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Taxonomy of Fitting Problems

● Standard Single Class Single Instance Fitting Problem (SCSI)

)

● Robust Single Class Single Instance Fitting Problem (R-SCSI)

)

● Single Class Multiple Instance Fitting Problem (SCMI)

)

● Multiple Class Multiple Instance Fitting Problem (MCMI)

)
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● detection of geometric primitives

● epipolar geometry estimation
● detection of planar surfaces

● multiple motion segmentation

● Interpretation of lidar scans
● Registration of  3D point clouds

Single/Multi-Class Single/Multi-Instance Fitting Applications
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What is RANSAC?

● RANSAC = RANdom SAmple Consensus
● M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for 

model fitting with applications to image analysis and automated cartography. 
CACM, 24(6):381–395, June 1981.

● Example: Finding a line in 2D
– Not all input points are on the line.
– Finding a line implicitly

divides points to inliers (=those 
on a line) and outliers (=those 
not on a line)

– Due to noise, “on a line” actually 
means inside a narrow strip around 
the line
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Line Fitting, Inliers Only: Easy!

Data points

Find the line which 
“best fits” these points. 
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Line Fitting, Inliers Only: Easy!

Data points

Find the line which
“best fits” these points. 

For 
easily solvable by SVD -
Singular Value Decomposition
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Adrien-Marie Legendre Carl Friedrich Gauss

Published least squares 
(moindres quarrés) in 1805.

Developed least 
squares in 1795.

Least Squares are Well established 

Slide by T.-J. Chin 7/90
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General Case with Outliers, Example 1

Least squares fit

Example 1
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General Case with Outliers, Example 2

Least squares fit

Example 2
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RANdom SAmple Consensus - RANSAC

1. Select sample of m points 
at random (here m=2)
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RANSAC

1. Select sample of m points
at random

2. Estimate model parameters 
from the data in the sample
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RANSAC

1. Select sample of m points
at random

2. Estimate model 
parameters 
from the data in the sample

3. Evaluate the distance from 
model for each data point
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RANSAC

1. Select sample of m points
at random

2. Estimate model parameters 
from the data in the sample

3. Evaluate the distance from 
model for each data point

4. Select data that support 
the current hypothesis
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RANSAC

1. Select sample of m points
at random

2. Estimate model parameters 
from the data in the sample

3. Evaluate the distance from 
model for each data point

4. Select data that support 
the current hypothesis

5. Repeat sampling
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RANSAC

1. Select sample of m points
at random

2. Estimate model parameters 
from the data in the sample

3. Evaluate the distance from 
model for each data point

4. Select data that support 
the current hypothesis

5. Repeat sampling
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RANSAC

1. Select sample of m points
at random

2. Estimate model parameters 
from the data in the sample

3. Evaluate the distance from 
model for each data point

4. Select data that support 
the current hypothesis

5. Repeat sampling until a 
well-supported model is found
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RANSAC [Fischler and Bolles 1981]

SAMPLING

VERIFICATION
SO-FAR-THE-BEST

cost function for 
single data point x
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RANSAC termination – how many samples?

● m Size of sample
● ² = Q/ N Inlier ratio
● η Confidence (= probability a better solution was overlooked)
● k required number of samples 

Finding the solution with confidence η   requires at least 

k ≥ log(1 – η) / log (1 – ²m)
samples. For small η, ²m  

k ≅ η/²m =  η²-m

since   e-x ≅ 1 – x
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RANSAC Properties

● extremely popular (1981 paper has ∼ 30 000 citations in Google Scholar) 
Pros:
● used in many applications 
● knowledge of the percentage of inliers not needed
● works, unlike least median of squares, for  and any inlier ratio
● provides a probabilistic guarantee for the solution

Cons:
● slow if inlier ratio ² low and model dimensionality m high
● noise level, i.e. the inlier-outlier threshold, assumed known
● assumes unstructured outlier and inlier distribution 
● does not validate the model it produces,
● (experimental observation) RANSAC takes several times longer than 

theoretically expected, due to noise – not every all-inlier sample generates a 
good hypothesis:
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RANSAC Issues and Fixes

● Cost function:    MLESAC, Huber loss, …

● Accuracy (parameters are estimated from minimal samples). 
addressed by: LO-RANSAC, Locally Optimized RANSAC

● Outlier threshold σ  (how to set it in advance? Or, how to avoid setting it?):
addressed by: Least median of Squares, MINPRAN, MAGSAC, …

● Unstructured outliers and inliers
addressed by: GC-RANSAC, Graph Cut RANSAC and NAPSAC

