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Agenda

 What is federated learning?
e Strengths & open challenges
 Weakness & Threat

* Opportunity

% Maastricht University | Department of Advanced Computing Sciences



From centralized to decentralized data
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Federated learning

“We advocate an alternative that leaves the training data
distributed on the mobile devices, and learns a shared model by
aggregating locally-computed updates. We term this decentralized
approach Federated Learning.”

McMahan et al., Communication-Efficient Learning of Deep Networks from Decentralized
Data, 2016.
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Federated learning

“Federated learning is a machine learning setting where multiple
entities (clients) collaborate in solving a machine learning problem,
under the coordination of a central server or service provider. Each
client’s raw data is stored locally and not exchanged or transferred;
instead focused updates intended for immediate aggregation are
used to achieve the learning objective.”

Kairouz et al., Advances and open problems in federated learning, 2019.
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Federated learning

“collaborative learning without exchanging users’ original data”

Li et al., A survey on federated learning systems: vision, hype and reality for data privacy
and protection, 2019.
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FL — area under development
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Gboard: next-word prediction

Federated RNN (compared to prior n-gram model):
Better next-word prediction accuracy: +24%
More useful prediction strip: +10% more clicks
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= MIT Technology Review Subscribe https://medcitynews.com/2020/05/upenn-intel-partner-to-use-federated-learning-
ai-for-early-brain-tumor-detection/

ARTIFICIAL INTELLIGENCE ARTIFICIAL INTELLIGENCE, DIAGNOSTICS

How Apple personalizes Siri without hoovering up your UPenn: Intel partner to use federated

data learning Al for early brain tumor

The tech giant is using privacy-preserving machine leaming to improve its voice assistant while detectlon
keeping your data on your phone.

The project will bring in 29 institutions from North America,
Europe and India and will use privacy-preserved data to train Al
By Karen Hao models. Federated learning has been described as being born
December 11,2019 at the intersection of Al, blockchain, edge computing and the

Internet of Things.
-

Medical Institutions Collaborate to

Improve Mammogram Assessment
Al with NVIDIA Clara Federated
Learning

In a federated learning collaboration, the American College of Radiology,
Diagnosticos da America, Partners HealthCare, Ohio State University and
Stanford Medicine developed better predictive models to assess breast tissue

density.
https://www.technologyreview.com/2019/12/11/131629/apple-ai- https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-
personalizes-siri-federated-learning/ assessment/
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Scenario 1 — horizontal FL
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How does it work?
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How does it work?
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How does it work?
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How does it work?
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How does it work?
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How does it work?
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Scenario 2 — vertical FL
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Vertical federated learning
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Yang, et al., Federated Machine Learning: Concept and Applications
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Scenario 3 - hybrid FL POLISH AIRLINES

SiXT

kb
.0..
rent a car

Hertz WKLIWVI

——enE.
BRITISH AIRWAYS -

% Maastricht University | Department of Advanced Computing Sciences



Taxonomy of Federated Learning

Federated learning systems

Data Machine Privacy Communication Scale of Motivation for
partitioning learning model mechanisms architecture federation federation
- horizontal - linear models - differential - centralized - cross-silo - incentive
- vertical - neural networks privacy - decentralized - cross-device - regulation
- hybrid ottt - cryptographic
methods

Li et al., A survey on federated learning systems: vision, hype and reality for data privacy and protection,

arXiv preprint arXiv:1907.09693, 2019.
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HFL: research

((‘ ‘)) expensive communication
- massive, slow networks

privacy concerns
- user privacy constraints

QQ statistical heterogeneity
- unbalanced, non-IID data

systems heter ogene/ty
- variable hardware, connectivity, etc
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Not all parties collect same data

Federated learning with uncertainty on the example of a medical

b . . . . . data K Dyczkowski, B Pekala, J Szkota, A Wilbik
" Maastricht University | Department of Advanced Computing Sciences 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)



Federated clustering
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On a Framework for Federated Cluster Analysis

Department of Advanced Computing Sciences M. Stallmann, A. Wilbik, Applied Sciences, in press



HFL: opportunities

* Going beyond empirical risk minimization formulations: tree-
based methods, online learning, Bayesian learning...

* RL, unsupervised and semi-supervised, active learning

* Support ML workflows like hyperparameter searches

* Data alignment

* Make trained models smaller

* Fairness
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VFL: research & opportunities
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Communication efficiency
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Communication-Efficient Vertical Federated Learning
A Khan, M ten Thij, A Wilbik, Algorithms 15 (8), 273



But...
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what about Lmpact?
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Gartner’s hype cycle

AVISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger TIME
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How to pass the trough of disillusionment?
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ACTUAL SYSTEM PROVEN IN OPERATIONAL ENVIRONMENT

TRL

SYSTEM COMPLETE AND QUALIFIED

SYSTEM PROTOTYPE DEMONSTRATION IN OPERATIONAL
ENVIRONMENT
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Technology push vs. requirements pull

Requirements
pull

% Maastricht University | Department of Advanced Computing Sciences



Requirement pull = outcome thinking?

“People don t want to buy a quarter-inch drill. They want a quarter inch
hole.” - Theodore Levitt (Harvard University), 1983

% Maastricht University | Department of Advanced Computing Sciences



Outcome thinking

AV

People don't want a drill. Or a hole. Think deeper
to win customers and keep them happy.

. il 2 e e e

Maastricht University | Department of Advanced Computing Sciences

36



Outcome thinking
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lOutcome-Based Business Design in [oT-Enabled
Digital Supply Chain Transformation

Paul Grefen
School of Industrial Engineering
Eindhoven University of Technology and
Atos Digital Transformation Consulting
Eindhoven, Netherlands
p-w.p.j.grefen@tue.nl, paul.grefen@atos.net

Frank Kuitems
Atos Digital Transformation Consulting
Eindhoven, Netherlands
frank kuitems@atos.net

Abstract—In the current economy, we see a shift of focus
from delivering products or services to delivering value or
outcomes to customers, reflected in the concept of the outcome
economy. The concept has been embraced by research and
practice but lacks proper operationalization to make it fit for
the digital transformation of supply chains. In this paper, we
translate the concept into a cybernetic model and accompanying

Anna Wilbik
Deptartment of Data Science
and Knowledge Engineering

Maastricht University
Maastricht, Netherlands
a.wilbik@maastrichtuniversity.nl

Menno Blanken
Atos Digital Transformation Consulting
Eindhoven, Netherlands
menno.blanken@atos.net

recent years [1-5]. Examples of this shift from selling products
to selling outcomes can be found in many domains. An
illustrative example is in the aircraft engine industry, where
business models are explored where actual performance of
engines 1s sold instead of the physical product [3]. In the
transport and logistics domain, business models are explored
where the effects of data analytics services on transport

Department of Advanced Computing Sciences



Single-step business control model
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Multi-step business outcome control model
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Smart connected vessels, extended conceptual view
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Mapping to IT
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Conclusion and outlook
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