AI & Law models of case-based reasoning and their applications

Henry Prakken IC3K'25, Marbella 22 October 2025

Institutional history

Thorne McCarty

- Marek Sergot
 - Florence conferences 1982,1985,1989
 - ICAIL conferences since 1987
 - JURIX conferences since 1988
 - AI & Law journal since 1992
 - **...**
 - Two landmark papers:
 - Taxman (Thorne McCarty, 1977): precedents
 - British Nationality Act (Marek Sergot et al., 1985): legislation

Factor-based reasoning

- In legal classification and interpretation there are often no clear rules
- Often there only are factors: tentative reasons pro or con a conclusion
 - Often to different degrees
- Factors are weighed in cases, which become precedents
 - How do judges, sollicitors ... then argue?
 - And how do precedents constrain new decisions?

Example from US law: misuse of trade secrets

- Some factors pro misuse of trade secrets:
 - F4 Agreed-Not-To-Disclose
 - F6 Security-Measures
 - F18 Identical-Products
 - F21 Knew-Info-Confidential
 - ...
- Some factors con misuse of trade secrets:
 - F1 Disclosure-In-Negotiations
 - F16 Info-Reverse-Engineerable

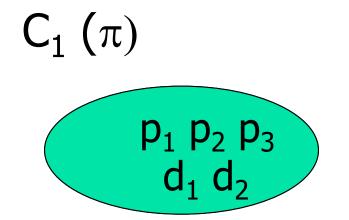
...

