

Personalising and Scaling Mental Health Care and Mental Health Research by Digital Means

Prof. Dr. Harald Baumeister

Keynote Presentation
ICT4AWE
Angers, France, April 24th 2024

Ulm University –

Faculty of Engineering, Computer Science and Psychology

Faculty Research Priorities:

→ Cognitive Systems & Human-Technology

→ Smart Sensing Systems

Psychology Research Priorities:

→ Human & Health

→ Human Behavior in Social Context

Department of Clinical Psychology and Psychotherapy:

- → Digital Behavioral and Mental Health
- → Psychotherapy Process Research, Somato-Pschology, Health
 Services Research
- → Part of German Centres for Mental Health (DZP) and Child and Adolescent Health (DZKJ)

Digital Mental Health

Basic Research

- Etiology ad Pathology
- Nosology and Classification
- Epidemiology

Diagnostics, Intervention, Health Services Reserach

Diagnostics

- Patient Reported Outcome/Experience (PROM/PREM)
- Screening of Mental Disorders
- Psycho-Social State/Traits
- RDoC / HiTOP

Interventions

- Mental Burden and Disorders
- Behavioral Medicine
- Prevention and Health Promotion
- Comptence and Skill Training
- Complex Interventions

Digital Phenotyping / EMA / Smart Sensing

Server-based PROM/PREM
Computer-adaptive Testing (CAT)
Clinical Decision Support Systems
(CDSS)

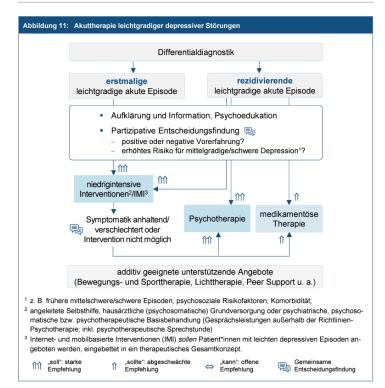
Internet- und mobile-based (IMI)
Blended Care
Virtual Reality
Al-based Innovations
Videoconference-based Therapy

Digital (Self-Help) Health Interventions

- Acceptable, efficacious and effective for a multitude of mental disorders and somatic diseases as well as in the context of prevention and health promotion
- Opens new ways of health promotion and mental health treatments
- Additional health care access for difficult to reach populations and those who refrain from on-site treatment for various reasons
- Scalable approach

German S3-Guideline Depression – Digital Interventions –

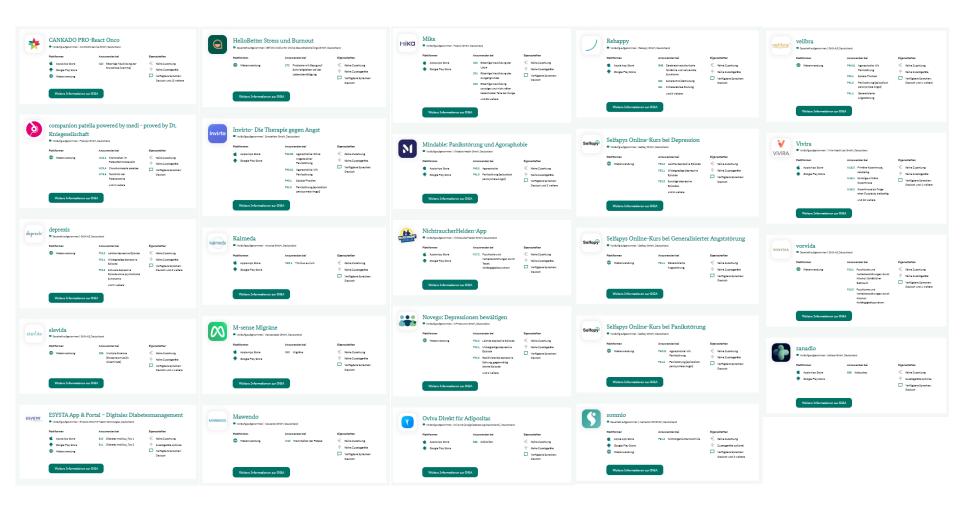
Mild Depression:


First Level Recommendation next to Psychotherapy and to be prefered over Psychopharmacotherapy

Moderate-Severe

In addition to on-site psychotherapy and/or psychopharmacotherapy

NVL Unipolare Depression Kurzfassung – Version 3.2



https://diga.bfarm.de/de/verzeichnis

BfArM DIGA Register

(N=63, 35 permanent, 22 preliminary, 6 delisted; April. 2024)

Complex Intervention Example: Blended Outpatient Psychotherapy

PSYCHOnlineTHERAPY

as blended therapy approach for outpatient psychotherapy

Funded by Innovationsausschuss (GBA)

→ https://www.psychonlinetherapie.de

eSano Online-Intervention:

PSYCHOnlineTHERAPY
Examined for Depression and Anxiety
Realised for ICD-10 F1-F6

Social Media:

Facebook/Instagram
@psychonlinetherapie

Twitter @psychONtherapie

Intervention Examples: Children and Adolescents

iChimps

Cognitive-behavior therapy (CBT) and depth psychology therapy based intervention for CaA of parents with mental disorders

ProTransition

CBT-based intervention to support health-care system transition of youth with mental disorders

youthCOACH_{CD}: CBT-based intervention for adolescents with somatic diseases and depression / anxiety



Intervention Examples: Somatic Diseases

ACTonDiabetes:

Acceptance and Commitment Therapy (ACT)-based intervention for people with diabetes mellitus

ACTonPain ACT-based intervention for people with chronic pain

ACTonCancer

ACT-based intervention for people with cancer

E-Health Plattform – "eSano"

eSano-Platform

web-/browser-based data-bank (*MySQL*) web-interface (*PHP*, *Laravel*)

Content Management System

Development of interventions (Vue.js)

E-Coach Platform

Patient administration and eCoaching (*Angular.*js)

Patient Platform

Responsive design intervention platform (Web., Android, iOS) based on cross-platform-app (*lonic*)

Mobile Sensing

Machine Learning

Security & Privacy

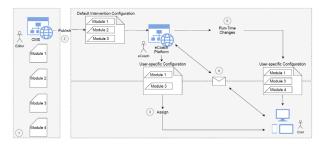
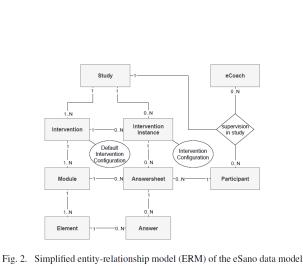



Fig. 3. Guidance process in eSano that spans the different subsystems

MDR conform development Holfelder et al., 2021

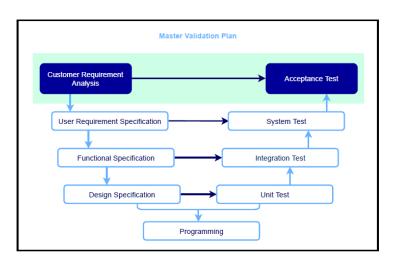


Figure 1. Waterfall (V-model) software development process model.

