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Institutional history

n Florence conferences 1982,1985,1989
n ICAIL conferences since 1987
n JURIX conferences since 1988
n AI & Law journal since 1992
n …
n Two landmark papers:

n Taxman (Thorne McCarty, 1977): precedents
n British Nationality Act (Marek Sergot et al., 1985): 

legislation

Thorne McCartyMarek Sergot
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Factor-based reasoning
n In legal classification and interpretation there are 

often no clear rules
n Often there only are factors: tentative reasons pro

or con a conclusion
n Often to different degrees

n Factors are weighed in cases, which become 
precedents

n How do judges, sollicitors … then argue? 
n And how do precedents constrain new decisions?



Example from US law: 
misuse of trade secrets

n Some factors pro misuse of trade secrets:
n F4 Agreed-Not-To-Disclose
n F6 Security-Measures
n F18 Identical-Products
n F21 Knew-Info-Confidential
n …

n Some factors con misuse of trade secrets:
n F1 Disclosure-In-Negotiations
n F16 Info-Reverse-Engineerable
n …

HYPO
Ashley & Rissland
1985-1990

CATO
Aleven & Ashley
1991-1997



HYPO 
Ashley & Rissland 1987-1990

n Representation language:
n Cases: p-factors and d-factors + decision (p or d) 
n Current Fact Situation: p-factors and d-factors

n Arguments:
n Citing (for its decision) a case on its similarities

with CFS
n Distinguishing a case on its differences with CFS
n Taking into account which side is favoured by a 

factor

Kevin Ashley & 
Edwina Rissland
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HYPO’s argument game
n Given: a case base and a current fact 

situation
n Plaintiff starts with a citable case

n A case decided for plaintiff and sharing pro-
plaintiff factors with the CFS

n Defendant:
n cites all counterexamples (cases citable for 

defendant)
n distinguishes citation in all possible ways

n On pro-plaintiff factors of precedent lacking in CFS
n On new pro-defendant factors in the CFS

n Plaintiff distinguishes defendant’s 
counterexamples in all possible ways



Plaintiff:
I should win because as in Bryce, which was won 
by plaintiff, I took security measures and 
defendant knew the info was confidential

Defendant:
Unlike in the present 
case, in Bryce defendant 
had agreed not to 
disclose and the 
products were identical

Defendant:
I should win because as in 
Robinson, which was won 
by defendant, plaintiff 
made disclosures during 
the negotiations

Defendant:
Unlike Bryce, in the 
present case the 
info is reverse 
engineerable

Plaintiff:
Unlike in Robinson, I took 
security measures, and 
defendant knew the info was 
confidential

K.D. Ashley. Modeling Legal Argument: 
Reasoning with Cases and Hypotheticals.
MIT Press, Cambridge, MA, 1990.



(snapshot of)
CATO Factor 

Hierarchy

F101: Info Trade Secret (p)

F102: Efforts to maintain 
secrecy (p)

F104: Info valuable (p)

F4: Agreed not to 
disclose (p)

F1: Disclosures
in negotiations (d)

F6: Security
measures (p)

F15: Unique 
product (p)

Misuse of Trade 
Secret (p)

F120: Info legitimately
obtained elsewhere (d)

Vincent Aleven 1991-1997



F101: Info Trade Secret (p)

F102: Efforts to maintain 
secrecy (p)
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F1: Disclosures
in negotiations (d)

F6: Security
measures (p)

F15: Unique 
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Misuse of Trade 
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V. Aleven. Using background knowledge in case-based legal reasoning: 
a computational model and an intelligent learning environment. 
Artificial Intelligence 150:183-237, 2003. Distinguishing on

missing pro factor
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Later developments
n Combining rules and cases

n Cabaret (Rissland & Skalak 1989-1991)
n IBP (Ashley & Brüninghaus 2003-2009)

n Underlying values 
n many since Berman & Hafner 1993, Bench-Capon 2000

n Theory construction
n Bench-Capon & Sartor 2001, Bench-Capon & 
    Chorley 2003-2006

n Precedential constraint
n Horty 2011-, …

Trevor Bench-Capon



Precedential constraint

n When is a decision in a new case ‘forced’ by a 
case base?
n If the case base contains a precedent for that decision 

that cannot be distinguished:
n All differences make the new case even stronger for the new 

decision

J. Horty, Rules and reasons in the theory of precedent. Legal Theory 17 (2011): 1-33.
…
H. Prakken, A formal analysis of  some factor- and dimension-based accounts of precedential constraint. 
Artificial Intelligence and Law  29 (2021): 559-585.
…  

