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Big Data Principles
● Massive amounts of heterogeneous data

● Relational Data (Tables/Transactions/Legacy Data)

● Text Data (Web)

● Semi-structured Data (XML)

● Graph Data (Social Networks, Semantic Web)

● Large-scale data (distributed repositories, clouds)

● Scalability issues: running on very-large, growing 
data sets

● Elastic metaphors – Cloud Computing paradigms

● Database As A Service (DaaS)

● Easy and Interpretable Analytics

● Privacy-Preserving and Secure Data Management  



A Big Data IoT Framework 
Reference Architecture



● Performance

● Support for heterogeneous data formats and types

● Transparency vs autonomy

● Data security, privacy and confidentiality

● Analytics support

● Communication protocols

● […]

Main Issues in Big Data IoT 
Frameworks



 Among these research challenges, performance of big 
data management plays a critical role

 Indeed, it is easy to understand how the complexity of 
big data management tasks heavily influence all the 
other activities

 One solution to this relevant problem is represented 
by so-called big data compression paradigms

 Basically, the idea behind big data compression 
initiatives consists in reducing the size of (big) data as 
to gain into querying and management efficiency

Big Data Compression/1



 Big data compression methods:

 Lossless approaches

 Statistical approaches

 Error-metrics approaches

 Many solutions in classical contexts (e.g., OLAP data 
cube compression)

 Real-life implementation (e.g., MS SQL Server 
platform)

 Effective and practical systems 

Big Data Compression/2



 Big Data Compression as a Paradigm for Big Data 
Understanding

 Accuracy-Aware Big Data Compression Techniques

 Feature Correlation Analysis for Enhanced Big Data 
Compression

 Indexing Data Structures for Compressed Big Data

 Query Optimization Issues

 Scalability Issues

 Cloud-based Big Data Compression

 Secure and Privacy-Preserving Big Data Compression

 Compressed Big Data Visualization Tools

Big Data Compression Main 
Challenges



A Special Case: Compressing Data 
Cube in Big Data IoT Frameworks

Data cubes arise in several data 
layers of the reference framework:
• in the proper data storage layer;
• in the extended analytical layer.

Hence, compressing data cubes can
provide a relevant reduction in the
overall data processing flow



9

Outline

◼ Problem Statement

◼ Approximate Query Answering Techniques in 
OLAP

◼ Synopsis Data Structures: Overview

◼ Limitations of AQA

◼ The -Syn Approach



10

Outline

◼ Problem Statement

◼ Approximate Query Answering Techniques in 
OLAP

◼ Synopsis Data Structures: Overview

◼ Limitations of AQA

◼ The -Syn Approach



11

Problem Statement/1

◼ OLAP: performing fast aggregations on huge 
amounts of data to support decision making 
processes.

Product Year SaleZone

multidimensional 
representation

Year

Product

Zone

data cubeDimensions Measure
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Problem Statement/2

◼ A range query over a data cube is defined as 
the application of a SQL aggregation operator 
(such as SUM, COUNT, AVG etc) on the subset 
of data which belong to a given range.
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Problem Statement/3

◼ Example: total amount of sales of the product 
P3 between 1999 and 2000 in zones East and 
West.
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Approximate Query Answering
◼ Approximate query answering (AQA) is a 

widely investigated issue in OLAP research.

◼ Fast approximate answers generally suffice to 
support decision making processes as decimal 
precision is not needed in OLAP.

◼ Some traditional approaches:
◼ Histograms (Poosala, Ioannidis, Haas, Shekita);

◼ Wavelets (Vitter, Wang, Iyer); 

◼ Random Sampling (Gibbons, Matias).
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Synopsis Data Structures: Overview

A

Syn

◼ Requirements:

◼ size(Syn) << size(A);

◼ for each query Q, the approximate answer A(Q)

evaluated on Syn must be “very close” by the exact 

answer E(Q) evaluated on A, i.e. A(Q)  E(Q).