● Ignores info about data quality:
addressed by PROSAC

● Speed: Running time grows with number of data points, number of iterations 
addressed by: WaldSAC (Randomized evaluation RANSAC), 

● Correctness of the results. Degeneracy.  Solution: DegenSAC.
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Locally Optimized RANSAC (LO-RANSAC): Problem Intro

Data: 200 points
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LO-RANSAC: Problem Introduction

Data: 200 points
Model, 100 inliers
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LO-RANSAC: Problem Introduction

For simplicity, consider only points belonging to the model (100 points)
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LO-RANSAC: Problem Introduction

RANSAC
Hypothesis generation 
from 2 points
Will every two 
points generate the 
whole inlier set?

This sample:
NO. 45 inliers.

For simplicity, consider only points belonging to the model (100 points)
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LO-RANSAC: Problem Introduction

RANSAC
Hypothesis generation 
from 2 points
Will every two 
points generate the 
whole inlier set?

This sample:
YES. 100 inliers.

For simplicity, consider only points belonging to the model (100 points)
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LO-RANSAC

SAMPLING

VERIFICATION
SO-FAR-THE-BEST

Cost function for 
single data point x
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A Locally Optimized RANSAC

SAMPLING

VERIFICATION
SO-FAR-THE-BEST
LOCAL OPTIMIZATION

MODEL ESTIMATION
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LO-RANSAC: Example

Init
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LO-RANSAC: Example

Init
Iteration 1
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LO-RANSAC: Example

Init
Iteration 1
Iteration 2
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LO-RANSAC: Example

Init
Iteration 1
Iteration 2
...
Iteration 7
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LO-RANSAC: Example

Init
Iteration 1
Iteration 2
...
Iteration 7
...
Itration 15
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LO-RANSAC: Example

Comparison with model (100 inliers):
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Stability of LO-RANSAC

correspondence id

P(
in

lie
r)

P(inlier)#
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or
re

sp
on

de
nc

es

Statistics over 10 000 executions

Ideally, inliers are always
detected as inliers, outliers
as outliers

Ideally, inliers have probability
one, outliers probability zero

H
om

og
ra

ph
y

RANSAC

Lebeda, Matas, Chum: Fixing the Locally Optimized RANSAC. BMVC 2012
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Stability of LO-RANSAC
Ho
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RANSAC LO+-RANSAC RANSAC LO+-RANSAC

RANSAC LO+-RANSAC RANSAC LO+-RANSAC

Lebeda, Matas, Chum: Fixing the Locally Optimized RANSAC. BMVC 2012
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LO-RANSAC: Problem Summary

By applying local optimization (LO) to the-best-so-far hypotheses [1]:
(i) a very good  agreement with theoretical performance achieved
(ii) lower sensitivity to noise and poor conditioning.

The LO is executed rarely, log(iter) times, it has small impact on the execution 
time.

If Bundle Adjustment (non-linear minimization of an appropriate loss function) 
used in as LO, state-of-the-art precision is achieved [2].

[1] Chum, Matas, Kittler: Locally Optimized RANSAC, DAGM 2003 
[2] Ivashechkin, Barath, Matas: VSAC: Efficient and Accurate Estimator for H and F, 
ICCV 2021
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Exploiting the Spatial Coherence of Geometric Data

Motivation: In vision, we usually have geometric data, e.g., 3D points, where 
the points often originate from spatially coherent structures. 

Two-view geometry. 

(Left) Rigid motions in two views. 
(Right) 1st images of image pairs with 
the inliers of homographies. 

Planes in LiDAR data. Vanishing points
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Exploiting the Spatial Coherence of Geometric Data

Approaches
• Exploit spatial coherence in the local optimization step to find local 

structures accurately (Graph-Cut RANSAC).

• Find spatial structures early by localized sampling
(Progressive NAPSAC).
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Graph-Cut RANSAC

Idea: 
• Consider, in the local optimization of LO-RANSAC, that geometric data often 

form spatially coherent structures.
• The spatial coherence is used when selecting the inliers of a model.

Minimal sample initializing 
a rigid motion.

Inliers by standard
RANSAC-like
thresholding.

Inliers by considering
spatial coherence.

Barath and Matas, Graph-Cut RANSAC; CVPR 2018 41/90
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Robust fitting as a Labeling Problem

Idea: formalize robust fitting as a binary labeling problem.