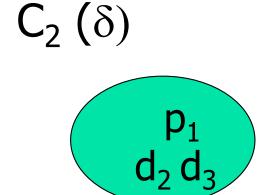
HYPO

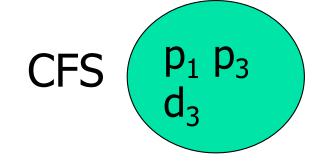
Ashley & Rissland 1985-1990

CATO

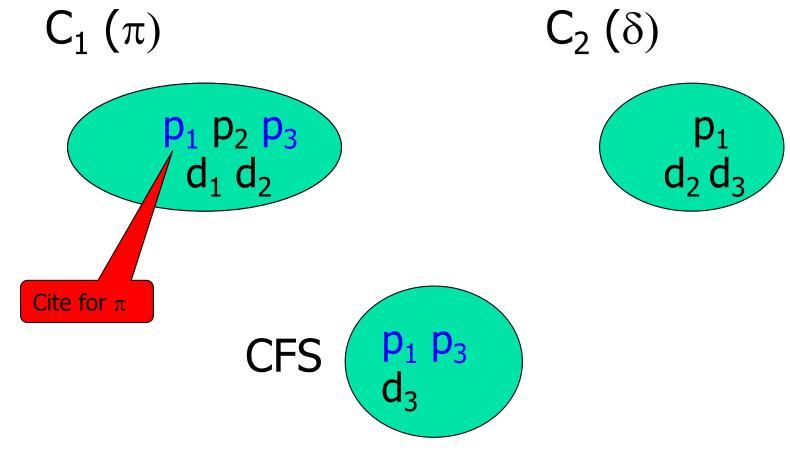
Aleven & Ashley 1991-1997

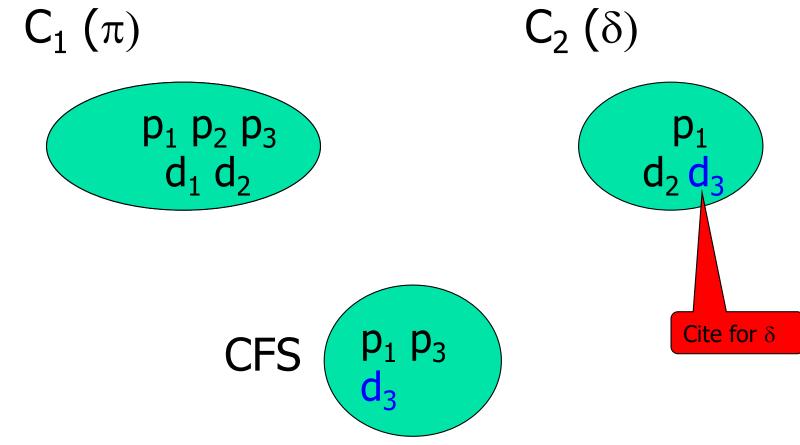

HYPO Ashley & Rissland 1987-1990

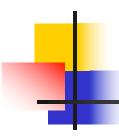


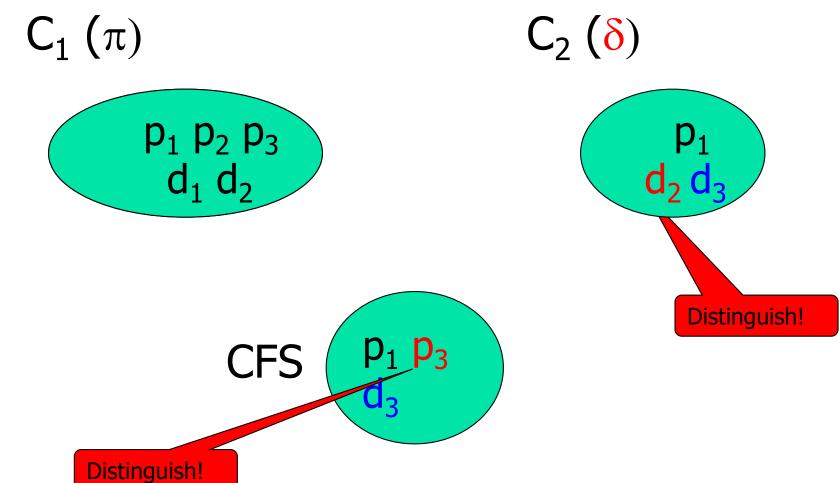

Kevin Ashley & Edwina Rissland

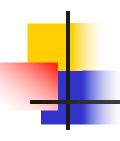
- Representation language:
 - Cases: π -factors and δ -factors + decision (π or δ)
 - Current Fact Situation: π -factors and δ -factors
- Arguments:
 - Citing (for its decision) a case on its similarities with CFS
 - Distinguishing a case on its differences with CFS
 - Taking into account which side is favoured by a factor











HYPO's argument game

- Given: a case base and a current fact situation
- Plaintiff starts with a citable case
 - A case decided for plaintiff and sharing proplaintiff factors with the CFS
- Defendant:
 - cites all counterexamples (cases citable for defendant)
 - distinguishes citation in all possible ways
 - On pro-plaintiff factors of precedent lacking in CFS
 - On new pro-defendant factors in the CFS
- Plaintiff distinguishes defendant's counterexamples in all possible ways

K.D. Ashley. *Modeling Legal Argument: Reasoning with Cases and Hypotheticals.* MIT Press, Cambridge, MA, 1990.

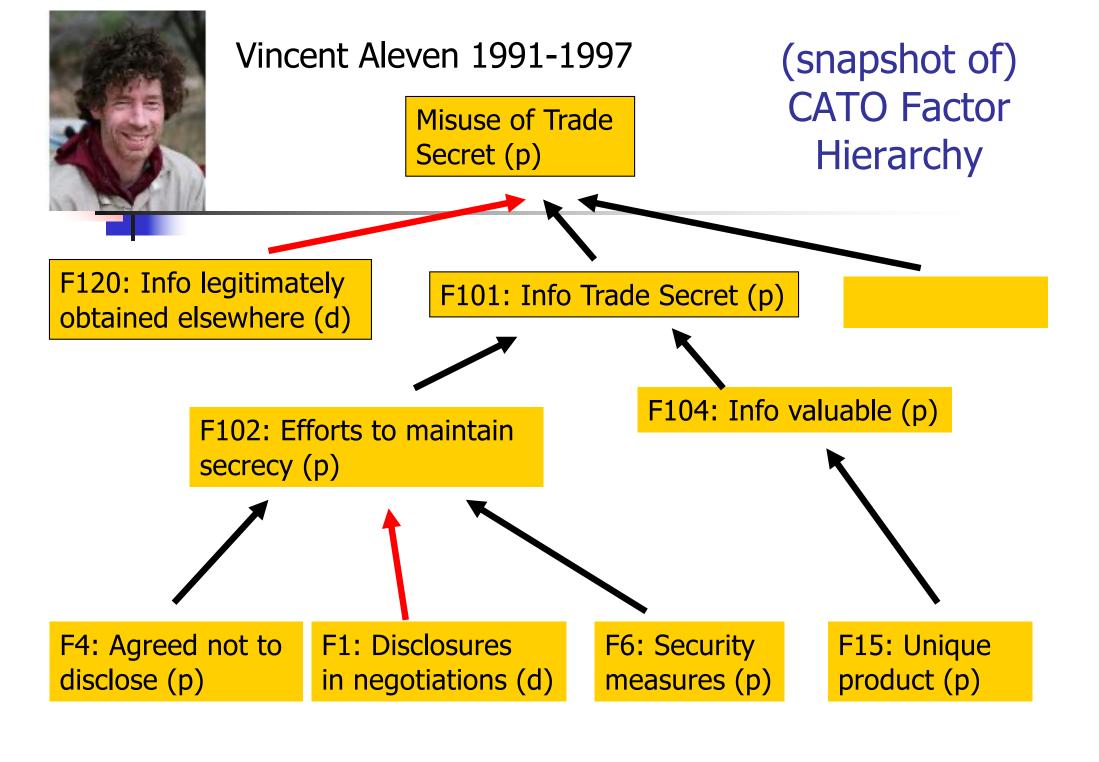
Plaintiff:

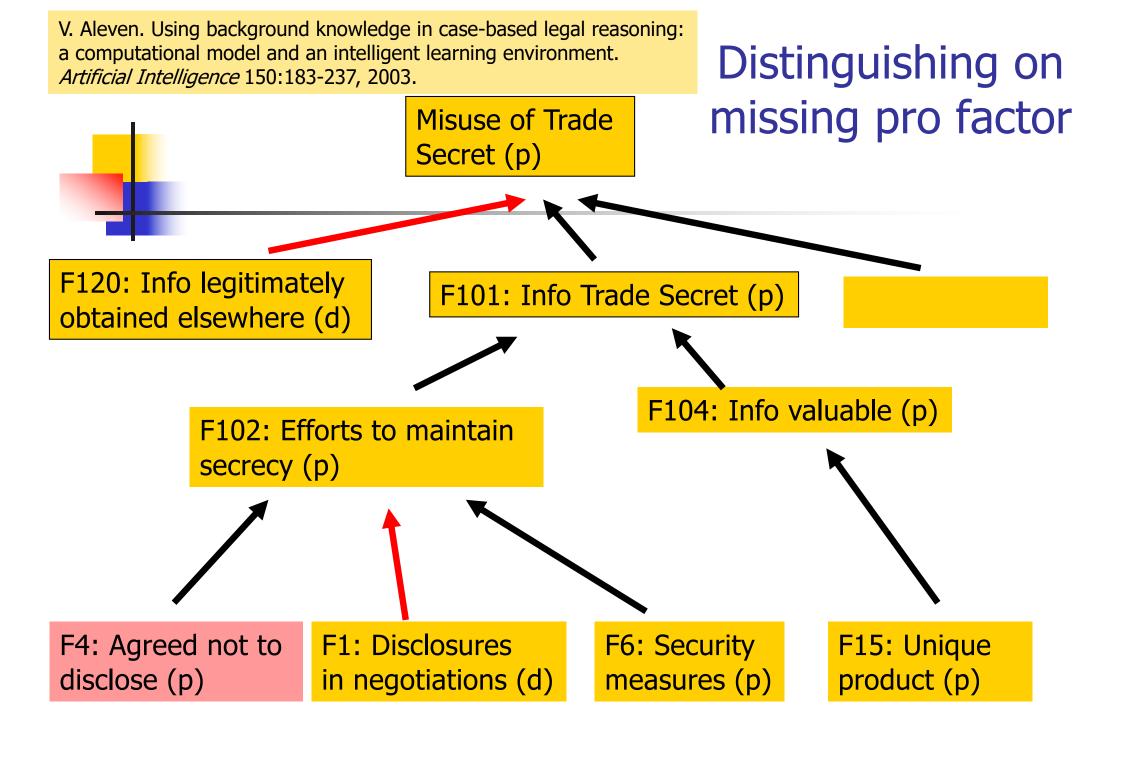
I should win because as in Bryce, which was won by plaintiff, I took security measures and defendant knew the info was confidential

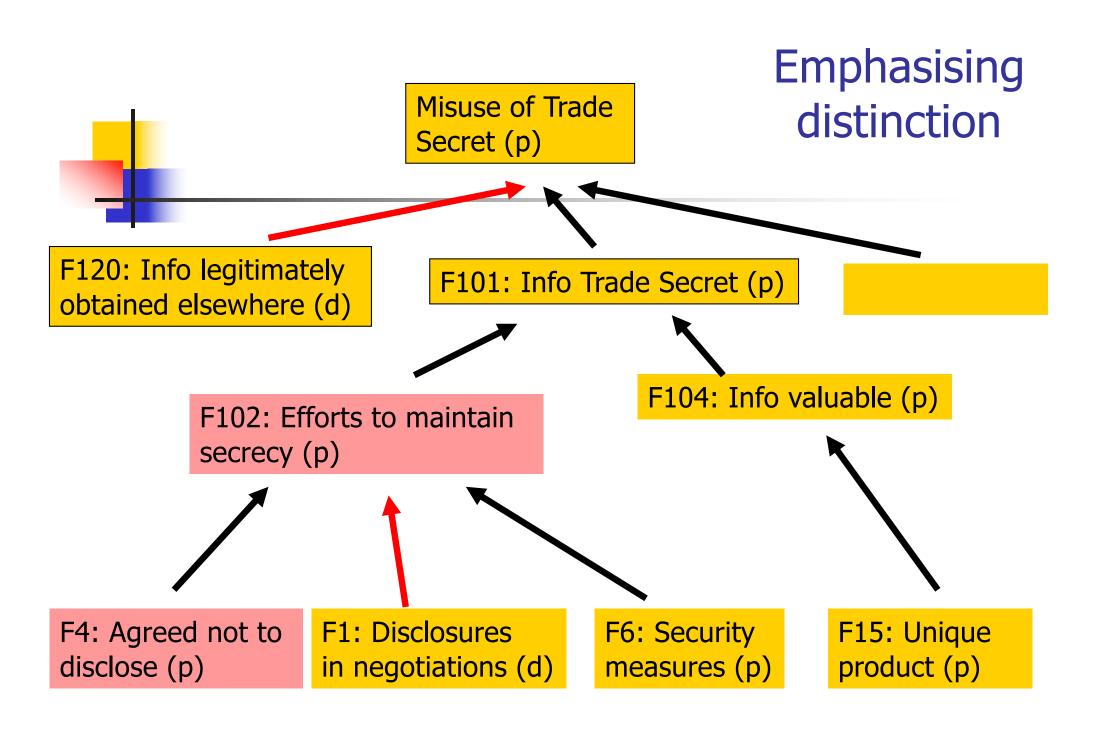
Defendant:

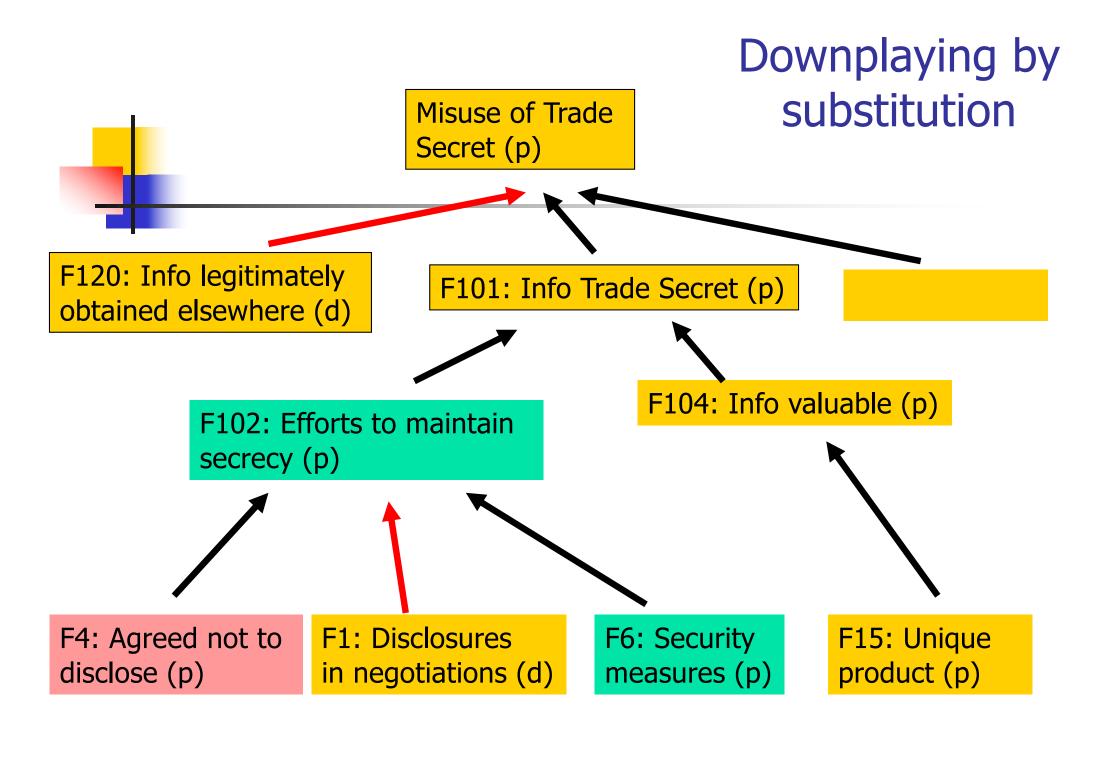
Unlike in the present case, in Bryce defendant had agreed not to disclose and the products were identical

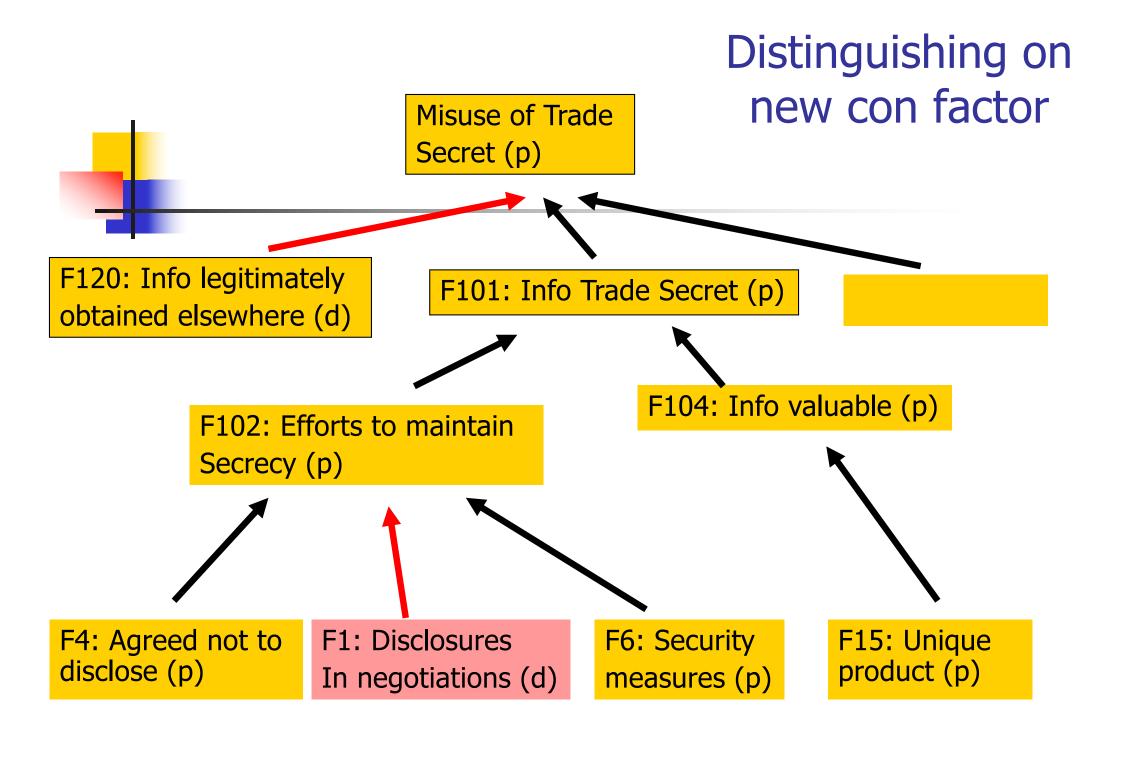
Defendant:

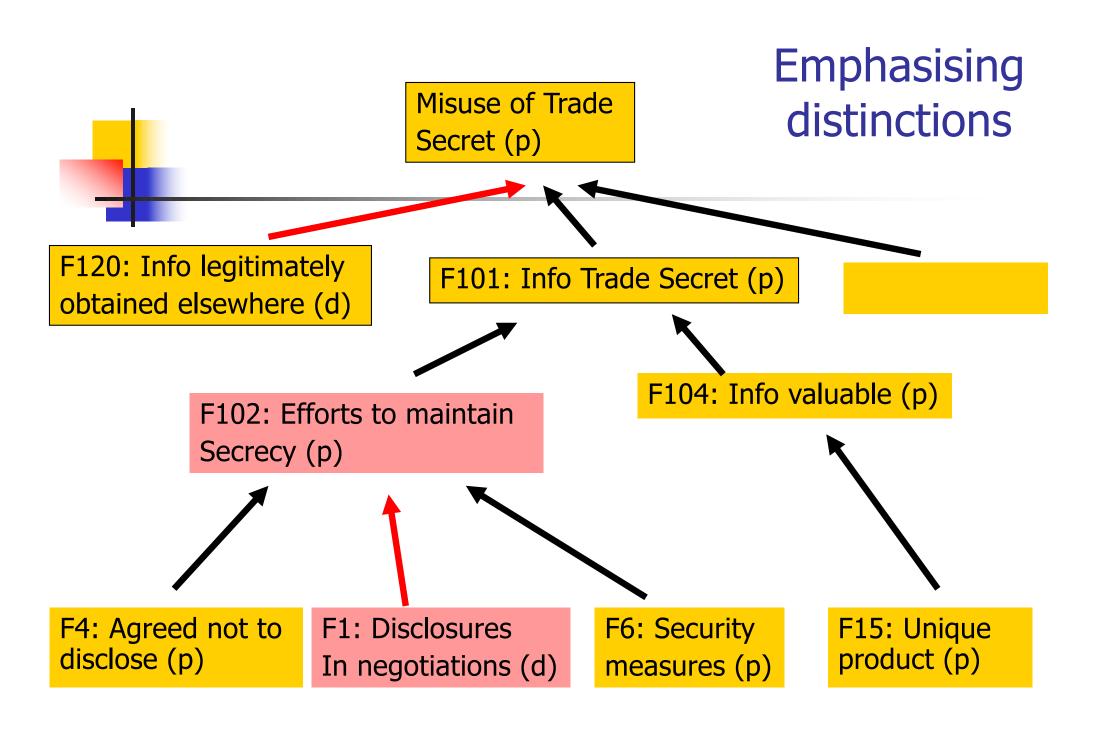

Unlike Bryce, in the present case the info is reverse engineerable

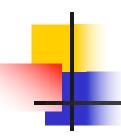

Defendant:


I should win because as in Robinson, which was won by defendant, plaintiff made disclosures during the negotiations


Plaintiff:


Unlike in Robinson, I took security measures, and defendant knew the info was confidential





Later developments

- Combining rules and cases
 - Cabaret (Rissland & Skalak 1989-1991)
 - IBP (Ashley & Brüninghaus 2003-2009)
- Underlying values
 - many since Berman & Hafner 1993, Bench-Capon 2000
- Theory construction
 - Bench-Capon & Sartor 2001, Bench-Capon & Chorley 2003-2006
- Precedential constraint
 - Horty 2011-, ...

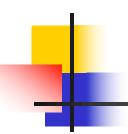
John Horty

Precedential constraint

- When is a decision in a new case 'forced' by a case base?
 - If the case base contains a precedent for that decision that cannot be distinguished:
 - All differences make the new case even stronger for the new decision

J. Horty, Rules and reasons in the theory of precedent. *Legal Theory* 17 (2011): 1-33.

. . .


H. Prakken, A formal analysis of some factor- and dimension-based accounts of precedential constraint. *Artificial Intelligence and Law* 29 (2021): 559-585.