B
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Limitations of AQA Techniques in 
OLAP/1

◼ Conventional approximate OLAP query 
answering techniques suffer from two main 
limitations:

◼ Lack of Accuracy Control: they do not provide any 
mechanism for controlling accuracy of retrieved 
answers approximate answers;

◼ Scalability Issues: their quality in both representing 
the input data cube and evaluating OLAP queries 
over the compressed data cube decreases when 
data cubes grow in dimension number and size.
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Limitations of AQA Techniques in 
OLAP/2

◼ Across 10 years, we proposed a set of AQA 
techniques for OLAP data cubes aimed at 
overcoming previous limitations:

◼ -Syn, an analytical synopsis data structure that 
introduces a polynomial approximation technique 
for OLAP data cubes;

◼ KLSA (or accuracy-aware -Syn), which further 
extends the -Syn proposal in order to provide 
accuracy control over compressed OLAP data 
cubes.
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Analytical Interpretation of 
Multidimensional Data Cubes/1

◼ Our approach starts from an analytical 
interpretation of multidimensional data cubes: 
a data cube is treated as a collection of data rows, 
such that a representing discrete data distribution is 
associated to each row.

◼ Each data distribution is then approximated via the 
well-known Least Square Approximation (LSA) 
method and the resulting set of polynomial 
coefficients are stored instead of the original data, 
thus obtaining a synopsis data structure called -Syn. 

◼ Queries are issued on the compressed representation, 
thus reducing the number of disk accesses needed to 
evaluate the answers. 
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Analytical Interpretation of 
Multidimensional Data Cubes/2

◼ Without any loss of generality, we refer to data 
cubes stored according to the MOLAP data 
organization. 

◼ A MOLAP data cube A is a multidimensional 
array from which we can select the i-th row 
according to a certain access strategy A[i].

◼ In other words, from a logical point of view a 
MOLAP data cube is a set of rows.

◼ This realizes our analytical interpretation of 
multidimensional data cubes.
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Example: 2D Data Cube
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Data Distribution Approximation via 
LSA
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-Syn Building Steps

◼ INPUT A multidimensional data cube A, the 
available storage space B.

◼ OUTPUT -Syn.

◼ STEPS
1. Allocate the available storage space B.

2. For each row R belonging to A, extract the data 
distribution fR.

3. For each fR, build the approx function gR via 

applying the LSA method.
4. For each gR, store the approximating coefficients 

{cR}.
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The LSA Method
◼ Given a discrete function f with n samples, LSA 

finds the “best” polynomial function g

approximating f via minimizing the sum of the 
squares of distances between points of f and g.
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◼ g is defined as the linear combination of T basis 
functions k belonging to , such that  is the 
set of basis functions of the g functional space, 
and T coefficients as follows:
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Adapting the LSA Method to 
Approximate Query Answering

◼ T is also the polynomial degree of g.

◼ In the original LSA method, T is an input 

parameter and, intuitively enough, the greater 
is T the greater is the degree of accuracy (i.e., 
the “quality”) of g. In our algorithm, T
depends on the storage space B available 

for representing -Syn.

◼ It follows that a critical component of the -Syn
proposal is the allocation scheme, which is 
presented next.
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Improving the -Syn Technique

◼ In order to improve the quality of our
technique, for each row R of A, instead of

approximating fR directly, we build and

approximate the cumulative distribution of
fR, denoted by , and defined as follows:+

Rf
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Benefits due to    /1
+

Rf

◼ is an always-increasing function (b) and, as
a consequence, it can be approximated with a
polynomial function having a polynomial degree
smaller than the one needed to approximate a
skewed function (a):

+

Rf
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Benefits due to    /2

◼ Improved approximate query evaluation as a
lower number of disk accesses is needed.

◼ 2D Range-SUM Query:

◼ Exact answer:

◼ Approximate answer with fR:

◼ Approximate answer with :

+
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-Syn Building Steps – Revised

◼ INPUT A multidimensional data cube A, the 
available storage space B.

◼ OUTPUT -Syn.

◼ STEPS
1. Allocate the available storage space B. 

2. For each row R belonging to A, extract the data 
distribution fR.

3. For each fR build the approx function gR via 

applying the LSA method.

4. For each gR store the approximating coefficients 
{cR}.For each fR, build the cumulative distribution    .+

Rf

+

Rf
+

Rg

+
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Building -Syn/1
◼ A basic issue in our work is how to allocate the

storage space B available for housing -Syn.

◼ We propose a proportional storage space 
allocation scheme based on statistical 
properties of data distributions.

◼ Similarly to the other components of the 
technique, the allocation scheme is also 
oriented to rows.