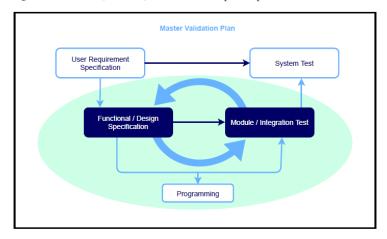
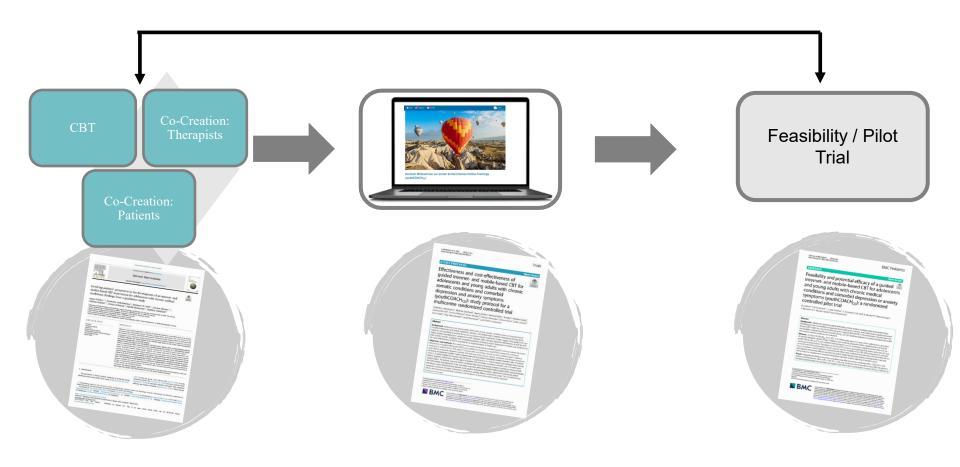
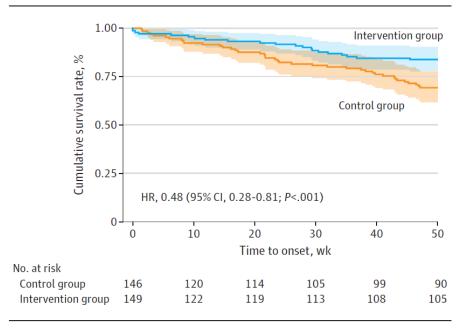



Figure 2. Process model of agile software development.

Intervention development: YouthCOACH_{CD}



GEFÖRDERT VOM

PROD - Prevention in People with Chronic Back Pain and Subthreshold Depression

Figure 2. Kaplan-Meier Survival Curve of Time to Onset of Major Depressive Disorder

Shading indicates 95% Cl.

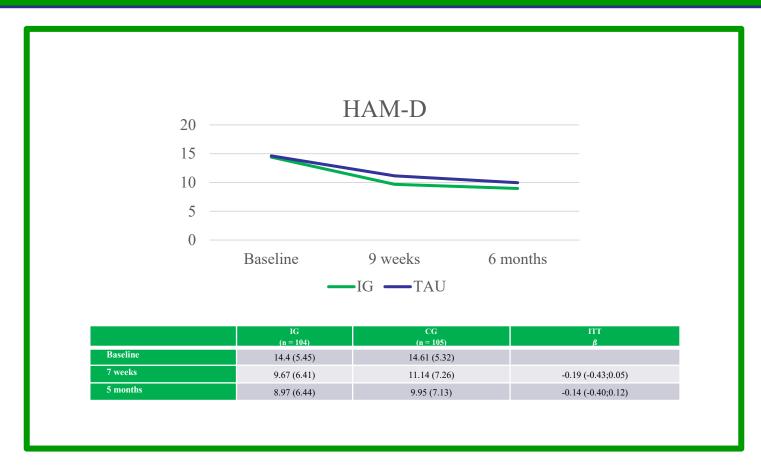
Incidence (12 months):

TAU = 28.1%

TAU plus IMI = 14.1%

Hazard Ratio (N=295):

0.48 (95%CI 0.28 - 0.81)


NNT: 2.84 (95%CI 1.79-9.44)

DEG Deutsche Forschungsgemeinschaft

GEFÖRDERT VOM

WARD-BP - Treatment in People with Chronic Back Pain and Depression



GEFÖRDERT VOM

Psychotherapy Waiting Time Depression Intervention

YouthCoach_{CD} – Digital Intervention for Adolescents with somatic diseases and depression / anxiety

Personalising and Scaling

Moderators & Mediators
AI-Innovations
Implementation

Differential Indication: predictors, moderators, active components, mechanisms of change

For whom does it work when and why best?

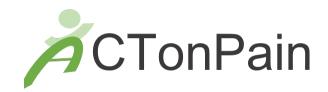

Moderators of digital interventions in subthreshold depression – results of an IPD-MA

Table 4. Results from separate multilevel regression analyses on the effects of putative moderators on differential change in depression severity from baseline to posttreatment assessment

Baseline variable	Interaction	Interaction: baseline variable \times treatment condition										
	estimate	SE	t value	<i>p</i> (< t)	τ^2_0	τ^2_1						
Age	-0.066	0.033	-2.002	0.045	2.812	1.972	<- Older Age					
Gender	-0.799	0.784	-1.02	0.308	2.568	1.998	3					
Relationship	-0.549	0.707	-0.776	0.438	2.506	2.281						
Employment	0.105	0.903	0.116	0.908	2.612	2.256						
Previous psychotherapy	0.816	0.960	0.849	0.396	2.671	2.365						
Depression medication	0.594	0.090	0.600	0.548	2.671	2.312						
Comorbidities	-0.816	0.846	-0.965	0.335	2.825	1.904						
Chronic medical conditions	-0.306	1.392	-0.22	0.826	2.639	2.197						
Comorbid anxiety	-0.950	0.905	-1.049	0.295	2.996	2.086						
Initial symptom severity	-0.182	0.069	-2.641	0.008	2.197	1.391	<- Baseline Severity					
Format	-1.797	0.944	-1.905	0.057	2.655	0.786						
Number of sessions	-0.001	0.256	-0.007	0.994	2.580	2.443						
Education	-0.566	0.605	-0.936	0.350	2.597	2.621						