. . .

the factors in G favouring s (the pro s factors)

Result model with factors

- For two Nact situations F and G and sides s,-s:
- $G \leq_s F$ iff $G^s \subseteq F^s$ and $F^{-s} \subseteq G^{-s}$
 - F is at least as good for s as G iff:
 - F has at least all pro s factors that G has, and
 - F has at most all con s factors that G has
 - Con s = pro s

Result model with factors

- Deciding fact situation F for s is forced iff there exists a precedent (G,s) such that $G \leq_s F$
 - Such that F is at least as good for s as G
- Deciding F for s is allowed iff deciding F for -s is not forced.

$X \leq_s Y \text{ iff } X^s \subseteq Y^s \text{ and } Y^{-s} \subseteq X^{-s}$ Deciding F for s is forced iff there exists a precedent (X,Y,s) such that X U Y \leq_s F

 $\{\pi 1, \, \pi 3, \delta 1, \, \delta 3\} \leq_{\pi} \mathsf{FS} 1$?

- Deceive-plaintiff (π1)
- Security measures (π3)
- No-unique-product (δ1)
- Secrets-disclosed-outsiders (δ3)

■ Case 2 – won by defendant

 $\{\pi 2, \delta 1, \delta 3\} \leq_{\delta} \mathsf{FS}1$?

- Bribe-Employee $(\pi 2)$
- No-unique-product (δ1)
- Secrets-disclosed-outsiders (δ3)

■ FS 1 —

- $\{\pi 2, \pi 3, \delta 2, \delta 3\}$ Bribe-Employee (π2)
- Security measures $(\pi 3)$
- Info-Reverse-Engineerable (δ2)
- Secrets-disclosed-outsiders (δ3)

$X \leq_s Y \text{ iff } X^s \subseteq Y^s \text{ and } Y^{-s} \subseteq X^{-s}$ Deciding F for s is forced iff there exists a precedent (X,Y,s) such that $X \cup Y \leq_s F$

 $\{\pi 1, \pi 3, \delta 1, \delta 3\} \leq_{\pi} FS1?$ No

- Deceive-plaintiff $(\pi 1)$
- Security measures (π3)
- No-unique-product (δ1)
- Secrets-disclosed-outsiders (δ3)

 $\{\pi 2, \delta 1, \delta 3\} \leq_{\delta} \mathsf{FS}1$?

- Bribe-Employee (π2)
- No-unique-product (δ1)
- Secrets-disclosed-outsiders (δ3)

 $\{\pi 2, \pi 3, 82, \delta 3\}$

- Bribe-Employee (π2)
- Security measures (π3)
- Info-Reverse-Engineerable (δ2)
- Secrets-disclosed-outsiders (δ3)

$X \leq_s Y \text{ iff } X^s \subseteq Y^s \text{ and } Y^{-s} \subseteq X^{-s}$ Deciding F for s is forced iff there exists a precedent (X,Y,s) such that X U Y \leq_s F

 $\{\pi 1, \, \pi 3, \delta 1, \, \delta 3\} \leq_{\pi} \mathsf{FS} 1$?

- Deceive-plaintiff (π1)
- Security measures (π3)
- No-unique-product (δ1)
- Secrets-disclosed-outsiders (δ3)

■ Case 2 – won by defendant

 $\{\pi 2, \delta 1, \delta 3\} \leq_{\delta} \mathsf{FS}1$?

- Bribe-Employee $(\pi 2)$
- No-unique-product (δ1)
- Secrets-disclosed-outsiders (δ3)

■ FS 1 —

- $\{\pi 2, \pi 3, \delta 2, \delta 3\}$ Bribe-Employee (π2)
- Security measures $(\pi 3)$
- Info-Reverse-Engineerable (δ2)
- Secrets-disclosed-outsiders (δ3)

$X \leq_s Y$ iff $X^s \subseteq Y^s$ and $Y^{-s} \subseteq X^{-s}$ Deciding F for s is forced iff there exists a precedent (X,Y,s) such that $X \cup Y \leq_s F$

- Deceive-plaintiff (π1)
- Security measures (π3)
- No-unique-product (δ1)
- Secrets-disclosed-outsiders (δ3)

■ Case 2 – won by defendant

- Bribe-Employee (π2)
- No-unique-product (δ 1)
- Secrets-disclosed-outsiders (δ3)

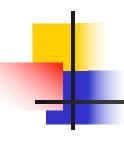
■ FS 1 -

- Bribe-Employee (π2)
- Security measures $(\pi 3)$
- Info-Reverse-Engineerable (δ2)
- Secrets-disclosed-outsiders (δ3)

 $\{\pi 1, \, \pi 3, \delta 1, \, \delta 3\} \leq_{\pi} \mathsf{FS} 1?$

 $\{\pi 2, \delta 1, \delta 3\} \leq_{\delta} \mathsf{FS}1$? No

 $\{\pi 2, \pi 3, \delta 2, \delta 3\}$

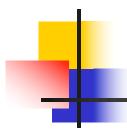


Example dimensions in HYPO

Number of outsider disclosees (0,1,....)