Given
• a set of data points 𝒫𝒫,
• an inlier-outlier threshold 𝜖𝜖, and
• the parameters of a model 𝜃𝜃

Objective: find labeling ℒ where 
• point 𝑝𝑝𝑖𝑖 ∈ 𝒫𝒫 with residual 𝑟𝑟 ≤ 𝜖𝜖 is labeled inlier.
• point 𝑝𝑝𝑜𝑜 ∈ 𝒫𝒫 with residual 𝑟𝑟 > 𝜖𝜖 is labeled outlier.
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Robust fitting as a Labeling Problem

The problem: find labeling ℒ∗ = argℒ min𝐸𝐸 0;1 ℒ

ℒ ∈ 0, 1 𝑛𝑛

𝐸𝐸 0;1 ℒ = �
𝑝𝑝∈𝒫𝒫

ℒ𝑝𝑝 {0;1}

ℒ𝑝𝑝 {0;1}
= �

0 if ℒ𝑝𝑝 = 0 ∧ 𝑟𝑟𝑝𝑝 ≤ 𝜖𝜖
∨ ℒ𝑝𝑝 = 1 ∧ 𝑟𝑟𝑝𝑝 > 𝜖𝜖

1 otherwise.

Unary energy
Energy from
each data point.

Energy from
point 𝑝𝑝.

„Close” and labeled inlier

„Far” and labeled outlier

Inlier label Outlier label
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Robust fitting as a Binary Labeling Problem

Notes:

• Problem ℒ∗ = argℒ min𝐸𝐸 0;1 ℒ can be easily solved in polynomial time by 
the standard min-cut/max-flow, i.e. graph-cut, algorithm.

• Labeling ℒ∗ is exactly what RANSAC does, so this is „just” a reformulation of 
the RANSAC problem, but needs an initial estimate of model parameter 𝜃𝜃

• Advantage: new energy terms can be added.

• Using a different loss function than 
RANSAC’s is easy and beneficial. 
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Spatial Coherence in Robust fitting (Potts model) 

Modelling the spatial coherence by the Potts model.

𝐸𝐸Potts ℒ = �
𝑝𝑝,𝑞𝑞 ∈ℰ

�1 if ℒ𝑝𝑝 ≠ ℒ𝑞𝑞
0 otherwise

Binary 
energy

𝑝𝑝
𝑞𝑞

Neighborhood
graph 𝒢𝒢

Edge set of 𝒢𝒢

In short, if neighboring points

• have different labels, penalize.

• have similar labels, do nothing. 

R. Zabih and V. Kolmogorov. Spatially coherent clustering using graph cuts. CVPR 2004.
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Spatial Coherence in Robust fitting (Potts model) 

Example labeling using the Potts model to interpret spatial coherence. 
Parameter 𝜆𝜆 ∈ 0, 1 is the weight of the term.

Issue: Outliers are considered similarly structured as the inliers. Thus, the Pots 
model forces all points in the structure to be outliers even if they are „close” to 
the line.  R. Zabih and V. Kolmogorov. Spatially coherent clustering using graph cuts. CVPR 2004.
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Spatial Coherence in RANSAC (GC model) 

Modelling the spatial coherence by the GC model.

𝐸𝐸GC ℒ = �
𝑝𝑝,𝑞𝑞 ∈ℰ

1 if ℒ𝑝𝑝 ≠ ℒ𝑞𝑞,
0 if ℒ𝑝𝑝 = ℒ𝑞𝑞 = 0,

1 −
𝑓𝑓 0,𝑝𝑝 + 𝑓𝑓 0,𝑞𝑞

2
if ℒ𝑝𝑝 = ℒ𝑞𝑞 = 1.

Function 𝑓𝑓 is the 
robust loss, e.g., that 

of RANSAC or 
MSAC

In short, if neighboring points

• have different labels, penalize.

• are labeled inliers, do nothing.

• are labeled outliers labels, 
penalize depending on their loss. 

Example robust loss

𝑓𝑓MSAC ℒ𝑝𝑝,𝑝𝑝 =

�
𝑟𝑟𝑝𝑝2/𝜖𝜖 𝑖𝑖𝑖𝑖 ℒ𝑝𝑝 = 0 ∧ 𝑟𝑟 ≤ 𝜖𝜖

0 𝑖𝑖𝑖𝑖 ℒ𝑝𝑝 = 1 ∧ 𝑟𝑟 > 𝜖𝜖
1 otherwise.
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Spatial Coherence in RANSAC (GC model) 

Example labeling using the GC model to interpret spatial coherence. 
Parameter 𝜆𝜆 ∈ 0, 1 is the weight of the term.

