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My Background

Deep learning

Endomicroscopy imaging

Computer vision

Disease progression modelling

Wearable devices

Tissue segmentation

Remote monitoring

Super-resolution

Hyperspectral imaging
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Queen Square Analytics — UCL Startup

WHY QSA

World leading expertise
with commercial

flexibility

QSA offers the latest technology in
neurological image analysis supported
by a team of top experts in the field
leading path-breaking research

projects at UCL.



Agenda

 Motivations

* Medical Imaging

— Introduction to the Different Modalities
* Applications

— Image Retrieval

— Artifacts Detections

— Tissue Segmentation

— Super-Resolution

— Disease Progression Modelling
— Smart Sensing

 Conclusion

Question: How Al Is Transforming The Future Of Healthcare?



Why Al in Medical Imaging?

Doctors forced to work overnight shifts
at last minute in NHS staffing crisis

 National health systems in various countries facing s medics i gl being et home o dy it and
crisis after COVID-19 pandemic

« We see everywhere overwhelmed healthcare
infrastructure and lack of resources

Adv

« Crisis has exposed pre-existing issues in

- Recruitment drives alone won't fix the
healthcare systems such as underfunding and NHS staffing crisis

staffing shortages.

Anas Nader says the focus should be on retention, while
Amanda Grantham looks to volunteer helpers. Plus Jeremy

° The C”Sls |S par’tlcularly Important |n |OW-inC0me aS;g:lelr(I)tlilCre(éﬂi%e;ﬂyretirementandDrSharonHollandon
countries where the healthcare system is already - ‘ |

fragile. -



Gl Genius™ intelligent endoscopy

* The first-to-market, computer-aided polyp
detection system powered by Al

- Approved by FDA DELIVER

» Detect colorectal polyps through enhanced BETTER

visualization during colonoscopy OUTCOMES

Medtronic

Gl Genius™ has been shown to increase
adenoma detection rates by up to 14.4%.




Medical Imaging promises to improve the healthcare system

Al can improve medical services:

1. Decrease the costs

2. Make them more efficient
3. Less prone to mistakes
4. Save lifes

Medical Imaging Applications:

Improved Diagnostic Accuracy

Enhanced Patient Care

Shortening Hospitalization

Increased Healthcare Professional Efficiency
Clinical Decision Making Support
Image-Guided Surgery

Clinical Trial Assistance

Telemedicine Capabilities

NSO ON -



Image-guided robotic surgery: Da Vinci Robot

« Surgical robots can
achieve superhuman
performance during
minimally invasive

surgery

Al can boost the
capability of surgical
robotic systems in
perceiving complex
environments,
conducting decision-
making, and performing
the desired tasks




Applications in Image-guided robotic surgery
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Pre-operative simulation & planning Intra-operative guidance & AR 9



Al & Deep Learning

1200 -
m Medical
- . 1000 - Informatics
Rapid uptake in healthcare due to: | = Sensing
1. Many medical centers that collectand § I
organize large sets of patient data 2 .
© 400 - Medical
1 M Imaging
. . 200 - )
2. Computational hardware improvements * Public Health
0 -
— High performance computing 2010 2011 2012 2013 2014 2015
— Cloud computing
— GPUs Simple Neural Network Deep Learning Neural Network

— Fast data storage

Ravi, Daniele, et al. "Deep learning for health informatics." IEEE journal of

biomedical and health informatics 21.1 (2016): 4-21 Input Layer (D Hidden Layer @ Output Layer 10



Applications of Al in Health Informatics

Tumour detection

Applications Input Data

Cancer diagnosis Gene expression
2 Gene selection/classification MicroRNA
‘é Gene variants Microarray data
é Drug design Molecule compounds
c &
é Compound-Protein interaction £rotein structures

RNA binding protein Molecule compounds

A Genes/RNA/DNA
DNA methylation
sequences
3D brain reconstruction MRI/fMRI
Neural cells classification .
. . . Fundus images

b Brain tissues classification PET scans
B0 Alzheimer/MCI diagnosis
= Ti lassificati MRI/CT Images
= issue classification Endoscopy images
3 gr,tlgianl segmentation Microscopy
b cll clustering Fundus Images
= Hemorrhage detection X-ray images

Hyperspectral images

PROCESSING

DNA sequences
RNA

MicroRNA

Gene expressions

Gene alleles

Molecule compounds

Protein structures

APPLICATION

Disease
stratification

Cancer
diagnostic

Gene
variations

Drug
design

RNA
Splicing

Protein structure
and interaction
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Applications of Al in Health Informatics