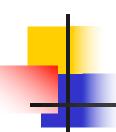
0 1 2 3 4

5,



Example dimensions in HYPO

 Security measures (minimal measures, acces to premises controlled, entry by visitors restricted, entry by employees restricted)


defendant ← → plaintiff

minimal < access controlled < entry visitors restr < entry employees restr

Result model with dimensions

- For any two fact situations F and G given a set of dimensions:
 - G ≤_s F iff F is for every dimension at least good for s as G.
- Deciding fact situation F for s is forced iff there exists a precedent with fact situation G and decided for s such that G ≤_s F

Example (result model for dimensions)

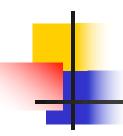
- Case 1 won by plaintiff
 - d1: Deceive-plaintiff = yes
 - d2: Bribe-Employee = no
 - d3: Security measures = Entry-By-Visitors-Restricted
 - d4: Unique-product = no
 - d5: Info-Reverse-Engineerable = no
 - d6: Secrets-disclosed-outsiders = 20

■ Case 2 -

- d1: Deceive-plaintiff = no
- d2: Bribe-Employee = yes
- d3: Security measures = Minimal
- d4: Unique-product = no
- d5: Info-Reverse-Engineerable = yes
- d6: Secrets-disclosed-outsiders = 0

```
d1: Deceive-plaintiff = \{no <_{\pi} yes\}
d2: Bribe-Employee = \{no <_{\pi} yes\}
d3: Security-Measures = \{Minimal-Measures <_{\pi} Access-To-Premises-Controlled <_{\pi} Entry-By-Visitors-Restricted <_{\pi} Restrictions-On-Entry-By-Employees\}
d4: Unique-product = <math>\{yes <_{\delta} no\}
d5: Info-Reverse-Engineerable = \{no <_{\delta} yes\}
d6: Secret-disclosed-outsiders = \{0 <_{\delta} 1 <_{\delta} 2 <_{\delta} ...\}
```


Example (result model for dimensions)


- Case 1 won by plaintiff
 - d1: Deceive-plaintiff = yes
 - d2: Bribe-Employee = no
 - d3: Security measures = Entry-By-Visitors-Restricted
 - d4: Unique-product = no
 - d5: Info-Reverse-Engineerable = no
 - d6: Secrets-disclosed-outsiders = 20
- Case 2 -
 - d1: Deceive-plaintiff = no
 - d2: Bribe-Employee = yes
 - d3: Security measures = Minimal
 - d4: Unique-product = no
 - d5: Info-Reverse-Engineerable = yes
 - d6: Secrets-disclosed-outsiders = 0

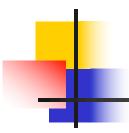
```
d1: Deceive-plaintiff = \{no <_{\pi} yes\}
d2: Bribe-Employee = \{no <_{\pi} yes\}
d3: Security-Measures = \{Minimal-Measures <_{\pi} Access-To-Premises-Controlled <_{\pi} Entry-By-Visitors-Restricted <_{\pi} Restrictions-On-Entry-By-Employees\}
d4: Unique-product = <math>\{yes <_{\delta} no\}
d5: Info-Reverse-Engineerable = \{no <_{\delta} yes\}
d6: Secret-disclosed-outsiders = \{0 <_{\delta} 1 <_{\delta} 2 <_{\delta} ...\}
```


'Explaining' ML predictions with CBR

- Regard training data as cases/precedents
 - Direction of factors/dimensions can be learned from the BB
- Use AI & law model of CBR for explaining a prediction of the BB model
 - If a precedent forces the prediction, then show it
 - Otherwise explain away the relevant differences
- H. Prakken & R. Ratsma, A top-level model of case-based argumentation for explanation: formalisation and experiments. Argument and Computation 13 (2022): 159-194
- W. van Woerkom et al. A Fortiori case-based reasoning: from theory to data. JAIR 81 (2024): 401-441.
- J. Peters et al., Model- and data-agnostic justifications with a fortiori case-based argumentation.
 Proceedings of ICAIL 2025, pp. 102-111.

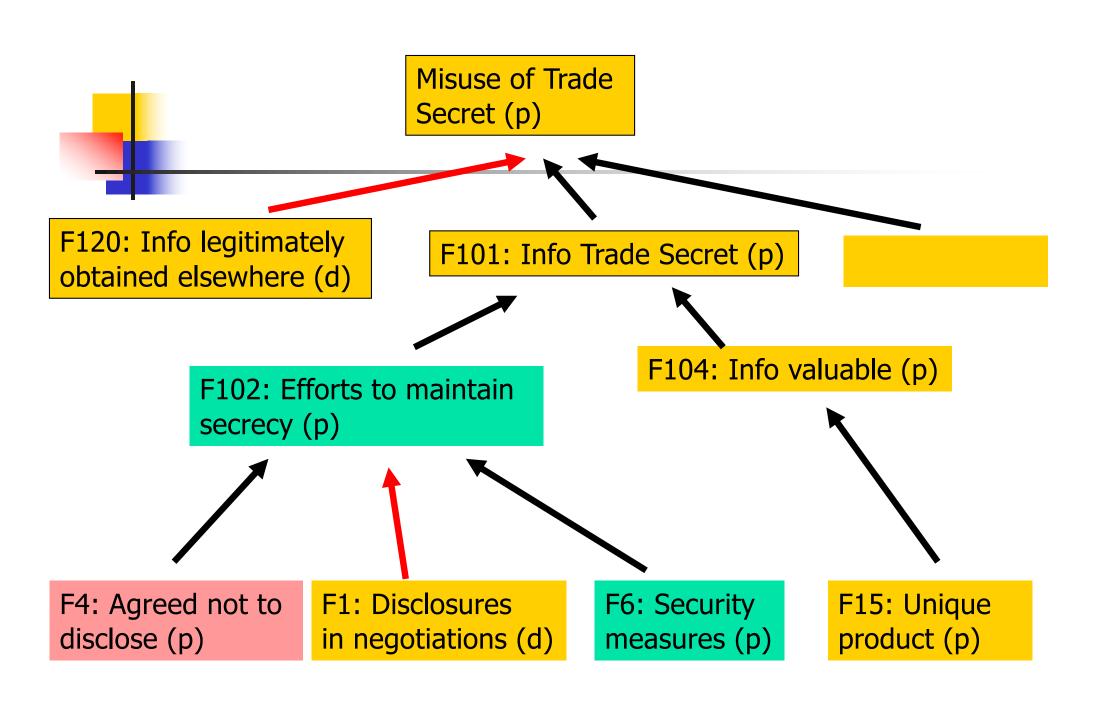
Example (churning)