Notes: 
• „Close” points are inliers no matter the spatial coherence.

• The inlier label is spread along the spatial structure. 
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GC-RANSAC Local Optimization 

Selecting the inliers by graph-cut
Inner RANSAC on the spatially coherent inliers

Update if new so-far-the-best
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GC RANSAC - Speed
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Idea:

• Points close to an inlier are likely
to be inliers.

• Selecting the minimal sample from a 
hypersphere leads likely to „all-inlier” 
samples.

Algorithm:

• First point is selected at random.

• The rest of the sample is from the 
hypersphere, of fixed radius, around the 
first one. 

NAPSAC Sampler

Nasuto et al. Napsac: High noise, high dimensional robust estimation-it's in the bag., BMVC 2002

The 1st point (red dot) is 
selected at random. The points 
(green) inside the assigned circle 
(red) are shown.
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Advantage: high inlier ratio for local samples

Issues:

• Localized samples are often imprecise.

• For some models, local samples are likely degenerate.
E.g., for fundamental matrix estimation, the points
should originate from more planes. 

• If the model is not localized, 
it is never found.
The method is sensitive
to the radius.

NAPSAC Sampler

Example line fitting to NAPSAC 
samples. A red circle is centered 
on the 1st point. All lines fit 
using a 2nd point from the circle 
are inaccurate.
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PROSAC – PROgressive SAmple Consensus

● Not all datapoints are created equal, some are better than other, e.g.

D. Lowe’s SIFT distance ratio,
E. Brachmann, C. Rother:  Neural-Guided RANSAC: Learning Where 
to Sample Model Hypotheses. ICCV 2019

● Sample from the best candidates first

1 2 3 4 5 … N-2 N-1 N

Sample from here

•

O. Chum  , J. Matas: Matching with PROSAC - Progressive Sample Consensus, CVPR 2005
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PROSAC Samples

l-1 l l+1 l+2 ……

Draw Tl samples from (1 … l) 
Draw Tl+1 samples from (1 … l+1)

Samples from (1 … l)  that are not from (1 … l+1) contain l+1

Draw Tl+1 - Tl samples of size m-1 and add l+1
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Example

in
lie

r r
at

io

# tentative correspondences

in
lie

r r
at

io

# tentative correspondences

Epipolar geometry estimation

Executed on all TC
Executed on outliers to 
the background model

stopping length stopping 
length

Too small set of TC – could be random
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Progressive NAPSAC

A sampler for RANSAC-like robust estimators.

Idea:
• Start sampling locally and progressively blend to global sampling.

• A hypersphere is assigned to each point. Its radius is increased gradually.

• The 1st point p is selected by PROSAC.

• The rest of the sample is from the hypersphere around p.

Barath et al., MAGSAC++, a fast, reliable and accurate robust estimator, CVPR 2020
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Progressive NAPSAC

Pro Con
Small 
circle

+ higher inlier 
ratio - poorly conditioned

Big
circle + well conditioned - lower inlier ratio

Comparison of neighborhood sizes. 

Example. A selected point (red dot);
the assigned neighborhood (black circle);
the inliers of the sought 2D line (green dots)
and outliers (blue crosses).
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Growth function

1. Given the first selected point 𝒑𝒑𝑖𝑖.

2. Let ℳ𝑖𝑖,𝑗𝑗 𝑗𝑗=1
𝑇𝑇 𝑖𝑖 = 𝒑𝒑𝑖𝑖 ,𝒑𝒑𝑥𝑥𝑖𝑖,𝑗𝑗,1 ,𝒑𝒑𝑥𝑥𝑖𝑖,𝑗𝑗,2 , …𝒑𝒑𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚−1 𝑗𝑗=1

𝑇𝑇 𝑖𝑖
be a sequence of samples containing

point 𝒑𝒑𝑖𝑖 where indices 𝑥𝑥𝑖𝑖,𝑗𝑗,1, … , 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑚𝑚−1 refers to points and 𝑚𝑚 is the sample size.

3. For all indices, the points are ordered w.r.t. to their distance to 𝒑𝒑𝑖𝑖. 
Thus, if k ≤ l, 𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝𝑙𝑙 − 𝑝𝑝𝑖𝑖 .

