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Big Data Principles
● Massive amounts of heterogeneous data

● Relational Data (Tables/Transactions/Legacy Data)

● Text Data (Web)

● Semi-structured Data (XML)

● Graph Data (Social Networks, Semantic Web)

● Large-scale data (distributed repositories, clouds)

● Scalability issues: running on very-large, growing 
data sets

● Elastic metaphors – Cloud Computing paradigms

● Database As A Service (DaaS)

● Easy and Interpretable Analytics

● Privacy-Preserving and Secure Data Management  



A Big Data IoT Framework 
Reference Architecture



● Performance

● Support for heterogeneous data formats and types

● Transparency vs autonomy

● Data security, privacy and confidentiality

● Analytics support

● Communication protocols

● […]

Main Issues in Big Data IoT 
Frameworks



 Among these research challenges, performance of big 
data management plays a critical role

 Indeed, it is easy to understand how the complexity of 
big data management tasks heavily influence all the 
other activities

 One solution to this relevant problem is represented 
by so-called big data compression paradigms

 Basically, the idea behind big data compression 
initiatives consists in reducing the size of (big) data as 
to gain into querying and management efficiency

Big Data Compression/1



 Big data compression methods:

 Lossless approaches

 Statistical approaches

 Error-metrics approaches

 Many solutions in classical contexts (e.g., OLAP data 
cube compression)

 Real-life implementation (e.g., MS SQL Server 
platform)

 Effective and practical systems 

Big Data Compression/2



 Big Data Compression as a Paradigm for Big Data 
Understanding

 Accuracy-Aware Big Data Compression Techniques

 Feature Correlation Analysis for Enhanced Big Data 
Compression

 Indexing Data Structures for Compressed Big Data

 Query Optimization Issues

 Scalability Issues

 Cloud-based Big Data Compression

 Secure and Privacy-Preserving Big Data Compression

 Compressed Big Data Visualization Tools

Big Data Compression Main 
Challenges



A Special Case: Compressing Data 
Cube in Big Data IoT Frameworks

Data cubes arise in several data 
layers of the reference framework:
• in the proper data storage layer;
• in the extended analytical layer.

Hence, compressing data cubes can
provide a relevant reduction in the
overall data processing flow
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Problem Statement/1

◼ OLAP: performing fast aggregations on huge 
amounts of data to support decision making 
processes.

Product Year SaleZone

multidimensional 
representation

Year

Product

Zone

data cubeDimensions Measure
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Problem Statement/2

◼ A range query over a data cube is defined as 
the application of a SQL aggregation operator 
(such as SUM, COUNT, AVG etc) on the subset 
of data which belong to a given range.
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Problem Statement/3

◼ Example: total amount of sales of the product 
P3 between 1999 and 2000 in zones East and 
West.
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Approximate Query Answering
◼ Approximate query answering (AQA) is a 

widely investigated issue in OLAP research.

◼ Fast approximate answers generally suffice to 
support decision making processes as decimal 
precision is not needed in OLAP.

◼ Some traditional approaches:
◼ Histograms (Poosala, Ioannidis, Haas, Shekita);

◼ Wavelets (Vitter, Wang, Iyer); 

◼ Random Sampling (Gibbons, Matias).
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Synopsis Data Structures: Overview

A

Syn

◼ Requirements:

◼ size(Syn) << size(A);

◼ for each query Q, the approximate answer A(Q)

evaluated on Syn must be “very close” by the exact 

answer E(Q) evaluated on A, i.e. A(Q)  E(Q).

B
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Limitations of AQA Techniques in 
OLAP/1

◼ Conventional approximate OLAP query 
answering techniques suffer from two main 
limitations:

◼ Lack of Accuracy Control: they do not provide any 
mechanism for controlling accuracy of retrieved 
answers approximate answers;

◼ Scalability Issues: their quality in both representing 
the input data cube and evaluating OLAP queries 
over the compressed data cube decreases when 
data cubes grow in dimension number and size.
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Limitations of AQA Techniques in 
OLAP/2

◼ Across 10 years, we proposed a set of AQA 
techniques for OLAP data cubes aimed at 
overcoming previous limitations:

◼ -Syn, an analytical synopsis data structure that 
introduces a polynomial approximation technique 
for OLAP data cubes;

◼ KLSA (or accuracy-aware -Syn), which further 
extends the -Syn proposal in order to provide 
accuracy control over compressed OLAP data 
cubes.
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Analytical Interpretation of 
Multidimensional Data Cubes/1

◼ Our approach starts from an analytical 
interpretation of multidimensional data cubes: 
a data cube is treated as a collection of data rows, 
such that a representing discrete data distribution is 
associated to each row.