- John will stay with us, since like Maria he recently visited our website. (citation)
- But Maria also downloaded software from our site while John didn't (missing pro). Moreover, John did not reply to our last mailing (new con)
- But John downloaded a brochure, so like Maria he showed an interest in our products (substitution).
 Moreover, John contacted our help desk, so like Maria he remained in contact with us (cancellation)



Follow-up work on precedential constraint

Wijnand van Woerkom


- Discovering dimension orderings in datasets
- Intermediate factors in result model of precedential constraint
 - Assuming a CATO-style factor hierarchy
 - Generalising it to dimensions
- Implementations with SAT solver

- W. van Woerkom et al. A Fortiori Case-Based Reasoning: From Theory to Data. JAIR 81 (2024): 401-441.
- W. van Woerkom et al., Hierarchical models of precedential constraint. Artificial Intelligence and Law, in press.

Hierarchical precedential constraint

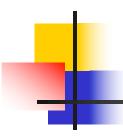
- Apply precedential constraint to
 - decide on intermediate factors
 - decide on the final outcome given intermediate factors
 - With dimensions: allowed or forced ranges of values

Joeri Peters

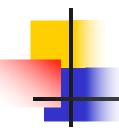
Consistency of datasets

- A case base is inconsistent iff it forces opposite outcomes for the same fact situation
- Degree of consistency of a CB:
 - The rate of pairs (F,s), (G,-s) for which $F \leq_s G$
- Authoritativeness of a case (F,s): the proportion of cases (G,s) and (G',-s) such that F ≤_s G and F ≤_s G'
- R. Ratsma (2020), *Unboxing the Black Box using Case-based Argumentation*. AI Msc thesis, Utrecht University
- J. Peters et al., Justifications derived from inconsistent case bases using authoritativeness. Proceedings of ArgXAI 2022.
- W. van Woerkom, Formal results on case-base consistency: a COMPAS case study. Proceedings of ICAIL

Decision support for deciding on fitness to drive


- At Dutch Central Driving License Office
 - "No machine learning"
 - Not transparent or explainable
 - "Is standard CBR useful?"
- Standard CBR:
 - assumes 'features' without preferences for decisions
 - applies numerical similarity measures
 - suggests decision of precedent(s) with highest similarity to current case

Joep Nouwens: Msc project AI-UU


- Combine and compare with AI & law style CBR:
 - Features with preferences for decisions
 - Not all differences are relevant!
 - Decision-making by precedential constraint
- Example dimensions
 - Heart disease?
 - Bipolar disorder?
 - Eye sight
 - Epiliptic attacks

...

Experiment

- Case base: 15.843 cases, 123 dimensions
 - 80% used as precedent
 - 20% used as test case
- Four decision rules:
 - Standard CBR: predict decision with highest similarity
 - Precedential constraint with if both allowed/forced:
 - predict 'fit'
 - predict 'unfit'
 - predict decision of case with highest similarity according to standard CBR

Experiments with accuracies

- Case base: 15.843 cases, 123 dimensions
 - 80% used as precedent
 - 20% used as test case
- Four decision rules:
 - Standard CBR: predict decision with highest similarity (92%)
 - Precedential constraint with if both allowed/forced:
 - predict 'fit' (70%)
 - predict 'unfit' (64%)
 - predict decision of case with highest similarity according to standard CBR (91%)

The value of predictive experiments

- "High predictive accuracy is evidence of legal correctness of the model"
 - Aleven, Ashley

- HP: only true if system and humans:
 - apply the same knowledge
 - reason with it in the same way

Conclusions

- There is interesting work on symbolic models of legal case-based reasoning
- With recent research applications in
 - Explainable AI
 - Analysing consistency of decision-making
- Initial work on letting LLMs
 - provide the inputs of symbolic models
 - generate case-based arguments
 - (Ashley & students since 2023)