4. Given a sphere containing the 𝑘𝑘 closest neighbors 𝒮𝒮𝑖𝑖,𝑘𝑘 of point 𝒑𝒑𝑖𝑖. 

5. The number of samples containing points from 𝒮𝒮𝑖𝑖,𝑘𝑘 and 𝒑𝒑𝑖𝑖 is 𝑇𝑇𝑘𝑘 𝑖𝑖 .

6. Expected number of  𝑇𝑇𝑘𝑘 𝑖𝑖 is E 𝑇𝑇𝑘𝑘 𝑖𝑖 | 𝑇𝑇 𝑖𝑖 = 𝑇𝑇 𝑖𝑖 𝑘𝑘
𝑚𝑚 − 1 / 𝑛𝑛 − 1

𝑚𝑚 − 1 .

7. After 𝑇𝑇𝑘𝑘 𝑖𝑖 iterations, the sphere radius is increased to contain the closest 𝑘𝑘 + 1
neighbors.
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Robust Model Estimation (Standard Setting)

Input: 
• A set of data 

points. 
• Inlier-outlier 

threshold.

Note: the threshold should 
correspond to the noise 
level to find the sought 
inliers.

Output:
• Model parameters, e.g., 

2D line.
• Set of inliers.

Randomly generated points (green) on a 2D line (red) and outliers 
(blue dots). The threshold which the synthetic noise added to the 
inlier point coordinates’ implies is shown by blue dotted lines. 
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Robust Model Estimation (Standard Setting)

The issue: no single inlier-outlier threshold suits all problems.

Model inaccuracy (RMSE) measured on carefully selected inlier correspondences in 

image pairs (bars) from standard datasets. 

Note: the Y-ranges of the plots are different.

Homogr dataset EVD dataset AdelaideRMF dataset Kusvod2 dataset
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Example Sources of Model Inaccuracy

• Noise in the measured data. 
E.g., noise in the coordinates of points 
due to compression artifacts or resizing....

• Imperfection of the model. 
We are estimating, e.g., standard 
homography or fundamental matrix. 

This  happens if:
(i) there is rolling shutter, 

(ii) there is radial distortion,

(iii) the scene is not completely rigid,

Example of rolling shutter effects

Example of radial distortion.
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MINPRAN

Idea:

• Assume that the outliers are uniformly distributed 
within the sensor range (e.g., image size).

• Find the model and threshold where the points closer
than the threshold (i.e., inliers) are the least likely to 
have occurred uniformly randomly.

Problem:  

• Given model 𝜙𝜙, 𝑛𝑛 points and probability ℱ 𝑟𝑟, 𝑘𝑘,𝑛𝑛
that at least 𝑘𝑘 points falls closer than threshold 𝑟𝑟.

• The problem to solve is ℋ 𝜙𝜙 = arg𝑟𝑟 minℱ 𝑟𝑟, 𝑘𝑘,𝑛𝑛
to select 𝑟𝑟, minimizing the randomness criterion.

• The final model will be where ℋ 𝜙𝜙 is minimal.

Stewart, Charles V. MINPRAN: A new robust estimator for computer vision. TPAMI 1995
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Idea: Eliminate the threshold by marginalizing over it. 

• The model quality does not depend on a single threshold,
• and the final model parameters are obtained 

without a strict inlier/outlier decision. 

Design choices and data interpretation: 

• Outlier are uniformly distributed.

• The squared inlier residuals have the 𝜒𝜒2 distribution.

Notes: 
• MAGSAC is capable of assuming other distributions.
• The 𝜒𝜒2 distribution should be used even in vanilla

RANSAC.

The MAGSAC Approach 

D. Barath, J. Noskova, J. Matas, MAGSAC: Marginalizing Sample Consensus, CVPR 2019

Holds for residuals that 
are them sum of squared 
values with Gaussian 
distribution, e.g., re-
projection error.
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New quality function:

𝑄𝑄∗ 𝜃𝜃 =
1

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
�
0

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
ln 𝐿𝐿 𝜃𝜃 | 𝜎𝜎 𝑑𝑑𝑑𝑑

• Function 𝑄𝑄∗ 𝜃𝜃 does not depend on the noise scale 𝜎𝜎 and, thus, on a threshold.

• No inlier/outlier decision is made.

Implied „Problems”:

• No knowledge about the inliers → Final least-squares fitting is not applicable.

• No knowledge about the inlier number → We don’t know when to stop. 

Note: Parameter 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 is a loose upper bound for the noise scale.  

Model Quality and its Implied „Problems”
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Problem: the inliers are not known to use them in an LSQ model polishing step.