John Horty



Result model with factors

n For two fact situations F and G and sides s,-s:
n G £s F iff Gs Í Fs and F-s Í G-s 

n F is at least as good for s as G iff:
n F has at least all pro s factors that G has, and
n F has at most all con s factors that G has

n Con s = pro -s

the factors in G 
favouring s 
(the pro s factors)



Result model with factors

n Deciding fact situation F for s is forced iff there 
exists a precedent (G,s) such that G £s F
n Such that F is at least as good for s as G

n Deciding F for s is allowed iff deciding F for -s is 
not forced.



n Case 1 – won by plaintiff {p1, p3,d1, d3} £p FS1?
n Deceive-plaintiff (p1)
n Security measures (p3)
n No-unique-product (d1)
n Secrets-disclosed-outsiders (d3)

n Case 2 – won by defendant {p2,d1, d3} £d FS1?
n Bribe-Employee (p2)
n No-unique-product (d1)
n Secrets-disclosed-outsiders (d3)

n FS 1 – {p2, p3,d2, d3}
n Bribe-Employee (p2)
n Security measures (p3)
n Info-Reverse-Engineerable (d2)
n Secrets-disclosed-outsiders (d3)

X £s Y iff Xs Í Ys and Y-s Í X-s 
Deciding F for s is forced iff there exists a 

precedent (X,Y,s) such that X U Y £s F 



n Case 1 – won by plaintiff {p1, p3,d1, d3} £p FS1? No
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n Security measures (p3)
n Info-Reverse-Engineerable (d2)
n Secrets-disclosed-outsiders (d3)

X £s Y iff Xs Í Ys and Y-s Í X-s 
Deciding F for s is forced iff there exists a 

precedent (X,Y,s) such that X U Y £s F 
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Example dimensions in HYPO

n Number of outsider disclosees (0,1,….)

plaintiff defendant

0  1  2  3  4          5, …....



Example dimensions in HYPO
n Security measures (minimal measures, 

acces to premises controlled, entry by 
visitors restricted, entry by employees 
restricted)  

defendant plaintiff

minimal <  access controlled <  entry visitors restr  < entry employees restr   



Result model with dimensions
n For any two fact situations F and G

given a set of dimensions:
n G £s F iff F is for every dimension at least 

good for s as G. 
n Deciding fact situation F for s is forced 

iff there exists a precedent with fact 
situation G and decided for s such that 
G £s F 



n Case 1 – won by plaintiff
n d1: Deceive-plaintiff = yes
n d2: Bribe-Employee = no
n d3: Security measures = Entry-By-Visitors-Restricted
n d4: Unique-product = no
n d5: Info-Reverse-Engineerable = no
n d6: Secrets-disclosed-outsiders = 20

n Case 2 –
n d1: Deceive-plaintiff = no
n d2: Bribe-Employee = yes
n d3: Security measures = Minimal
n d4: Unique-product = no
n d5: Info-Reverse-Engineerable = yes
n d6: Secrets-disclosed-outsiders = 0

Is Case 2 forced for plaintiff?

Example (result model for 
dimensions)

d1: Deceive-plaintiff = {no <p yes}
d2: Bribe-Employee = {no <p yes}
d3: Security-Measures = {Minimal-Measures <p 
      Access-To-Premises-Controlled <p 
      Entry-By-Visitors-Restricted <p 
      Restrictions-On-Entry-By-Employees}
d4: Unique-product = {yes <d no}
d5: Info-Reverse-Engineerable = {no <d yes}
d6: Secret-disclosed-outsiders = {0 <d 1 <d 2 <d …}



n Case 1 – won by plaintiff
n d1: Deceive-plaintiff = yes
n d2: Bribe-Employee = no
n d3: Security measures = Entry-By-Visitors-Restricted
n d4: Unique-product = no
n d5: Info-Reverse-Engineerable = no
n d6: Secrets-disclosed-outsiders = 20

n Case 2 –
n d1: Deceive-plaintiff = no
n d2: Bribe-Employee = yes
n d3: Security measures = Minimal
n d4: Unique-product = no
n d5: Info-Reverse-Engineerable = yes
n d6: Secrets-disclosed-outsiders = 0

Is Case 2 forced for plaintiff? No.