Applications Input Data

Anomaly detection Egg
. Biological parameters monitoring Implantable device
g .
% Human activity recognition Video ,
A Wearable device
2 Hand gesture recognition Depth camera
§ Obstacle detection RGB-D camera
o Sign language recognition Real-Sense camera
= Wearable devi

Food intake Rg]iSraI ¢ device

E dit mage

ACTRY CXpEnditiie Mobile device

. f..;) Prediction of disease Electronic health records
8 £ | Human behaviour monitoring Big medical dataset
E < | Data mining Blood/Lab tests

Predicting demographic info Social media data
2 £ | Lifestyle diseases Mobile phone metadata
© & | Infectious disease epidemics Geo-tagged images
& Air pollutant prediction Text messages




What is Medical imaging?

Encompasses a range of techniques used to obtain tissue information, with the goal
of aiding diagnosis, monitoring, and treatment of various health conditions.

Retina
Tissue Optical
Endomicroscopy Coherence

Chest Brain Abdominal Brain

X-rays Computed Ultrasound Po-sitr.on
Tomography emission
tomography

Tomography

And many more.....

1. Functional MRI- fMRI ‘5‘- Elfﬁzggg;’y

2. Hyperspectral imaging - _

3. Diffusion MRI 6. Angiography
/. Mammography



Image Modalities: Taxonomy

Different imaging modalities vary in:

« Acquisition scanner

* Image resolution

« Tissue properties captured

* Invasiveness of the associated procedure
 lonizing properties of the associated scanner

e Optical Imaging

These differences result in:
 Varying costs

Different image quality
Different diagnostic capabilities
 Different surgical procedures

* Potential risks

* Arthroscopy * X-Rays = SPECT
Infrared thermal e Fadosco e e CT * PET
MRI Ultrasound Imaging (IRT) X T P T
T T T | 1 T
2 Radio Waves Microwaves Infrared Waves  Vivible Rays Ultraviolet X-Rays Gamma Rays
| ] | |
T I | : )
Nuclear Spin g
o Rotational
transitions ekt Molecular Electronic
vibrations transitions

Non-lonizing

I
14
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Milestones in Medical Imaging

—
16t Century - Microscope 1895 - X-ray 1956 - Ultrasound 1972 - CT 1977- MRI

15



Magnetic Resonance Imaging

Magnetic field RF Spatial Signal Scanning the Signal
waves encoding recording signal processing

Patient

.'...'l 'l.lll n ) g &
Magnetic Folding / Gibbs' artifact
Movements susceptibility Aliasing

Artifacts

16



DeepBrainPrint: Al-Powered Medical Imaging Retrieval Framework

 Recent advances in MRI have led
to the creation of large datasets

Top 3 retrievals

* Difficulty in locating previous
scans of the same patient within
these datasets

* Re-identification is the process of
locating previous scans of the
same patient within large
datasets

17



DeepBrainPrint: Proposed Architecture

 Combining self-
supervised and

MRI scans

,|{es:’} T

—>  Miner —>!{g’(j]} > L¢

supervised

supervised paradigms to |
. . l\‘lI)I;;tIcsliizis N {9}
create an effective brain , ?
pre-processing > B > Lpp
fingerprint from MRI T
scans that can be used < e o

for real-time image
retrieval

- - empirical cross
S TS : correlation matrix

self-supervised
Ty ~T ‘L

* Introduction of new imaging transformations to improve retrieval robustness in
the presence of intensity variations, age, and disease progression in patients.

Puglisi, L., Barkhof, F., Alexander, D.C., Parker, G.J., Eshaghi, A. and Ravi, D., 2023. DeepBrainPrint: A Novel Contrastive Framework for Brain MRI Re-
Identification. Accepted at MIDL 2023 18



DeepBrainPrint: Experimental Results

e Tested on:

1. alarge dataset of T1-weighted _Setnes__ e SYNT.CONTR
. Method FS | SS | DT R@3 | mAP@3 R@3 | mAP@3
b rain M R I S frO m (AD N I ) SSIM-based [20] No training 96.89 90.21 76.68 48.86
2. a Synthetic dataset designed 3D SIFT-Rank No training 100.00 | 100.00 81.77 63.71
. Barlow Twins [13] v 73.06 45.35 48.70 | 25.52
to €eva l u ate retrl eva I Barlow Twins with our transformations v v 97.41 90.47 92.23 79.62
pe rformance with different SimCLR [14] v 68.39 | 38.47 5130 | 24.55
. ey SimCLR with our transformations v v 87.05 67.63 70.98 39.94
Image mOdaIItIeS NCA [21]] v v 96.89 90.34 72.02 48.10
MLKR [22] v v 96.37 90.03 72.02 48.07
SoftTriple v v 98.45 91.97 96.89 87.64
* Results: Proxy-NCA v v 9845 | 90.80 9482 | 84.86
® Our approach Outperforms InfoNCE [11] v v 96.89 94.04 95.34 86.95
DeepBrainPrint (Proposed) v v v 99.48 95.54 98.96 91.00

previous methods, including simple
similarity metrics and more
advanced deep learning
frameworks. 19