All analyses were controlled for initial depressive symptom severity. SE, standard error; τ^2_0 , intercept variance; τ^2_1 , slope variance; gender (0 = male, 1 = female, 2 = other); relationship (0 = single/divorced/separated/widowed, 1 = married/in a relationship); employment (0 = no, 1 = yes); previous psychotherapy (0 = no, 1 = yes); depression medication (0 = no, 1 = yes), comorbidities (0 = no, 1 = yes), chronic medical conditions (0 = no, 1 = yes), comorbid anxiety (0 = no, 1 = yes), format (0 = unguided, 1 = guided); education (0 = no = 0-5 years, 1 = low = 6-9 years, 2 = middle = 10-12 years, 3 = high = 13-17 years, 4 = very high = 18+ years).

Psychological (in-)flexibility moderats effectiveness

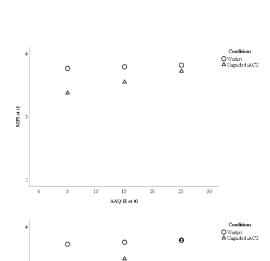
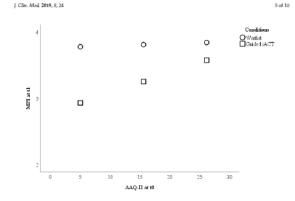



Figure 2. Visualizations of the results testing baseline psychological inflexibility as a moderator of the treatment outcome pain interference between waithist and unguided Internet-based ACT. The outcome ("-axis) is disapled for three different levels (sample mean ± 1 standard deviation) of psychological inflexibility (X-axis). Note: AAQ-II = Acceptance and Action Questionnaire; iACT = Internet-based Acceptance and Commitment Therapy; MPI = Pain interference scale of the Multidimensional Pain Inventor; 0E = Dasseline t1 = 9 weeks after randomization; 12 = 6 months after randomization.

AAO-II at t0

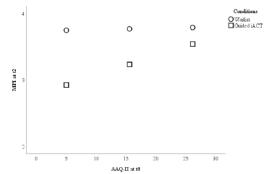


Figure 1. Visualizations of the results testing baseline psychological inflexibility as a moderator of the treatment outcome pain interference between waitlist and guided Internet-based ACT. The outcome ("-axis) is displayed for three different levels (sample mean ± 1 standard deviation) of psychological inflexibility (X-axis). Note: AAQ-II = Acoeptance and Action Questionnaire; iACT = Internet-based Acceptance and Commitment Therapy; MPI = Pain interference scale of the Multidimensional Pain Inventory; 0 = baseline; t1 = 9-weeks after randomization; t2 = 6-months after randomization.

Article

Baseline Psychological Inflexibility Moderates the Outcome Pain Interference in a Randomized Controlled Trial on Internet-based Acceptance and Commitment Therapy for Chronic Pain

Thomas Probst 1,80, Harald Baumeister 2, Lance M. McCracken 3,4 and Jiaxi Lin 5

- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Ulm, 89069 Ulm, Germany; harald.baumeister@uni-ulm.de
- ³ Psychology Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London WC2R 2LS, UK; lance.mccracken@kcl.ac.uk
- INPUT Pain Management Guy's and St Thomas' NHS Foundation Trust London, London SE17EH, UK
 Department of Sports and Sport Science, University of Freiburg, 79098 Freiburg, Germany;
- jiaxi.lin@sport.uni-freiburg.de

 * Correspondence: thomas.probst@donau-uni.ac.at; Tel.: +43-(0)2732-893-2679

Received: 5 December 2018; Accepted: 23 December 2018; Published: 25 December 2018

Abstact: This study re-investigated data of a randomized controlled trial on Interme-based Acceptance and Commitment Therapy for chronic pain (ACTonPain). Baseline psychological inflexibility was examined as a moderator of the outcome pain interference. In the ACTonPain trial, participants with chronic pain were randomized to one of three conditions: guided Interme-based ACT (m=101), and waitist (m=101). Moderation analyses were performed with the SPSS macro PROCESS. Pain interference according to the Multidimensional Pain Inventory (MPI) was the primary outcome in this trial, and the potential moderator psychological inflexibility was measured with the Acceptance and Action Questionnaire (AAQ-II). Psychological inflexibility was measured with the Acceptance and Action Questionnaire (AAQ-II). Psychological inflexibility as a measured with the Acceptance and Action Questionnaire (AAQ-II). Psychological inflexibility at baseline moderated the outcome between guided Intermet-based ACT and waitifist. Psychological inflexibility moderated the outcome 6-months after randomization (p<0.005). Intermet paint of ACT was superior to waitlist for participants with less psychological inflexibility at baseline, but Internet-based ACT was superior to waitlist for participants with less psychological inflexibility at baseline, but Internet-based ACT became increasingly comparable to waitlist at higher AAQ-II baseline values. Future nesearch should investigate whether the results can be replicated in more individualized and tailored face-to-face settings.

Keywords: acceptance and commitment therapy; psychological inflexibility; chronic pain

1. Introduction

Chronic pain (CP) is a disorder with a pooled prevalence rate of 31% [1] and it is constantly one of the top causes of years lived with disability [2]. Numerous psychological variables appear to contribute to the process of how pain leads to disability, including self-efficacy, emotional distress, and foar [3]. Psychological therapies have been shown to be effective to improve anxiety, depression, catastrophic thinking, disability, and sometimes also pain [4].