A solution:

1. Given an initial model 𝜃𝜃, e.g., from a minimal sample.

2. Calculate the inlier probabilities of each point 𝑥𝑥 as

𝐿𝐿 𝑥𝑥 𝜃𝜃) ≈
2𝐶𝐶 𝑥𝑥
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑖𝑖=1

𝐾𝐾

𝜎𝜎𝑖𝑖 − 𝜎𝜎𝑖𝑖−1 𝜎𝜎𝑖𝑖
−𝑝𝑝𝐷𝐷𝑝𝑝−1 𝜃𝜃𝜎𝜎𝑖𝑖 , 𝑥𝑥 exp

−𝐷𝐷2 𝜃𝜃𝜎𝜎𝑖𝑖 , 𝑥𝑥
2𝜎𝜎𝑖𝑖2

.

3. Apply weighted least-squares fitting using the probabilities as weights.

Note: The (piecewise constant) integral in 𝐿𝐿 𝑥𝑥 𝜃𝜃) is replaced by a weighted sum. 

The 𝜎𝜎-consensus Model Fitting

66/90



J. Matas @ IMPROVE 2022, Prague 

Problem: the inlier number is not known, so cannot be used to terminate.

Original RANSAC criterion:

𝑘𝑘 𝜃𝜃,𝑎𝑎𝜎𝜎,𝑎𝑎𝒳𝒳 =
ln 1 − 𝜇𝜇

ln 1 − 𝐼𝐼(𝜃𝜃,𝜎𝜎)
𝒳𝒳

𝑚𝑚

Criterion via marginalization:

𝑘𝑘∗ 𝜃𝜃,𝒳𝒳 =
1

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
�
0

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘 𝜃𝜃,𝜎𝜎,𝒳𝒳 𝑑𝑑𝑑𝑑

Termination Criterion

RANSAC 
iteration
number

MAGSAC 
iteration
number

Inlier
ratio

Manually set
confidenceModel parameters

Noise
scale

Point set

Sample size

RANSAC iteration
number

Noise scale
upper bound

67/90



J. Matas @ IMPROVE 2022, Prague 

The MAGSAC Algorithm

Example. 
The minimal sample (red dots), the 
line which it initializes (red line), 
the current threshold (blue dotted 
lines),
the implied inliers (green dots), and 
the model fit to the implied inliers 
(red dashed line).

Input: 
• A set of data points. 
• An upper bound for the threshold.
Output: model parameters.

Algorithm:

1. Generate a minimal sample model and 
calculate its quality.

2. If it is a new best model: Estimate the 
inlier weight of each point using a 
(data-dependent) number of different 
noise scales. 

3. Estimate the final model parameters by 
weighted least-squares.

4. Terminate or go to 1.
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Pros and Cons

Pros Cons

Very accurate on the tests

Due to the number of LS fits,
MAGSAC can be slow on some

problems. 

Smaller failure ratio than the
competitors

The setting of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 is much easier
than setting 𝜎𝜎. 
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Idea: 

Eliminate the threshold similarly as in MAGSAC, but

• assume nothing about the outliers,

• and use an efficient iteratively re-weighted least-squares approach. 

Design choices and data interpretation: 

• No assumption on the outliers.

• The squared inlier residuals have the 𝜒𝜒2 distribution.

Note: the algorithms is capable of handling other distributions

The MAGSAC++ Approach 

D. Barath, J. Noskova, M. Ivashechkin, J. Matas, MAGSAC++, a fast, reliable and accurate robust 

estimator, CVPR 2020
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The MAGSAC++ Approach 

Input: 

• A set of data points. 
• Upper bound for the threshold. E.g., 

10 pixels for fundamental matrix fitting.
Output:

• Model parameters.

Algorithm:

Iteratively re-weighted LS fitting, where model parameters in the (i+1)th
iteration are calculated from points weighted via marginalizing over the noise 𝜎𝜎.
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Multi-model fitting with RANSAC-like methods

Multi-model fitting problem: 
• We are looking for a set of models (e.g., 3 planes) interpeting the scene,
• and a point-to-model assignment. 
Note: there is an outlier model.

Connection of RANSAC-like methods and multi-model fitting:
• Early methods were using RANSAC directly. 
• State-of-the-art methods: 

• Use RANSAC-like initialization and, then, 
some optimization to select the model interpeting the scene. 

• Use RANSAC inside the optimization. 
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Early Methods (Sequential RANSAC)

Example fitting by Sequential RANSAC.
Notes:
• Greedy algorithm, but works reasonably well for finding the most 

dominant models in the data.
• Very easy to implement.
• Scalable, in contrast to most state-of-the-art techniques.
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Early Methods (MultiRANSAC)

• The number of sought models k is a 
parameter.

• In each RANSAC iteration, it selects k 
minimal samples and fits k models.