Quality Control System based on Generative Al

* Brain MRI artefacts can impact diagnosis and treatment
planning, highlighting the need for quality control.

e Quality control is necessary to ensure each sample meets
minimum quality requirements

e Automatic artefact detection methods often require a lot
of data

 Scarcity of artefact-containing scans hinders the
implementation of machine learning in clinical research

Ravi, D., Barkhof, F., Alexander, D.C., Parker, G.J. and Eshaghi, A., 2023. An efficient semi-supervised quality control system trained using physics-based MRI- 20
artefact generators and adversarial training. Under review at MEDIA 2023



Proposed method: Artefact Simulations based on Generative Al

* We propose a novel framework based on poamms b) Fotding FTrpsT—
an artefact generators to corrupt brain ' '
MRI scans

 We have identified 9 different common
artefacts for T1-weighted MRI
 Hardware imperfection artefacts
* Patient-related artefacts
 Sequence-related artefacts
* Incorrect labelling

Hardware imperfection

—— Jsi;“"
e Qur Al solution has the advantage of "-"?. ,;‘ ->
using only artefact-free images with the
benefit of requiring limited training

labels 21




Experimental Results: Artefact detection

Approach Accuracy (%) F1(%) F2(%) Precision(%) Recall(%)

Features Classifier Augm.
F PCA-based X 83.44 +29.29 | 90.08 +35.34 | 86.35 +35.63 | 97.06 +3.03 | 84.03 + 35.84
F Autoencoder X 8333+ 13.65 | 90.35+10.84 | 87.31 +13.59 | 9592 +5.55 | 85.39 + 15.21
F An and Cho (2015) X 84.28 + 16.25 | 90.61 + 14.83 | 87.65 + 17.37 | 96.01 +5.07 | 85.78 = 18.60
F Zenati et al. (2018) X 86.36 + 17.98 | 91.84 + 14.86 | 88.90 + 18.77 | 97.18 + 247 | 87.05 + 20.72
(Schlegl et al., 2019) Sy X 87.17 £ 11.30 | 93.00 +6.73 91.22 +8.80 | 96.13 +4.19 | 90.07 + 10.14
(Sadri et al., 2020) Sp X 83.62 +22.70 | 86.00 +25.87 | 84.76 + 26.11 | 88.14 + 2596 | 83.96 + 26.35
(Schlegl et al., 2019) S v 87.57+ 1294 | 9361 +845 | 9247 +12.14 | 9558 +5.15 | 91.72 + 14.33
(Sadri et al., 2020) S v 92.20 +5.29 96.00 +2.91 96.30 + 3.31 95.51 +£5.35 96.49 + 4.33
Szegedy et al. (2016) | Szegedy et al. (2016) v 9243 +5.19 04.89 +4.22 94.94 + 4.52 94.79 + 3.56 9498 + 4.09
Proposed Proposed v 94.76 + 5.36 | 96.37 +2.89 | 96.99 + 1.81 95.34 +5.49 97.42 + 2.02

Tested on:

* 1) alarge dataset of scans with artificially-generated artifacts

* 2) areal world multiple sclerosis clinical trial

Proposed pipeline outperforms traditional supervised and unsupervised methods

Data augmentation increases by up to 12.5% on accuracy, F1, F2, precision and recall

22



Hyperspectral Imaging: Cancer Detection

curoncws

Ravi, D., Fabelo, H., Callic, G.M. and Yang, G.Z., 2017. Manifold embedding and semantic segmentation for intraoperative guidance with hyperspectral brain imaging. IEEE
transactions on medical imaging, 36(9), pp.1845-1857.