◼ Each data distribution is then approximated via the 
well-known Least Square Approximation (LSA) 
method and the resulting set of polynomial 
coefficients are stored instead of the original data, 
thus obtaining a synopsis data structure called -Syn. 

◼ Queries are issued on the compressed representation, 
thus reducing the number of disk accesses needed to 
evaluate the answers. 
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Analytical Interpretation of 
Multidimensional Data Cubes/2

◼ Without any loss of generality, we refer to data 
cubes stored according to the MOLAP data 
organization. 

◼ A MOLAP data cube A is a multidimensional 
array from which we can select the i-th row 
according to a certain access strategy A[i].

◼ In other words, from a logical point of view a 
MOLAP data cube is a set of rows.

◼ This realizes our analytical interpretation of 
multidimensional data cubes.
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Example: 2D Data Cube
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Data Distribution Approximation via 
LSA
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-Syn Building Steps

◼ INPUT A multidimensional data cube A, the 
available storage space B.

◼ OUTPUT -Syn.

◼ STEPS
1. Allocate the available storage space B.

2. For each row R belonging to A, extract the data 
distribution fR.

3. For each fR, build the approx function gR via 

applying the LSA method.
4. For each gR, store the approximating coefficients 

{cR}.
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The LSA Method
◼ Given a discrete function f with n samples, LSA 

finds the “best” polynomial function g

approximating f via minimizing the sum of the 
squares of distances between points of f and g.
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◼ g is defined as the linear combination of T basis 
functions k belonging to , such that  is the 
set of basis functions of the g functional space, 
and T coefficients as follows:
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Adapting the LSA Method to 
Approximate Query Answering

◼ T is also the polynomial degree of g.

◼ In the original LSA method, T is an input 

parameter and, intuitively enough, the greater 
is T the greater is the degree of accuracy (i.e., 
the “quality”) of g. In our algorithm, T
depends on the storage space B available 

for representing -Syn.

◼ It follows that a critical component of the -Syn
proposal is the allocation scheme, which is 
presented next.
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Improving the -Syn Technique

◼ In order to improve the quality of our
technique, for each row R of A, instead of

approximating fR directly, we build and

approximate the cumulative distribution of
fR, denoted by , and defined as follows:+
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Benefits due to    /1
+

Rf

◼ is an always-increasing function (b) and, as
a consequence, it can be approximated with a
polynomial function having a polynomial degree
smaller than the one needed to approximate a
skewed function (a):

+

Rf
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Benefits due to    /2

◼ Improved approximate query evaluation as a
lower number of disk accesses is needed.

◼ 2D Range-SUM Query:

◼ Exact answer:

◼ Approximate answer with fR:

◼ Approximate answer with :
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-Syn Building Steps – Revised

◼ INPUT A multidimensional data cube A, the 
available storage space B.

◼ OUTPUT -Syn.

◼ STEPS
1. Allocate the available storage space B. 

2. For each row R belonging to A, extract the data 
distribution fR.

3. For each fR build the approx function gR via 

applying the LSA method.

4. For each gR store the approximating coefficients 
{cR}.For each fR, build the cumulative distribution    .+
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Building -Syn/1
◼ A basic issue in our work is how to allocate the

storage space B available for housing -Syn.

◼ We propose a proportional storage space 
allocation scheme based on statistical 
properties of data distributions.

◼ Similarly to the other components of the 
technique, the allocation scheme is also 
oriented to rows.

◼ We basically use two parameters of row data 
distributions: the skewness and its standard 
deviation, and drive the space allocation 
accordingly.  
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Building -Syn/2
◼ Let R be a row of A and fR be its representing

function.
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◼ The skewness value 1(R) of fR is defined as 

follows:

where r(R) is the rth central moment of fR, which 

is defined as follows:
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Building -Syn/3
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◼ The standard deviation of the skewness (R)

can be computed as follows [Stuart&Ord98]:

◼ A well-known result of theoretical statistics
[Stuart&Ord98] claims that the skewness value
of a data distribution is “significant” if it is
greater than its standard deviation by a
factor of 2.6.

