

Breathing Life into Models: The Next Generation of Enterprise Modeling

Peter Fettke Saarland University and German Research Center for Artificial Intelligence (DFKI), Germany

Keynote, ICSOFT 2022 Lisbon, Portugal, July 12, 2022

Breathing Life into Models: The Next Generation of Enterprise Modeling

Peter Fettke Saarland University and German Research Center for Artificial Intelligence (DFKI), Germany

Keynote, ICSOFT 2022 Lisbon, Portugal, July 12, 2022 Wolfgang Reisig Humboldt-Universität zu Berlin, Germany

Agenda

1. Preliminary Remarks

Future of Enterprise Modeling
 Conclusions

Enterprise modeling in 1993: Hasso Plattner and Klaus Besier pose with the SAP ERP Reference Model (as a marketing instrument)

Enterprise modeling in 1993: Hasso Plattner and Klaus Besier pose with the SAP ERP Reference Model (as a marketing instrument)

Historical sidenote

_

- 1990 first Honorary Doctorship from Saarland University
- 1994 first Honorary Professorship for business
 - informatics from Saarland University
- 1997 Honorary Senator of Saarland University

Picture of the ceremony President of Saarland University (Günther Hönn) and Plattner in 1997

Enterprise modeling today

mile wide and inch deep

Future of enterprise modeling: width vs. depth

UNIVERSITÄT

DES

Agenda

- 1. Preliminary Remarks
- 2. Future of Enterprise Modeling
- 3. Implications and Conclusions

What is the most fundamental concept of enterprise modeling?

2005

2013

2020

St. Peter's Square, Vatican City

Most basic understanding of change

The calculus allows to study change

"The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics, and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking." John von Neumann (1947)

But: Is the calculus adequate to study change of enterprise systems?

continuous change

continuum of objects (uncountable

set) in total order*

Typical example

- set of real numbers
- typical total order on real numbers

* Let M be a set and < a binary relation on M. < is a partial order, iff < is irreflexive and transitive. < is a total order, iff < is a partial order and for all a, b element of M the following assumption holds: a < b or b < a or a = b.

continuous change	versus	discrete change
continuum of objects (uncountable		discrete set of objects (countable or even
set) in total order*		finite) in partial order*
Typical example		Implications
 set of real numbers 		 a total order is "just" a particular case
 typical total order on real numbers 		of a partial order
		 total order empirically discovered or

intentionally designed

* Let M be a set and < a binary relation on M. < is a partial order, iff < is irreflexive and transitive. < is a total order, iff < is a partial order and for all a, b element of M the following assumption holds: a < b or b < a or a = b.

continuum of **time** is typically assumed

But what is time in enterprise systems?

891

3. Zur Elektrodynamik bewegter Körper; von A. Einstein.

Daß die Elektrodynamik Maxwells - wie dieselbe gegenwärtig aufgefaßt zu werden pflegt - in ihrer Anwendung auf bewegte Körper zu Asymmetrien führt, welche den Phänomenen nicht anzuhaften scheinen, ist bekannt. Man denke z. B. an die elektrodynamische Wechselwirkung zwischen einem Magneten und einem Leiter. Das beobachtbare Phänomen hängt hier nur ab von der Relativbewegung von Leiter und Magnet, während nach der üblichen Auffassung die beiden Fälle, daß der eine oder der andere dieser Körper der bewegte sei, streng voneinander zu trennen sind. Bewegt sich nämlich der Magnet und ruht der Leiter, so entsteht in der Umgebung des Magneten ein elektrisches Feld von gewissem Energiewerte, welches an den Orten, wo sich Teile des Leiters befinden, einen Strom erzeugt. Ruht aber der Magnet und bewegt sich der Leiter, so entsteht in der Umgebung des Magneten kein elektrisches Feld, dagegen im Leiter eine elektromotorische Kraft, welcher an sich keine Energie entspricht, die aber - Gleichheit der Relativbewegung bei den beiden ins Auge gefaßten Fällen vorausgesetzt - zu elektrischen Strömen von derselben Größe und demselben Verlaufe Veranlassung gibt, wie im ersten Falle die elektrischen Kräfte.

Beispiele ähnlicher Art, sowie die mißlungenen Versuche, eine Bewegung der Erde relativ zum "Lichtmedium" zu konstatieren, führen zu der Vermutung, daß dem Begriffe der absoluten Ruhe nicht nur in der Mechanik, sondern auch in der Elektrodynamik keine Eigenschaften der Erscheinungen entsprechen, sondern daß vielmehr für alle Koordinatensysteme, für welche die mechanischen Gleichungen gelten, auch die gleichen elektrodynamischen und optischen Gesetze gelten, wie dies für die Größen erster Ordnung bereits erwiesen ist. Wir wollen diese Vermutung (deren Inhalt im folgenden "Prinzip der Relativität" genannt werden wird) zur Voraussetzung erheben und außerdem die mit ihm nur scheinbar unverträgliche

"We have to consider that all our judgments in which time plays a role are always judgments about simultaneous events. If, for example, I say: 'That train arrives here at 7 o'clock', this means something like: '**The pointing of the small hand of my watch** to 7 and the arrival of the train are *simultaneous events*.'"