Example (result model for 
dimensions)

d1: Deceive-plaintiff = {no <p yes}
d2: Bribe-Employee = {no <p yes}
d3: Security-Measures = {Minimal-Measures <p 
      Access-To-Premises-Controlled <p 
      Entry-By-Visitors-Restricted <p 
      Restrictions-On-Entry-By-Employees}
d4: Unique-product = {yes <d no}
d5: Info-Reverse-Engineerable = {no <d yes}
d6: Secret-disclosed-outsiders = {0 <d 1 <d 2 <d …}



‘Explaining’ ML predictions 
with CBR

n Regard training data as cases/precedents
n Direction of factors/dimensions can be learned 

from the BB
n Use AI & law model of CBR for explaining a 

prediction of the BB model
n If a precedent forces the prediction, then show it 
n Otherwise explain away the relevant differences

n H. Prakken & R. Ratsma, A top-level model of case-based argumentation for explanation: formalisation and 
experiments. Argument and Computation 13 (2022): 159-194

n W. van Woerkom et al. A Fortiori case-based reasoning: from theory to data. JAIR 81 (2024): 401-441.
n J. Peters et al., Model- and data-agnostic justifications with a fortiori case-based argumentation.
     Proceedings of ICAIL 2025, pp. 102-111.

Rosa Ratsma



Example (churning)
n John will stay with us, since like Maria he recently 

visited our website. (citation)  
n But Maria also downloaded software from our site 

while John didn't (missing pro). Moreover, John did 
not reply to our last mailing (new con)

n But John downloaded a brochure, so like Maria he 
showed an interest in our products (substitution). 
Moreover, John contacted our help desk, so like 
Maria he remained in contact with us (cancellation)



Follow-up work on 
precedential constraint 

n Discovering dimension orderings in datasets
n Intermediate factors in result model of 

precedential constraint
n Assuming a CATO-style factor hierarchy
n Generalising it to dimensions

n Implementations with SAT solver

n W. van Woerkom et al. A Fortiori Case-Based Reasoning: From Theory to Data. JAIR 81 (2024): 401-441.
n W. van Woerkom et al., Hierarchical models of precedential constraint. Artificial Intelligence and Law, in press.

Wijnand van Woerkom



Hierarchical precedential 
constraint

n Apply precedential constraint to 
n decide on intermediate factors
n decide on the final outcome given 

intermediate factors
n With dimensions: allowed or forced ranges of 

values



F101: Info Trade Secret (p)
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Consistency of 
datasets

n A case base is inconsistent iff it forces 
opposite outcomes for the same fact situation

n Degree of consistency of a CB:
n The rate of pairs (F,s), (G,-s) for which F £s G

n Authoritativeness of a case (F,s): the 
proportion of cases (G,s) and (G’,-s) such 
that F £s G and F £s G’ 

Joeri Peters

n R. Ratsma (2020), Unboxing the Black Box using Case-based Argumentation. AI Msc thesis, Utrecht University
n J. Peters et al., Justifications derived from inconsistent case bases using authoritativeness. Proceedings of 

ArgXAI 2022.

n W. van Woerkom, Formal results on case-base consistency: a COMPAS case study. Proceedings of ICAIL 
2025, pp. 288-297.



Decision support for deciding 
on fitness to drive

n At Dutch Central Driving License Office
n “No machine learning”

n Not transparent or explainable
n “Is standard CBR useful?”

n Standard CBR:
n assumes ‘features’ without preferences for 

decisions
n applies numerical similarity measures
n suggests decision of precedent(s) with highest 

similarity to current case



Joep Nouwens: 
Msc project AI-UU

n Combine and compare with AI & law style 
CBR:
n Features with preferences for decisions

n Not all differences are relevant!
n Decision-making by precedential constraint

n Example dimensions
n Heart disease?
n Bipolar disorder?
n Eye sight
n Epiliptic attacks
n …



Experiment
n Case base: 15.843 cases, 123 dimensions

n 80% used as precedent 
n 20% used as test case

n Four decision rules:
n Standard CBR: predict decision with highest 

similarity
n Precedential constraint with if both allowed/forced: 

n predict ‘fit’
n predict ‘unfit’
n predict decision of case with highest similarity according 

to standard CBR



Experiments with accuracies
n Case base: 15.843 cases, 123 dimensions

n 80% used as precedent 
n 20% used as test case

n Four decision rules:
n Standard CBR: predict decision with highest 

similarity (92%)
n Precedential constraint with if both allowed/forced: 

n predict ‘fit’ (70%)
n predict ‘unfit’ (64%)
n predict decision of case with highest similarity according 

to standard CBR (91%)



The value of predictive 
experiments

n “High predictive accuracy is evidence of 
legal correctness of the model”
n Aleven, Ashley

n HP: only true if system and humans:
n apply the same knowledge
n reason with it in the same way



Conclusions
n There is interesting work on symbolic models 

of legal case-based reasoning
n With recent research applications in

n Explainable AI
n Analysing consistency of decision-making

n Initial work on letting LLMs 
n provide the inputs of symbolic models
n generate case-based arguments 
n (Ashley & students since 2023)


