80%
- Test: 10%
- Validation: 10%

• Training Time: 2 days on HPC with 50 GPUs



Image-Based Disease Progression Modelling 4D-Simulation

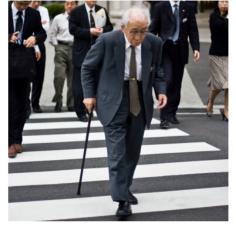
- Visual assessment
 - No artefacts
 - High-resolution
 - Subject-specific
- Quantitative Analyses
 - Volumetric comparison with the real follow-up
 - 6 brain regions considered
 - Comparison against traditional regional expansion regressors



Ravi, D., et al. "Degenerative Adversarial NeuroImage Nets for 4D Simulations: Application in Longitudinal MRI." *submitted at MedIA* 2021

Smart Sensing

Applications

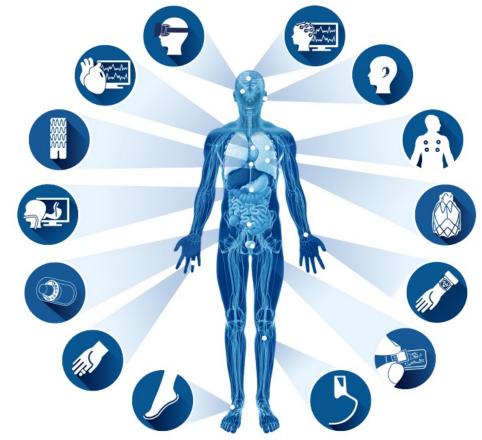


Patient monitoring

Wellbeing

Diseases status change Sports

Wearable and implantable sensors



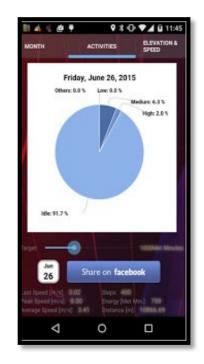
Challenges:

- Dance data (50Hz)
- **Continues data (entire day)**

Smart Sensing: Patient Monitoring using Smartphone

Available sensors:

- Camera
- Inertial sensors
- GPS
- Audio
- Proximity
- Barometer



- Examples of what we can measure:
 - Human activity recognition and location tracking
 - Image and voice recognition
- Possible external Bluetooth devices:
 - sweat sensors, pollution sensor, gait, ECG, blood pressure, actigraphy

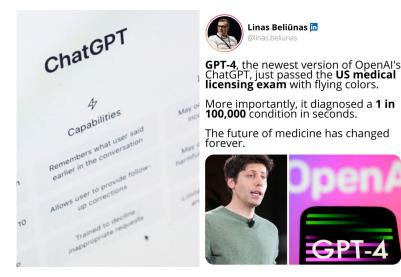
Smart Sensing: Real-time food intake monitoring

- Motivations:
 - Traditional methods based on questionnaires are unreliable
- Proposed solution:
 - Automatically food intake detection using egocentric cameras

D. Ravi, B. Lo, G-Z Yang, "Real-time Food Intake Classification and Energy Expenditure Estimation on a Mobile Device", IEEE Body Sensor Networks (BSN) 2015

Can ChatGPT Be a Doctor? Bot Passes Medical Exam

- The newest version of ChatGPT **passed the US medical licensing exam** with flying colors
- Diagnosed a 1 in 100,000 condition in seconds
- A doctor and Harvard computer scientist says GPT-4 has better clinical judgment than "many doctors"
 - The chatbot can diagnose rare conditions "just as I would," he said.



Conclusion, Limitation and Challenges

• Al in Medical Imaging emerges as a vital field in healthcare

- There are still numerous challenges to overcome in the field:
 - 1. The need for large labelled and expensive training datasets
 - 2. Data Sharing and Privacy concerns -> federated learning
 - 3. Unbalanced datasets -> generative models and data augmentation
 - 4. The lack of interpretability models -> X-AI
 - 5. Overfitting and generalization -> domain adaptation
 - 6. Regulation of AI in healthcare

References

- Ravi, D, Barkhof, F, Alexander, D.C., GJM Parker, A Eshaghi, "An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training" submitted on Medical Image Analysis, 2022. IF 13.828 - Q1
- Ravi, D., Blumberg, S.B., Ingala, S., Barkhof, F., Alexander, D.C. and Oxtoby, N.P. "Degenerative Adversarial NeuroImage Nets for Brain Scan Simulations: Application in Ageing and Dementia". Medical Image Analysis, 2022. IF 13.828 - Q1
- K. Mengoudi, D. Ravi, K. X X Yong, S. Primativo, I. M Pavisic, E. Brotherhood, K. Lu, J. M Schott, S. J Crutch, D. C Alexander, "Augmenting Dementia Cognitive Assessment with Instruction-less Eye-tracking Tests" Journal of Biomedical and Health Informatics 2020 IF 7.021 - Q1
- L. Puglisi, A Eshaghi, G. Parker, F. Barkhof, D. C. Alexander, D. Ravi, "DeepBrainPrint: A Novel Contrastive Framework for Brain MRI Re-Identification" submitted at MIDL 2023
- F. Trenta, S. Battiato, D. Ravì, "An Explainable Medical Imaging Framework for Modality Classifications Trained Using Small Datasets". In International Conference on Image Analysis and Processing 2022 (pp. 358-367). Springer, Cham. (Oral presentation)
- D. Ravì, D. C. Alexander, N. Oxtoby "Degenerative Adversarial NeuroImage Nets: Generating Images that Mimic Disease Progression" International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019. p. 164-172.
- D. Ravì, A.B. Szczotka, D. I. Shakir, S. P Pereira, T. Vercauteren "Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy", Medical Imaging with Deep Learning (MIDL), 2018 (Oral Presentation)

Acknowledgements: Collaborators and Clinical Support

Dr. Arman Eshaghi Founder Image Scientist at UCL

in

Dr. Frederik Barkhof Director Professor and Chair of Neuroradiology at UCL **in**

Dr. Geoff Parker Director Professor of Healthcare Engineering, Imaging and Enterprise

Daniele Ravi Senior Researcher Innovate UK Scholar at Univ. Hertfordshire

Daniel Alexander Director Professor of Imaging Science at UCL

Weng Sie Wong Director Senior Business Manager at UCLB **in**

in

Bruce Lynn ceo

Lemuel Puglisi · 1st Imaging Research Scientist @

IMPROVE 2023

3rd International Conference on Image Processing and Vision Engineering

PRAGUE, CZECH REPUBLIC . 21-23 APRIL, 2023

Daniele Ravi http://www.homepages.ucl.ac.uk/~rmaprav/