A psychotherapy increasingly gaining interest in the treatment of $\mathbb{C}P$ is Acceptance and A minument Therapy (ACT), a contextual form of Cognitive and Behavioral Therapy (CBT). In ACT, psychological flexibility and its opposite psychological inflexibility are central concepts [5]. The six

J. Clin. Med. 2019, 8, 24; doi:10.3390/jcm8010024

www.mdpi.com/journal/jcm

Active Component: Guidance Digital Depression Intervention Metaanalyse

83 studies, 88 articles, 15.530 participants, 95% adult trials (Ø 41 years), 70% female, mild-moderate depression at average (Ø 12.9 PHQ-9), 27% trial on MDD, 74% iCBT-based, guided in 52%, tech-guided in 28% of cases, Ø 7 modules, 90% on web-based interventions

Guidance:

•	Unguided	g = .34 (.24; .45)
•	Unguided	g = .34 (.24; .45)

• Tech-Guided
$$g = .46 (.29; .62)$$

• Human Guided
$$g = .63 (.50; .76)$$

Not associated with

- Communication way (synchronous, asynchronous)
- Qualification level (high, low) and
- Duration (Ø 81 Minuten) of human guidance

Active Component: Delivery Method / Device

Depression:1

•	Web-based	g = .53 95%CI (.43; .62)
---	-----------	--------------------------

• Mobile-based
$$g = .39 95\%CI (-.27; 1.06)$$

Mobile-based across Conditions:²

• Depression
$$g = .33 (.10; .57)$$

• Anxiety
$$g = .30 (-.10; .7)$$

App-based adjunctive to interventions:³

• Depression
$$g = .17 (.02; .33)$$

• Anxiety
$$g = .80 (.06; 1.54)$$

• Bipolar Disorders
$$g = .20 (.02; .38)$$

• Eating Disorders
$$g = -.02 (-.44; .4)$$

MHAD (http://mhad.science) App Quality Rating Data Base

	N	Functionality	Aesthetics	Engagement	Content	Subjective	Perceived Impact
Mindfulness	192	4,18	3,79	3,45	3,24		
Borderline	17	3,74	2,99	2,86	3,34		
Depression	38	3,12	3,01	2,89	2,98		
Gastrointestinal	109	4,08	3,19	2,47	1,89	2,16	2,33
Insomnia	55	4,01	3,24	3,06	3,51		
Child and Adolescent	15	3,81	3,78	3,34	2,34	3,13	2,80
Oncology	78	4,21	3,41	2,92	2,67		
PTSD	69	3,82	3,36	3,03	3,22	2,54	2,59
Back Pain	20	3,90	3,40	3,10	3,30		
Pain	218	3,66	3,11	2,81	2,93	2,19	2,06
Older Adults	83	3,99	3,60	3,25	2,02		
Sexuality	6	3,71	3,58	3,25	3,60	2,52	3,15
Physical Activity	312	4,35	3,65	3,19	3,23	2,34	2,32
Average	1212	3,89	3,39	3,05	2,94	2,48	2,54

Paganini et al. JMIR mHealth and uHealth 2023; Simon et al. J Sleep Research 2023; Messner et al. JMIR 2022; Steubl et al. BPD & Emot Dysr 2022; Gerner et al. JMIR mHealth and uHealth 2022; Geirhos et al. Scientific Report 2022; Muehlmann et al. Z Sex Forsch 2022; Domhardt et al. CaA Psychiatry Mental Health 2021; Schultchen et al. Int J Behav Med 2021; Mack et al. IJERPH, 2021; Sander et al. Front Digital Health 2021; Paganini et al. JMIR mHealth and uHealth, 2021; Terhorst et al. Int Intervent 2021; Portenhauser et al. JMIR Aging 2021; Sander et al. Europ J Psychotraum 2021; Terhorst et al. Verhaltenstherapie 2018

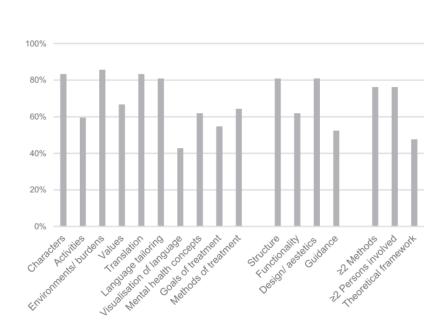
Active Components in Digital Anxiety Interventions -

Metaanalyse (Domhardt et al., Depression & Anxiety 2019)

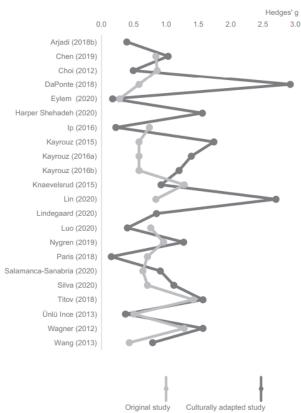
		CBT		Other	г арргоа	ach		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Andersson et al. (2012b)	15.09	6.99	23	15.88	8.87	26	27.3%	-0.10 [-0.66, 0.46]	
Carlbring et al. (2003)	15.2	13.1	11	11	7.6	11	12.0%	0.38 [-0.47, 1.22]	- •
Dagöö et al. (2014)	14.79	10.97	27	20.02	11.56	25	28.3%	-0.46 [-1.01, 0.09]	
Furmark et al. (2009)	10.9	7.86	29	11.66	7.79	29	32.4%	-0.10 [-0.61, 0.42]	
Total (95% CI)			90			91	100.0%	-0.14 [-0.43, 0.15]	•
Heterogeneity: Tau ^z = 0.00	; Chi ² = 2	2.76, df :	= 3 (P =	0.43);1	l²= 0%				
Test for overall effect: $Z = 0$	•	-							-2 -1 U 1 Favors CBT Favors other approach

Fig. 1: CBT vs. Other Approaches

	Trans	Transdiagnostic Disorder-specific			cific		Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Dear et al. (2015)	6.07	4.03	151	6.25	3.99	140	46.3%	-0.04 [-0.27, 0.19]	-
Dear et al. (2016)	6.36	3.2	100	6.18	3.17	106	32.8%	0.06 [-0.22, 0.33]	
Fogliati et al. (2016)	7.23	5.79	64	7.36	5.94	68	21.0%	-0.02 [-0.36, 0.32]	-
Total (95% CI)			315			314	100.0%	-0.01 [-0.16, 0.15]	+
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.32$, $df = 2$ ($P = 0.85$); $I^2 = 0\%$! :	-2 -1 0 1 2	
Test for overall effect:	Z = 0.09 ((P = 0.9)	13)						Transdiagnostic Disorder-specific