Hyperspectral Imaging: Cancer Detection

* Brain tumours resection is challenging:
— hard to delineate the exact boundaries

* Current technologies:

« MRI/CT X

not ready yet during surgery

+ Neuro-navigation X
plagued by brain shift
 Fluorescence techniques X
based on subjective visual
assessment

Glioma resection 24



Intraoperative Tissue Classification: Hyperspectral imaging

* Hyperspectral imaging is a non-ionizing and minimally-invasive
sensing technique

« Can differentiate between tissue types in real-time

« The amount of data to analyze is high-dimensional:
— Its real-time processmg IS not straightforward

-® .

25



Acquisition System

 VNIR camera
— 826 spectral bands

T — QL

 NIR camera
— 172 spectral bands
B

900nm 1700nm

26



Hyperspectral imaging: Proposed Pipeline

« Manifold embedding based on deep learning is used to allow real-time processing

« Semantic segmentation is used to obtain the tumour map

O -
B, 1
Pre-Processing Manifold LAYV TN

> Embedding
Tumour
V 2 i Map

Semantic
Segmentation

Ravi, D et al. "Manifold embedding and semantic segmentation for intraoperative guidance with
hyperspectral brain imaging." 2017 IEEE TMI

Image @

Acquisition

27



Hyperspectral imaging: Database

* 33 hyperspectral images <« Acquisition protocol:
— in-vivo brain 1. Two fiducial markers are placed in the brain
2. Hyperspectral images are acquired
3. Tissue samples are collected

« 18 different patients 4. Pathologic diagnosis is carried out (ground truth)
Description Number of Patients | Number of Images
Normal 11 17
IV Grade Glioblastoma 8 12
III Grade | Oligodendroglioma anaplsigo 1 4
Primary I Grade Gangl.iog.lioma | 2
Meningioma | |
Lung Carcinoma 2 2
Secondary Lung Adenocarcinoma 1 1
Renal Carcinoma 1 1
Breast Meta Carcinoma 1 3

28



Hyperspectral imaging: Visual Results

e . '&‘ ?' » -
R Ses RN S

RGB image Embedded Ground truth Classification
output map




Endoscope vs Endomicroscopy

Days or
Weeks
Biopsies j>
Endoscope
Ootical Real-Time
ptica
Biopsies j>

Endomicroscopy

30



Endomicroscopy Provides Limited Image Quality

* Accurate diagnoses are partially hampered by the low image

7
f

ne
~

e

‘I ./‘
A
)

Low contrast

Lack of details

Artifacts 31



Example-Based Super-Resolution

Supervised training

Aligned pairs of LR
and HR are
required

Designed for
natural images

HR images
; 4 \
Matching Feature Extraction (LR) | == X;
patch-pairs < > Super-resolving
' ' , model
Feature Extraction (HR) jm=) | Yy )

32



Example-Based Super-Resolution

Lack of paired
images in medical
imaging

HR are often not

available
LR images HR images
di == | Feature Extraction (LR) | == [ . )
- eature Extraction :
Matching ure Extraction ( XZ S Vi
patch-pairs < > uper-resolving
.. . Feature Extraction (HR) |m=) \ YZ )i model
33



Example-Based Super-Resolution

Use Un-Paired
training
images

Exploit HR images
from another
domain

LR images HR images
Feature 5 in another domain O
» . o 4 ’ N T | — ‘
Un-Matching ' d' Extraction (LR) | 3 O ? X .
) T 5 S < > Super-resolving
patch-pairs X T o
' .“ = Feature B 3 Dl Y| model
| Extraction (HR) — N a

34



Proposed Pipeline: Adversarial Training with Cycle Consistency

Mean(I'R) MSE Mean (SRg(I'R))

Super-Resolution Inferencel—1
> LR SI t9 R LR
| Network SRe(I)

T g Fibre Voronoi
k- % positions Vectorization Cross entropy
[« I
(o
Vectorized Vectorized Adversari

MSE

V(SRe(IF))

/ V(IFR)
Raw Data Initial pCLE
Domain

35



Examples of Super-Resolution in Endomicroscopy Images
Input Image Output 1 Output 2

Ravi, D., Szczotka, A. B., Pereira, S. P, & Vercauteren, T. (2019). Adversarial training with cycle consistency for unsupervised super-resolution in

endomicroscopy. Medical image analysis, 53, 123-131. 36



Image-Based Disease Progression Modelling

_ Regression
Given )

Face

Progression

31-40 41-50 51-60 61-70

Face ageing
@ Can we use similar technology + biological constraints
to predict ageing and disease progression in specific organs?