• Due to the increased sample size, it 
requires too many iterations.

M. Zuliani et al. The multiransac algorithm and its application to detect planar 
homographies. ICIP 2005.

Example fitting by MultiRANSAC. 

Outlier ratio / 
Sample size 2 3*2 = 6

0.5 16 292
0.75 71 1.8 ∗ 104

0.9 458 4.6 ∗ 106

Theoretical number of iterations to achieve
0.99 confidence in the results.
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Recent Methods (RANSAC-like initialization)

Pipeline:

• Generate an initial set of models by 
a RANSAC-like procedure.

• Do model selection – optimization -
point assignment to find the 
dominant models. 

…

P. Amayo et al. Geometric multi-model fitting with a convex relaxation 
algorithm. CVPR 2018.
D. Barath et al. Multi-class model fitting by energy minimization and mode-
seeking. ECCV 2018. 
A. Delong et al. Minimizing energies with hierarchical costs. IJCV 2012
L. Magri et al. T-Linkage: A continuous relaxation of J-Linkage for multi-model 
fitting. CVPR 2014.
L. Magri and A. Fusiello. Robust multiple model fitting with preference analysis 
and low-rank approximation. BMVC 2015
L. Magri and A. Fusiello. Multiple model fitting as a set coverage problem. 
CVPR 2016
T. T. Pham, T.-J. Chin, K. Schindler, and D. Suter. Interacting geometric priors 
for robust multi-model fitting. TIP 2014
H. Wang, G. Xiao, Y. Yan, and D. Suter. Mode-seeking on hypergraphs for robust 
geometric model fitting. ICCV 2015.
H. Wang, G. Xiao, Y. Yan, and D. Suter. Searching for representative modes on 
hypergraphs for robust geometric model fitting. PAMI 2018.
…
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Recent methods (RANSAC Inside the Optimization)

Pipeline of Progressive-X.

Note: also, there is CONSAC at CVPR 2020 following a similar strategy. 
D. Barath et al. Progressive-X: Efficient, Anytime, Multi-Model Fitting Algorithm. ICCV 2019.
F. Kluger et al. CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. CVPR 2020
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Recent methods (RANSAC Inside the Optimization)

Example homography fitting 
by Progressive-X.

D. Barath et al. Progressive-X: Efficient, Anytime, Multi-Model Fitting Algorithm. ICCV
2019.
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RANSAC time complexity depends on the inner loop

Repeat k times  (k depends on sample size m, inlier number Q, 
number of data N, and confidence η)

1. Hypothesis generation
• Select a sample of m data points
• Calculate parameters of the model(s)

2. Model verification
• Find the support (consensus set) by verifying all N data 

points

Running time:

tM - the time to estimate model parameters from a sample,
number of models generated from a sample
- number of models tested per sample
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Randomised RANSAC (R-RANSAC) [Matas, Chum 02]

Repeat until termination condition is met:
1. Hypothesis generation (as before)
2a. Model pre-verification Td,d test:

Evaluate 𝑑𝑑 ≪ 𝑁𝑁 data points, reject the model if not all d data points 
are consistent with the model

2b. Model verification
Verify the rest of the data points if pre-verification test was successful

Example (d=1) 
1. Generate a model (sample 2 points)
2a. Sample another point ●

Does it fall within threshold? 
No. Go to 1.   
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Optimal Randomised Strategy

where 
Hg - hypothesis of a ‘good’ model (≈ from an uncontaminated sample)
Hb - hypothesis of a ‘bad’ model (≈ from a contaminated sample)
δ - probability of a data point being consistent with an arbitrary model

Optimal (the fastest) test that ensures with probability α that that Hg is not 
incorrectly rejected is  the Sequential probability ratio test (SPRT) [Wald47]  

Model Verification employing Sequential Decision Making
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Running time

In sequential statistical decision problem decision errors are traded off for time. 
These are two incomparable quantities, hence the constrained optimization. 

In WaldSAC, decision errors cost time (more samples) and there is a single  
minimised quantity, time t(A), a function of a single parameter A.

WaldSAC

83/90



J. Matas @ IMPROVE 2022, Prague 

SPRT

bad model good model

decision
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Exp. 1: Wide-baseline matching
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Exp. 2 Narrow-baseline stereo
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Randomised Verification in RANSAC: Conclusions 

 The same  confidence η in the solution reached faster
(data dependent, ¼ 10x) 

 No change in the character of the algorithm, it was randomised anyway.

 Optimal strategy derived using Wald’s theory for known ε and δ.