Fig. 2: Transdiagnostic vs. Disorder Specific

Active Component – Network-MA iCBT Depression


	Depression severity (iMD of PHQ-9 scores), median (95% Crl)
Age	0·19 (-0·09 to 0·47)
Baseline depression, PHQ-9 scores	2-59 (2-32 to 2-85)
Gender*	-0-03 (-0-28 to 0-18)
Relationship†	-0·12 (-0·33 to 0·12)
Waiting component	0-42 (-0-75 to 1-53)
Non-specific treatment effects	-1-41 (-2-52 to -0-30)
Psychoeducation about depression	0-02 (-0-86 to 0-93)
Cognitive restructuring	0-30 (-0-87 to 1-41)
Behavioural activation	-1-83 (-2-90 to -0-80)
Interpersonal skills training	-0-54 (-1-59 to 0-52)
Problem solving	-0-64 (-1-41 to 0-09)
Relaxation	1-20 (0-17 to 2-27)
Third-wave components	-0-53 (-1-55 to 0-49)
Behaviour therapy for insomnia	-1-82 (-3-92 to 0-26)
Relapse prevention	0-35 (-0-69 to 1-32)
Homework required	0-31 (-0-69 to 1-35)
Initial face-to-face contact	0-85 (-1-80 to 3-41)
Automated encouragement to proceed with iCBT	-0-26 (-1-13 to 0-60)
Human encouragement to proceed with iCBT	-0-29 (-1-17 to 0-58)
Therapeutic guidance for iCBT	0-01 (-0-88 to 0-89)

- <- unspecific effect
- <- behavior change
- <- relaxation

Active Component: Cultural Adaptation in Mental Health – Systematic Review

Fig. 2 Taxonomy of cultural adaption of internet- and mobile-based interventions (IMI). Percentages of the 42 included IMI that fulfilled the respective content, methodological, and procedural components of the taxonomy.

Fig. 3 Effect sizes (Hedges' *g***) of the culturally adapted versus original internet- and mobile-based interventions.** Twenty-two included articles provided relevant information on the effect of their intervention. If more than one primary outcome was reported, the effect size of the Patient Health Questionnaire¹⁰² is illustrated. Both single group studies and randomised controlled trials are included. Full information on the respective effect sizes can be found in Table 4.

Active Component: Cultural Adaptation in Health Promotion – Meta-Analysis

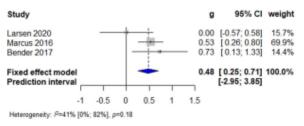


Fig. 6 Fixed effects meta-analysis of culturally adapted IMI for physical activity vs. active control conditions. Forest plot presenting fixed effects meta-analysis of culturally adapted IMI for physical activity vs. active controls.

- 13 trials included: DI adapted vs. Not adapted
- Significant benefit regarding physical activity (g = 0.48;
 KI: 0.26;0.71)
- Non-significant regarding all other health promotion domains

=> Superiority of cultural adapted interventions in question

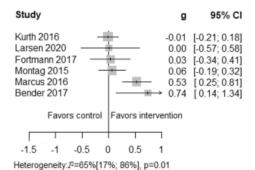


Fig. 3 Summary of culturally adapted IMI of health promotion vs. active controls in the long-term. Due to substantial heterogeneity among the culturally adapted IMI of health promotion vs. active controls in long-term meta-analytical pooling did not perform.

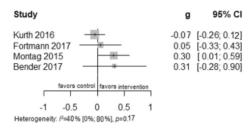


Fig. 4 Summary of culturally adapted IMI of health promotion vs. active controls in the short-term. A summary plot of effect sizes of four studies of culturally adapted IMI of health promotion vs. active controls in short-term are presented.

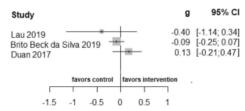


Fig. 5 Summary of culturally adapted IMI of health promotion vs. passive controls. Due to few numbers of studies (two studies reported data in the long-term, two in the short-term, while one study reported dichotomous outcome) comparing culturally adapted IMI to a passive control group, meta-analytic pooling did not perform.

Active Component: Persuasive Design

Effectiveness of Smartphone Apps for Depression / Anxiety related to Persuasiveness

Fig. 3 Random effects meta-analysis in RCTs of app efficacy comparing change in anxiety or depression symptoms in apps vs. control. Forest plot of random effects meta-analysis in RCTs of app efficacy comparing change in anxiety or depression symptoms in apps vs. control.

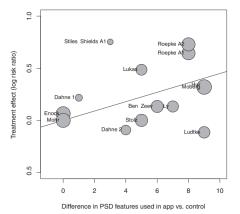


Fig. 4 Mixed effects meta-regression analysis of difference in PSD features and efficacy for app vs control. Bubble plot of mixed effects meta-regression analysis of difference in PSD features and efficacy for app vs control.

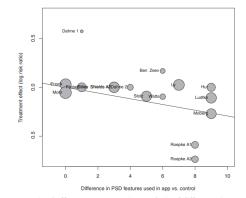


Fig. 5 Mixed effects meta-regression analysis of difference in PSD features and study completion rate for app vs control. Bubble plot of mixed effects meta-regression analysis of difference in PSD features and study completion rate for app vs control.

Feature	App with feature	% apps with feature
Reduction	26	86.7%
Tunneling	11	36.7%
Tailoring	12	40.0%
Personalization	16	53.3%
Self-monitoring	21	70.0%
Simulation	1	3.3%
Rehearsal	12	40.0%
Total primary task support features across all apps	99	
Praise	7	23.3%
Rewards	7	23.3%
Reminders	15	50.0%
Suggestion	16	53.3%
Similarity	5	16.7%
Liking	6	20.0%
Social role	2	6.7%
Total dialogue support features across all apps	58	
Social learning	3	10.0%
Social comparison	2	6.7%
Normative influence	1	3.3%
Social facilitation	5	16.7%
Cooperation	0	0%
Competition	0	0%
Recognition	0	0%
Total social support features across all apps	11	
Trustworthiness	7	23.3%
Expertise	7	23.3%
Surface credibility	10	33.3%
Real-world feel	1	3.3%
Authority	2	6.7%
Third party endorsements	0	0%
Verifiability	0	0%
Total credibility support features across all apps	27	

Persuasive Design

PD optimised procrastination intervention (5 CBT-modules): Non-inferiority trial comparing tech-guided vs. human guided (N=233)