Einstein, 1905, p. 893, original in German, translation with deepL

Maybe, events ("change") in enterprise systems are only partially ordered by a cause-effect-relation

Maybe, events ("change") in enterprise systems are only partially ordered by a cause-effect-relation

Maybe, events ("change") in enterprise systems are only partially ordered by a cause-effect-relation

digital stamp with *matrix code*

digital stamp with *matrix code*


```
sets
letters = {a, b, c}
stamps = {l, m, n, o}
matrix codes = {1, 2, 3}
```

functions

f: letters \rightarrow stamps f(a) = m, f(b) = n, f(c) = o

g: stamps \rightarrow matrix codes g(m) = 1, g(n) = 2, g(o) = 3

signature Σ

digital stamp with *matrix code*

set symbols letters stamps matrix codes

function symbols f: letters → stamps g: stamps → matrix codes

properties

- f is injective

- g is injective and partial

variables x: letters

structure S

sets		
letters = {a, b, c}		
stamps = {I, m, n, o}		
matrix codes = {1, 2, 3}		

functions

f: letters \rightarrow stamps f(a) = m, f(b) = n, f(c) = o

g: stamps \rightarrow matrix codes g(m) = 1, g(n) = 2, g(o) = 3

Architecture: composition matters

Architecture: composition matters

Completing the example: stamp with matrix code

g: stamps \rightarrow matrix codes g(m) = 1, g(n) = 2, g(o) = 3

Completing the example: stamp with matrix code

UNIVERSITÄT DES SAARLANDES

A comprehensive conceptual model of a computer-integrated system

- (1) is structured
- (2) includes data and real-life items

(3) is locally updated.

dynamics

statics

architecture

composition matters!

objects matter!

causality matters!

Modeling in computer science is about changing the perspective:

- classical theoretical computer science and software engineering start with computers,
- *modeling* starts with the considered system and the problem.

Restaurant (architecture)

Restaurant (statics)

signature

P: subsets of M,

Q: subsets of D,

called orders

called *meals*

set symbols	function symbols	variables
C: clients	$f: D \longrightarrow M$	c: C
T: tables	$g: Q \longrightarrow P$	t: T
M: order items	-	X: P
(called menu)	properties	y: D
D: meal items	for $\mathbf{A} \subseteq \mathbf{D}$:	Y: Q
	g(A) = {f(a) ∣ a ∈ A}	
derived symbols		

structure

sets

C: all persons with an id card T: {t1, t2, t3, t4} M: {<u>rice</u>, <u>meat</u>, <u>salad</u>} D: {rice, rice, meat, salad}

derived symbols P: {{rice, meat}, {rice, salad}} Q: {{rice, meat}, {rice, salad}}

functions f: D \rightarrow M f(rice) = <u>rice</u> f(meat) = <u>meat</u>

 $f(salad) = \underline{salad}$ $g: P \rightarrow Q$ $g(\{\underline{rice}, \underline{meat}\}) = \{\underline{rice}, \underline{meat}\}$ $g(\{\underline{rice}, \underline{salad}\}) = \{\underline{rice}, \underline{salad}\}$

schema

instantiation

Restaurant (dynamics)

instantiation, a run

Restaurant (dynamics)

Retailer (architecture)

six composed modules

Retailer (dynamics)

Retailer (statics)

UNIVERSITÄT DES SAARLANDES

ground sortsKNcustomersARarticlesWAgoodsTEdatesSPfreight forwarders	function symbols f: WA \rightarrow AR f: WM \rightarrow AM (_'): AP \rightarrow AM (_'): AL \rightarrow AM	structure
<pre>derived sorts AP = AR × N items AL = M(AP) article lists AM = M(AR) sets of articles MM = M(WA) sets of goods MM = M(WA) sets of goods constant symbols P1, p2: AP ordered article positions B: P(KN) ordering customers G: AL initially listed articles H: WM initially available goods C: P(SP) available freight forwarders</pre>	variables k: KN x: AR X,Y: AL Z: WM t: TE w: WA s: SP m, n, p: \mathbb{N} properties (a,n)' = n[a] for (a,n) \in AP [p1,, pn]' = p1' + + pn' for [p1,, pn] \in AL	ground sorts KN = {Ute, Max} customers AR = {"shoes", "hat", "pants"} articles WA = {shoes, hat, pants} goods TE = {12/23, 12/24} dates SP = {Maier, Müller, Schulz} freight forwarders
	G' = f(H) schema	instantiation

Т.

Agenda

Preliminary Remarks
 Future of Enterprise Modeling
 Implications and Conclusions

Two faces of computer science and Dijskra's firewall

Summing up: What is next generation enterprise modeling all about?

classical computer	yes, but	adjusted	such as	technically
science modules and composition: merge "equal" interface elements	yes, however not <i>one</i> interface	but two!	a b b d e	composition calculus
statics (data, items): symbolic representation	yes, however not with symbol <i>chains</i> ("strings")	but with terms over a signatu	\$ f(x, g(a,y)) re!	predicate logic, algebraic specification
dynamics: steps	yes, however, not global states and steps	but local ones		Petri nets
classical computer sciencejump in the right directionbut fall short	THE M architecture stat	ODEL ics dynamics	Don't hesitate Join the HE research pro developmen	RAKLIT.org gram and t project

Thanks for your attention! Questions?

Contact

Professor Dr. Peter Fettke Universität des Saarlandes und Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) Campus D 3 2 66123 Saarbrücken, Germany peter.fettke@dfki.de Telefon: +49 681 85775-5142, Fax: -3696