 Results with ε and δ estimated during the course of RANSAC are not 
significantly different. Performance of SPRT is insensitive to errors in the 
estimate.

• δ can be learnt, an initial estimate can be obtained by geometric  
consideration

• Lower bound on e is given by the best-so-far support

87/90



Evaluation



J. Matas @ IMPROVE 2022, Prague 

Evaluation at CVPR 2020 : Classical F methods, 1k iterations

• Methods are 
sorted by 
accuracy

• sk-image 
RANSAC is 
orders of 
magnitude 
slower than 
the rest

• OpenCV is 
the least 
precise 
RANSAC
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Evaluation at CVPR 2020: Learned methods F
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Classical methods, H, 10k iterations
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Classical methods, H, 1M iterations
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Conclusions

1. Fitting of models is an old and yet open problem. 

.RANSAC is the most popular robust fitting method. 

2. Its simplicity is a huge plus. On the other hand, its assumptions 

allow for multiple improvements.

3. It achieves state of the art  with local optimization treated as a 

two-class labelling problem solved by graph cut 

4. Marginalization over the outlier threshold improves precision and 

removes the need for an input parameter.

5. The labelling formulation extends to multiple instance problem.
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Objective: Revisit the MINPRAN idea.
• Find the best model parameters together
• with the best inlier-outlier threshold (i.e., the noise scale).
Idea: 
• For each minimal sample model, test multiple thresholds. 
• Return the (model 𝑀𝑀, threshold 𝜖𝜖𝑘𝑘) pair with the fewest inconsistent points closer than 

the threshold. 
• Inconsistent points are called false alarms.
Problem: find model 𝑀𝑀 where

𝑀𝑀 = arg min
𝑀𝑀

min
𝑘𝑘=𝑚𝑚+1 .. 𝑛𝑛

NFA 𝜖𝜖𝑖𝑖 𝑀𝑀 ,𝑘𝑘 ,

A contrario RANSAC

Moisan, L., Moulon, P. and Monasse, P., Fundamental matrix of a stereo pair, with a contrario elimination of outliers, Image Processing On Line 6 2016

Expected number of false alarms

The point-to-model residuals 
ordered increasingly

Sample size
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Idea in brief:

• The background model is assumed to have uniform distribution.

• We are looking for a set of data points, where the probability of being uniformly and 
independently distributed is low.

• False alarm: a data point inconsistent with the randomly distributed background model.

• NFA is the expected number of false alarms given a set of points. 

Number of False Alarms (NFA)

Moisan, Lionel, and Bérenger Stival. A probabilistic criterion to detect rigid point matches 
between two images and estimate the fundamental matrix. International Journal of 
Computer Vision 57.3 (2004): 201-218.
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A contrario RANSAC

Example of determining the threshold by
AC-RANSAC given a set of 2D points, a 
minimal sample (red dots) and the 2D line 
it implies (red line). The currently tested 
threshold (blue) and the best one (green) 
are shown.

The best threshold is the one minimizing
the NFA value. 
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Conclusions of this Section and Everything

Even if RANSAC solves a different problem than multi-model fitting. It is a fundamental tool
when approaching that problem as well.

Take home message of this presentation:
• The RANSAC inlier-outlier threshold is not trivial to set.
• Geometric data is spatially coherent. Use it.

Questions?
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How to Ignore „Bad” Models?

Idea: models with good enough inlier supports are not distant from the 
true underlying model.

Algorithm (LO-RANSAAC): when a new best model is found, 

1. Get its inliers and refit the model.
2. Store the polished model by converting it to points.
3. Start again from 1. with iteratively shrinking threshold.

4. The averaging is applied to these intermediate models. 
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NFA 𝜖𝜖𝑖𝑖 ∶ 𝑖𝑖 = 1, . . ,𝑛𝑛 , 𝑘𝑘 = 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 − 𝑚𝑚 𝑛𝑛
𝑘𝑘

𝑘𝑘
𝑚𝑚 𝜖𝜖𝑘𝑘𝑑𝑑𝛼𝛼0

𝑘𝑘 −𝑚𝑚

Number of False Alarms (NFA)

Moisan, L., Moulon, P. and Monasse, P., Fundamental matrix of a stereo pair, with a contrario elimination of outliers, Image Processing On Line 6 2016

Index of the currently
tested residual

Number of models
estimated from a 

minimal sample, e.g., 3 
for fundamental matrix

Residual
dimension

Point
number

The probability of a 
random data term to 
have error at most 1 

Residual of 
the kth

closest point
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