Primary Task Support	Program personalisation options
Social Support	Self-Monitoring, Peer-Buddy-System
System Credibility Support	Optimized UX-design regarding data-safety, team, expert
Dialogue Support	Social role, individualized answers, reinforcment

Non-Inferiority:

t1: Cohen's d = 0.04 (95%CI -0.22; 0.30)

t2: Cohen's d = -0.03 (95%CI -0.29; 0.23)

t3: Cohen's d = 0.08 (95%CI -0.18; 0.34)

Mechanisms of Change in Digital Anxiety Interventions Meta-analytical two-stage structural equation model

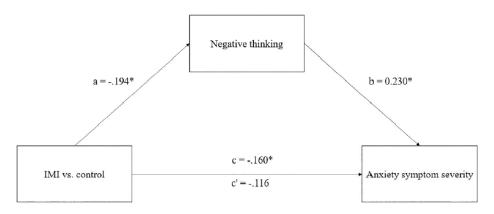


Fig. 2. Path diagram displaying the stage two mediational model of the TSSEM for negative thinking. Values are path coefficients. *Parameter estimates are significantly different from zero (i.e., 95%-CIs do not contain zero).

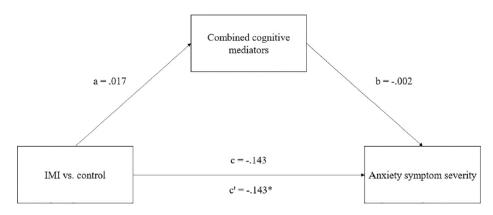
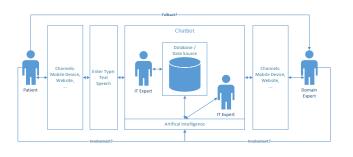



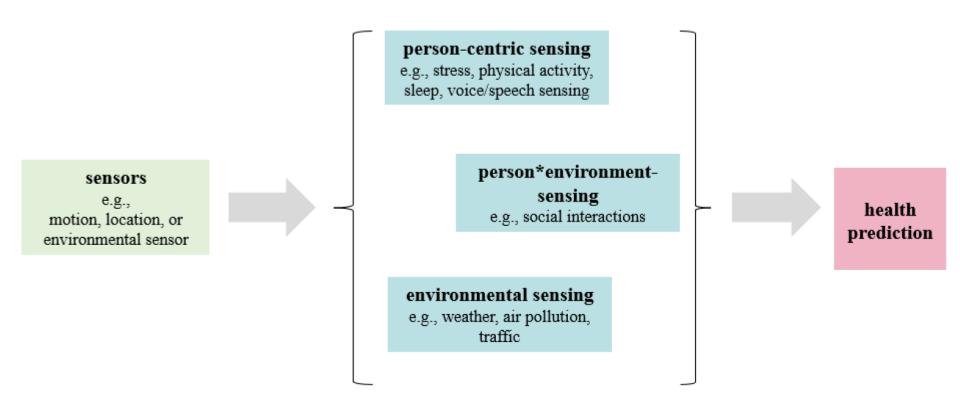
Fig. 3. Path diagram displaying the stage two mediational model of the TSSEM for combined cognitive mediators in clinical samples. Values are path coefficients. *Parameter estimates are significantly different from zero (i.e., 95%-CIs do not contain zero).

AI, Precision Mental Health, Personalised Psychotherapy


Interspeech 2018 2-6 September 2018, Hyderabad

The INTERSPEECH 2018 Computational Paralinguistics Challenge: Atypical & Self-Assessed Affect, Crying & Heart Beats

Björn W. Schuller^{1,2,3}, Stefan Steidl⁴, Anton Batliner^{2,4}, Peter B. Marschik^{5,6,7}, Harald Baumeister⁸, Fengquan Dong⁶, Simone Hantke^{2,10}, Florian B. Pokorny^{5,10}, Eva-Maria Rathner⁸, Katrin D. Bartl-Pokorny⁵, Christa Einspieler⁵, Dajie Zhang^{5,6}, Alice Baird², Shahin Amiriparian^{2,10}, Kun Oian^{2,10}, Zhao Ren². Maximilian Schmitt², Panagiotis Tzirakis¹, Stefanos Zafeirioui, ¹¹



From Sensors to Prediction of Health

Figure 2. From sensors to prediction of health.

Garatva et al. In Montag & Baumeister Springer, 2023

Digital Phenotyping and Mobile Sensing

Proof-of-Concept Studies

• Depression:

Variability of visited location (β -.21), total sleep time (β .24), time in bed (β .26)¹

Total smartphone usage time (-.019), call duration $(-.016)^2$

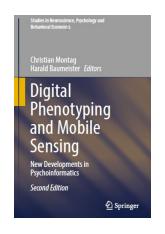
Higher use of word categories: I, we, negate, anxiety and eating³

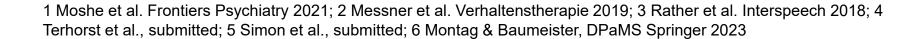
EMA and sensing features best regression model (R2 = 45.15%)⁴

• Anxiety:

Wake after sleep onset (β .23), HRV (β .26)²

Insomnia


Smartphone usage AUC .57 / .58 (ML Prediction: Random Forest / Naive Bayes)⁵

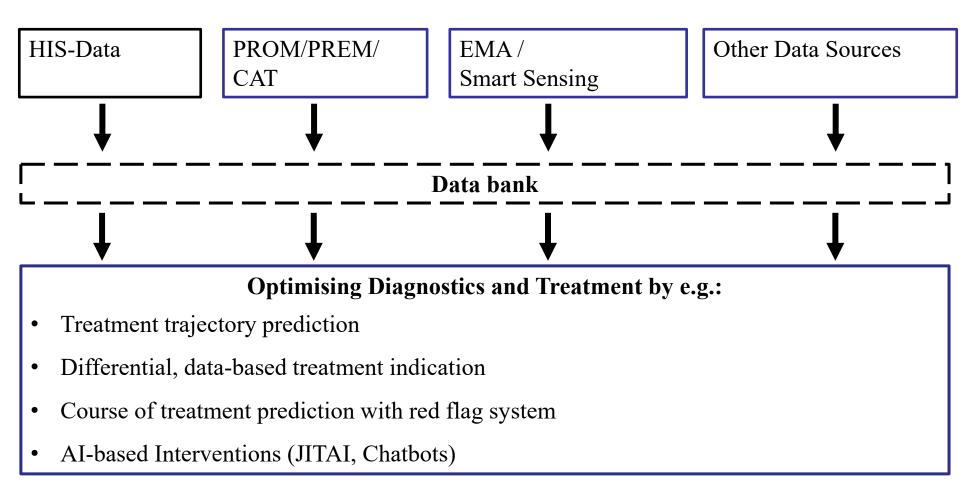




AWARE-Smart Sensing

Routine Outcome Monitoring (ROM) Systems

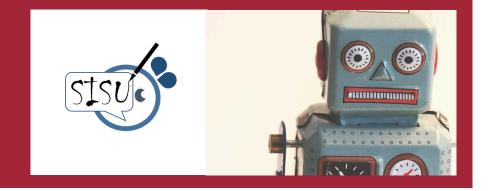
- RehaCAT and SysDok
- Computer-adaptive PROM/PREM testing systems
- Real-world setting implemented ("real-world laboraty" approach with > 10.000 patients / year
- => Secondary analysis of clinical routine data



Herzlich Willkommen bei RehaCAT!

Towards AI-based Clinical Decision Support System (CDSS)

Machine learning optimized use of Depression Screening

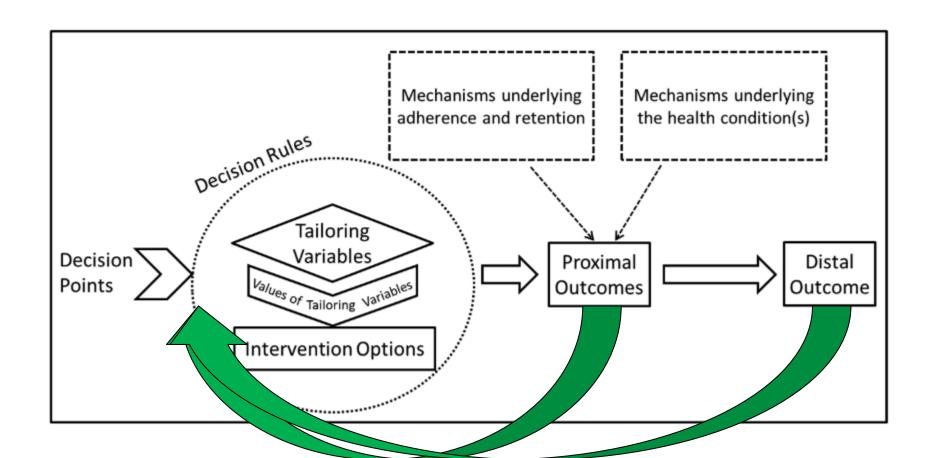

- Secondary analysis of RCT with patients with back pain and depression
- 1.030 SCID diagnosis; Screenings: QIDS-16, PHQ-9, HAM-D-17

	AUC of ROC for the best ML	AUC of ROC for sum-score	ΔΑUC	95%-CI of the difference	p <u>ª</u>
QIDS-16—basic ^b	0.935	0.900	0.035	0.02 to 0.05	<0.001
QIDS-16—extended ^c	0.937	0.900	0.036	0.02 to 0.06	<0.001
HAM-D-17	0.876	0.873	0.003	-0.02 to 0.03	0.847
PHQ-9	0.832	0.818	0.014	0.00 to 0.02	0.009

- a Two-sided bootstrap test for ROC curves within in the testing set, indicating the probability of whether the true difference in AUC is different from 0.
- b Logistic regression model containing only the QIDS-16 items as features.
- c Logistic regression model containing QIDS-16 items, the extended feature set (e.g. mean of items), age, and gender.

Next Generation Interventions

SISU Chatbot: Chatbot to facilitat mental health well-being



Better Care JITAI: ACTONCANCER augmented by Just-in-time-intervention components using EMA and smart sensing

Just-in-time Intervention

Chatbots - Evidence

Figure 4. Forest plot of the 4 studies assessing the effect of using chatbots on the severity of depression.

	(Chatbot	Control				Std. Mean Difference		Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
Fitzpatrick 2017	11.14	3.95	31	13.67	4.05	25	35.5%	-0.62 [-1.16, -0.08]	-		
Pinto 2013	6.5	4.23	12	8.53	3.3	16	17.8%	-0.53 [-1.29, 0.23]			
Fulmer 2018	6.13	5.1183	26	8.77	5.1183	25	33.2%	-0.51 [-1.07, 0.05]	-		
Burton 2016	13.9	8.1	12	17.6	6.8	9	13.4%	-0.47 [-1.35, 0.41]			
Total (95% CI)			81			75	100.0%	-0.55 [-0.87, -0.23]	•		
Heterogeneity: Tau ² = Test for overall effect:	-4 -2 0 2 4 favors chatbots favors control										

Figure 5. Forest plot of the 2 studies assessing the effect of using chatbots on the severity of anxiety.

	Chatbots			Information			Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
Fitzpatrick 2017	17.35	3.34	31	16.84	3.35	25	55.4%	0.51 [-1.25, 2.27]	*		
Fulmer 2018	6.13	5.9016	26	9.85	5.9016	25	44.6%	-3.72 [-6.96, -0.48]	-		
Total (95% CI)			57			50	100.0%	-1.38 [-5.50, 2.74]	•		
Heterogeneity: Tau ² = Test for overall effect:				(P = 0.0	02); I² = 8	0%		-	-20 -10 0 10 20 favors chatbot favors information		

Abd-Alrazaq et al. JMIR 2020

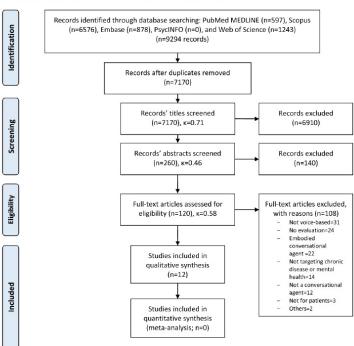

Speech-based Chatbots

Table 1. Overview and characteristics of included records.