◼ In this condition, it can be assumed that data
are not distributed according to a normal
distribution, so that the distribution is skewed.
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Building -Syn/4
◼ We introduce the function (R) for detecting

whether the skewness value of a given row is
significant:
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Building -Syn/5
◼ We introduce the function m(R) that captures

the statistical properties of the distribution fR of
a given row R, as follows:

such that 2(R) is the variance of fR, which is

defined as follows:
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Building -Syn/6
◼ In conclusion, given a row R, the storage space
B(R) allocated to R as a portion of the whole
available storage space B is given by the

following formula:

◼ This also determines the number of coefficients
and basis functions T used to approximate fR.
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Building -Syn/7
◼ Therefore, for all rows of the input data cube A,

the proportional allocation scheme is described
by the following system:












































+

+
=





















+

+
=







−

=

−

=

−

=

−−−

−

−

=

−

=

BRB

B

kkkm

RRRm
RB

B

kkkm

RRRm
RB

ARN

k

k

ARN

k

ARN

k

ARNARNARN

ARN

ARN

k

ARN

k

1)(

0

1)(

0

1)(

0

1)(1)(1)(

1)(

1)(

0

1)(

0

000
0

)(

)()()(

)()()(
)(

...

)()()(

)()()(
)(











45
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-Syn Physical Representation

◼ -Syn physical representation consists, for each
R belonging to the input data cube A, of the set

of coefficients representing the approximating
function .

+

Rg
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How to Control the Accuracy of 
the Compression Process?

◼ We need a formal theoretical framework to 
model and handle accuracy. 

◼ In our proposal, theoretical foundations are 
provided by the LSA method.

◼ We achieve the definition of the so-called 
accuracy-aware LSA method, which allows 
us to control the degree of approximation of the 
overall compression process.
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The Accuracy-Aware
LSA Method/1

◼ Given a discrete data distribution f and a degree 
of accuracy , from the theoretical foundations 
of the LSA method, it follows that the constraint 
to be satisfied to obtain a T–degree 
approximating function g for f with degree of 

approximation equal to  is:

 −
2

gf

2
•where         is the norm operator modeling the

“distance” between f and g.
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The Accuracy-Aware
LSA Method/2

◼ The goal is to determine the value of the 
parameter T to be set as input for the 
execution of the LSA method generating g.

◼ In our research, we found that such value is the 
one for which the corresponding approximating 
function g satisfies the following constraint:

thus, we can control the process generating
g and, as a consequence, the overall

compression process of the input data cube.

( ) 222  −+ fgfg
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The Accuracy-Aware
LSA Method/3

*

T
◼ In order to determine T, we adopt a routine that, 

starting from an empirical parameter     , 
iteratively computes the corresponding 
approximating function g and checks the main 

constraint.

◼ If it is true, then the desired value of T is 

determined, otherwise we increment     and iterate 
the previous step.

◼ It is trivial to demonstrate that, for any input 
distribution f, an upper bound for the parameter  

exists.  

◼ This routine also gives us the allocation for the 
current row.

*

T

*
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-Syn Building Steps – Accuracy 
Control

◼ INPUT A MD data cube A, the degree of 

accuracy , the available storage space B.

◼ OUTPUT -Syn.

◼ STEPS
1. Allocate the available storage space B.

2. For each row R belonging to A, extract the data 
distributions fR.

3. For each fR, build the cumulative distribution   .
4. For each , build the approx function      via 

applying the accuracy-aware LSA method.
5. For each    , store the approximating coefficients 

{cR}.
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-Syn Optimizations/1

◼ To further improve the capabilities of -Syn
(i.e., achieving higher compression ratios), two 
optimizations are proposed.

◼ The first one consists in a partitioning 
strategy for data rows, i.e. we apply the 
accuracy-aware LSA method to parts of rows 
instead that to the entire rows.

◼ The second one consists in an 
approximation-driven similarity metrics
for the partitioned representation (provided by 
the first optimization).
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-Syn Optimizations/2

The second optimization consists in pruning all the k-row 

for which the LSA-based “distance” from other rows is 
less than 10 %.
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-Syn Query Model/1
◼ Let                            be a two-dimensional 

query on a two-dimensional data cube A. 

◼ Q is decomposed in the following set of queries, 
each one evaluated on -Syn:

◼ Then, the final approximate answer is obtained 
as:
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-Syn Query Model/2
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 We provided paradigms for improving the 
performance of big-data-based IoT frameworks

 Analysis and trade-offs have been discussed as well

 We focused on the top-quality solution represented 
by data cube compression paradigms

 Many other compressiong paradigms to explore and 
to adapt to IoT frameworks

Conclusions
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