37



Image-Based Disease Progression Modelling

Axial

Coronal I

Age(_‘_ - > . .
@892 7 b Motivations:
* Aims: 1. Privacy / data augmentation
* Learn and simulate disease progression in MRl 2 |mprove personalized
« Challenges: treatments
« High dimensional problem (3D — 3D+time) 3. Select patients in clinical trials
« High-resolution images 4. Validate other hypothetical
« Subject-specific prediction models

Ravi, D., et al. "Degenerative Adversarial Neurolmage Nets for 4D Simulations: Application in Longitudinal MRL." MedIA 2021 38



What is DANI-Net Able to Model?

1. Deformations that preserve
individuality

2. Realistic brain structures

3. Conditioning on different
diagnosis

4. Temporal smoothing

5. Mimic biological constraints
(atrophy, volume shrinking)

D, Loss

I

Profile weight
(PWF)

Q ‘) > Real image?
i \; —) Pre-processing D,
»| Synthetic image?
Encoder (E) > Lyes™
Deformation loss
*
) I'vox
Voxel loss
*
) I'reg
Regional loss
»| Realz?
D,
Conditional Deep Autoencoder U > ~U?

_H

Ravi D., et al. Degenerative Adversarial Neurolmage Nets: Generating Images that Mimic Disease Progression, MICCAI, 2019

39



Image-Based Disease Progression Modelling: Dataset

ADNI Aizheimer's Disease Neuroimaging Initiative

« 12386 T1-weighted MRI (1mm)

« 1216 patients (aged between 63 to 87)
« 3 different diseases + normal ageing

e 'j.'.“""

! . A% {;\ AN
EL X I A -‘ - ‘| k;.\‘:‘ .:\'!.'

* Training: 80% W =Sl
o Test: 10% AL 4 L LOWE
e Validation: 10%

« Training Time: 2 days on HPC with 50 GPUs

40



Image-Based Disease Progression Modelling 4D-Simulation

* Visual assessment Simulated disease progression from 3D to 4D MRI
EN-

» No artefacts
» High-resolution
» Subject-specific

« Quantitative Analyses e A

»> Volumetric comparison with oot
the real follow-up

» 6 brain regions considered

» Comparison against
traditional regional
expansion regressors

Ravi, D., et al. "Degenerative Adversarial Neurolmage Nets for 4D Simulations: Application in Longitudinal MRI." submitted at MedIA 2021 41



Smart Sensing Wearable and implantable sensors

Challenges:

 Dance data (50Hz)

« Continues data (entire day)

Diseases status change Sports 42




Smart Sensing: Patient Monitoring using Smartphone

Available sensors:
« Camera [ I
Inertial sensors + | ‘

Friday, June 26, 2015

Ot 00N Low 8N
Madas 3%
’/ Mok 20%

e S Ao

GPS
Audio
Proximity
 Barometer

« Examples of what we can measure:
— Human activity recognition and location tracking
— Image and voice recognition

 Possible external Bluetooth devices:

— sweat sensors, pollution sensor, gait, ECG, blood pressure, actigraphy
43



Smart Sensing: Real-time food intake monitoring

 Motivations:

— Traditional methods based on
questionnaires are unreliable

* Proposed solution:

— Automatically food intake
detection using egocentric
cameras

D. Ravi, B. Lo, G-Z Yang, “Real-time Food Intake Classification and Energy Expenditure Estimation on a Mobile Device”, IEEE
Body Sensor Networks (BSN) 2015 44



Can ChatGPT Be a Doctor? Bot Passes Medical Exam

e The newest version of ChatGPT passed the US
medical licensing exam with flying colors

e Diagnosed a 1in 100,000 condition in seconds

* A doctor and Harvard computer scientist says GPT-4
has better clinical judgment than "many doctors”

* The chatbot can diagnose rare conditions "just as | would,"
he said.

GPT-4, the newest version of OpenAl's
, ChatGPT, just passed the US medical
licensing exam with flying colors.

More importantly, it diagnosed a 1 in

" 100,000 condition in seconds.

The future of medicine has changed

- forever.




Conclusion, Limitation and Challenges
« Al in Medical Imaging emerges as a vital field in healthcare

* There are still numerous challenges to overcome in the field:

1. The need for large labelled and expensive training datasets
Data Sharing and Privacy concerns -> federated learning
Unbalanced datasets -> generative models and data augmentation
The lack of interpretability models -> X-Al
Overfitting and generalization -> domain adaptation
Regulation of Al in healthcare

o0k W

46
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Questions??

Daniele Ravi LIﬁS'I'ICC

http.//www.homepages.ucl.ac.uk/~rmaprav/

cvegnsovore EITISIN  wsmcUM FE QR feovete



http://www.homepages.ucl.ac.uk/~rmaprav/