Reference, publication year	Study aim	Type of study participants	Addressed medical condition	Voice-enabled device type	Intervention category
Amith et al (2019) [59]	Development and acceptance evaluation	d acceptance Healthy adults with at least Cancers associated one child under the age of 18 with HPV ^a years (n=16)		Tablet	Support
Amith et al (2020) [60]	Development and acceptance evaluation	Healthy young adults aged between 18 and 26 years with HPV (n=24)		Tablet	Support
Boyd and Wilson (2018) [61]	Criterion-based performance evaluation of commercial conver- sational agent	of commercial conver-		Smartphone	Support
Cheng et al (2019) [62]	Development and acceptance evaluation	Older adults (n=10)	Diabetes (type 2)	Smart speaker	Monitoring and support
Galescu et al (2009) [63]	Development and performance evaluation			Not specified	Monitoring
Greuter and Balandin (2019) [64]	Development and performance evaluation	Adults with lifelong intellectual disability (n=9)	Intellectual disability	Smart speaker	Support
Ireland et al (2016) [65]	Development and acceptance evaluation	acceptance Adults recruited on campus Parkinson disease, de- mentia, and autism		Smartphone	Monitoring
Kadariya et al (2019) [66]	Development and acceptance evaluation	Clinicians and researchers (n=16)	Asthma	Smartphone	Monitoring and support
Lobo et al (2017) [67]	Development and acceptance evaluation	Healthy adults working regu- larly with senior patients (n=11)	Heart failure	Smartphone	Monitoring and support
Ooster et al (2019) [68]	Development and performance evaluation	Normal hearing (n=6)	Hearing impairment	Smart speaker	Monitoring
Rehman et al (2020) [69]	Development and performance and acceptance evaluation	Adults affiliated with the university (n=33)	Diabetes (type 1, type 2, gestational) and glaucoma	Smartphone	Monitoring and support
Reis et al (2018) [70]	Criterion-based performance evaluation of a commercial con- versational agent	Not specified (n=Not specified)	Depression	Not specified	Support

^aHPV: human papillomavirus.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of included studies.

Bérubé et al. JMIR 2021

Dissemination and Implementation

DISSEMINATION

Imagine there are effective digital
interventions and nobody knows about
them

ACCEPTANCE - UPTAKE - ADHERENCE

Imagine there are effective

interventions and nobody cares to

use them

Blended Therapy: PSYCHOnlineTHERAPY

PSYCHOnlineTHERAPY

as blended therapy approach for outpatient psychotherapy

Funded by Innovationsausschuss (GBA)

→ https://www.psychonlinetherapie.de

eSano Online-Intervention:

PSYCHOnlineTHERAPY
Examined for Depression and Anxiety
Realised for ICD-10 F1-F6

Social Media:

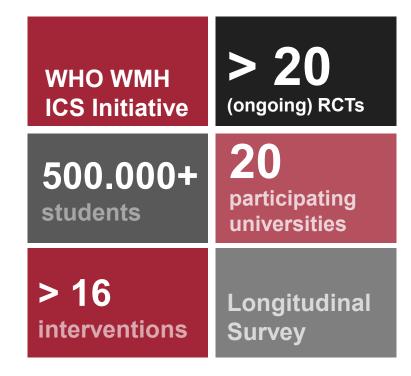
Facebook/Instagram @psychonlinetherapie

Twitter @psychONtherapie

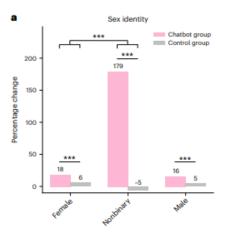
Example Stand-Alone: StudiCare

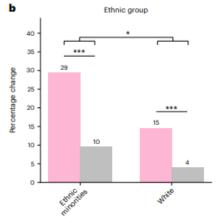
"StudiCare" as part of WHO-WMH-International College Student Initiative

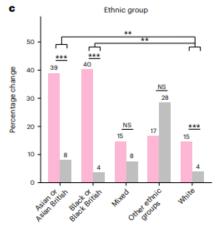
In Germany a collaborative project of UULM and TUM



→ https://www.studicare.com


StudiCare as Landingpage and "virtual health care centre"





Reaching those we usually do not reach? Habicht et al. Nature Medicine 2024

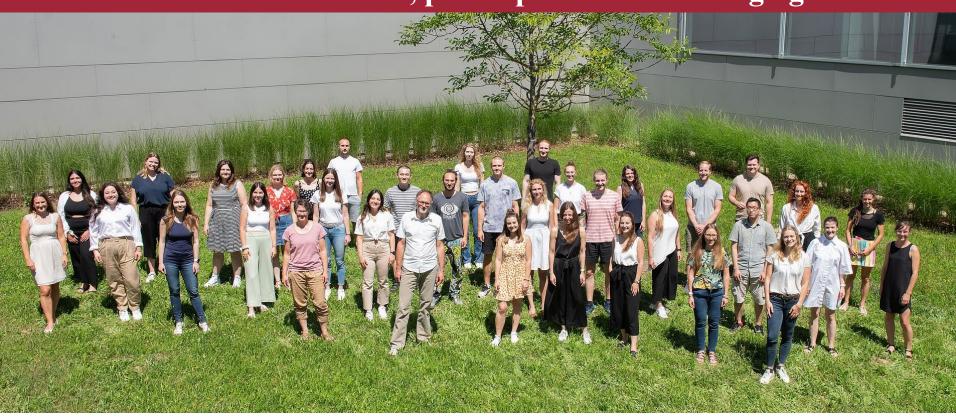
- Naturalistic, retrospective study with N = 129.400 NHS patients asking for talking therapy
- 15% referal increase with implemented chatbot compared to 6% in matched controls
- Increase most pronouced in minorities (nonbinary, ethnic minorities)
- Note: Exploratory study yet to be confirmed

IMPROVA: EU-project on mental health promotion in the school setting

ABOUT THE PROJECT WHO'S INVOLVED NEWS CONTAC

German Centre for Mental Health Child and Adolescent Health

- Digital Mental Health Infrastructure
- armonising assessments and data management
- Repository on EMA, Smart Sensing, digital diagnostics and interventions
- Information, diagnostics and intervention platform for children and adolescents with obesity
- => Overcoming the translation gap from bench to patient care


Personalising and Scaling Up Digital Mental Health Care and Research

- 1. Moderator-Mediator Research: Illuminating the Black Box of Psycho-Social Health Interventions
- 2. AI-based Personalisation (Smart Sensing / JITAI / Chatbot / CDSS)
- 3. Scaling Up Research: "Real-Word Laboratory" Approach

Many thanks for your Attention

...and thanks to my team!

...and to all collaborators, participants and funding agencies!