◼ We basically use two parameters of row data 
distributions: the skewness and its standard 
deviation, and drive the space allocation 
accordingly.  
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Building -Syn/2
◼ Let R be a row of A and fR be its representing

function.
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◼ The skewness value 1(R) of fR is defined as 

follows:

where r(R) is the rth central moment of fR, which 

is defined as follows:
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Building -Syn/3
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◼ The standard deviation of the skewness (R)

can be computed as follows [Stuart&Ord98]:

◼ A well-known result of theoretical statistics
[Stuart&Ord98] claims that the skewness value
of a data distribution is “significant” if it is
greater than its standard deviation by a
factor of 2.6.

◼ In this condition, it can be assumed that data
are not distributed according to a normal
distribution, so that the distribution is skewed.
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Building -Syn/4
◼ We introduce the function (R) for detecting

whether the skewness value of a given row is
significant:
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◼ We denote the factor by (R) .
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Building -Syn/5
◼ We introduce the function m(R) that captures

the statistical properties of the distribution fR of
a given row R, as follows:

such that 2(R) is the variance of fR, which is

defined as follows:
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Building -Syn/6
◼ In conclusion, given a row R, the storage space
B(R) allocated to R as a portion of the whole
available storage space B is given by the

following formula:

◼ This also determines the number of coefficients
and basis functions T used to approximate fR.
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Building -Syn/7
◼ Therefore, for all rows of the input data cube A,

the proportional allocation scheme is described
by the following system:
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-Syn Physical Representation

◼ -Syn physical representation consists, for each
R belonging to the input data cube A, of the set

of coefficients representing the approximating
function .

+

Rg
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How to Control the Accuracy of 
the Compression Process?

◼ We need a formal theoretical framework to 
model and handle accuracy. 

◼ In our proposal, theoretical foundations are 
provided by the LSA method.

◼ We achieve the definition of the so-called 
accuracy-aware LSA method, which allows 
us to control the degree of approximation of the 
overall compression process.
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The Accuracy-Aware
LSA Method/1

◼ Given a discrete data distribution f and a degree 
of accuracy , from the theoretical foundations 
of the LSA method, it follows that the constraint 
to be satisfied to obtain a T–degree 
approximating function g for f with degree of 

approximation equal to  is:

 −
2

gf

2
•where         is the norm operator modeling the

“distance” between f and g.
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The Accuracy-Aware
LSA Method/2

◼ The goal is to determine the value of the 
parameter T to be set as input for the 
execution of the LSA method generating g.

◼ In our research, we found that such value is the 
one for which the corresponding approximating 
function g satisfies the following constraint:

thus, we can control the process generating
g and, as a consequence, the overall

compression process of the input data cube.

( ) 222  −+ fgfg
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The Accuracy-Aware
LSA Method/3

*

T
◼ In order to determine T, we adopt a routine that, 

starting from an empirical parameter     , 
iteratively computes the corresponding 
approximating function g and checks the main 

constraint.

◼ If it is true, then the desired value of T is 

determined, otherwise we increment     and iterate 
the previous step.

◼ It is trivial to demonstrate that, for any input 
distribution f, an upper bound for the parameter  

exists.  

◼ This routine also gives us the allocation for the 
current row.

*

T

*

T
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-Syn Building Steps – Accuracy 
Control

◼ INPUT A MD data cube A, the degree of 

accuracy , the available storage space B.

◼ OUTPUT -Syn.

◼ STEPS
1. Allocate the available storage space B.

2. For each row R belonging to A, extract the data 
distributions fR.

3. For each fR, build the cumulative distribution   .
4. For each , build the approx function      via 

applying the accuracy-aware LSA method.
5. For each    , store the approximating coefficients 

{cR}.
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-Syn Optimizations/1

◼ To further improve the capabilities of -Syn
(i.e., achieving higher compression ratios), two 
optimizations are proposed.

◼ The first one consists in a partitioning 
strategy for data rows, i.e. we apply the 
accuracy-aware LSA method to parts of rows 
instead that to the entire rows.

◼ The second one consists in an 
approximation-driven similarity metrics
for the partitioned representation (provided by 
the first optimization).
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-Syn Optimizations/2

The second optimization consists in pruning all the k-row 

for which the LSA-based “distance” from other rows is 
less than 10 %.
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-Syn Query Model/1
◼ Let                            be a two-dimensional 

query on a two-dimensional data cube A. 

◼ Q is decomposed in the following set of queries, 
each one evaluated on -Syn:

◼ Then, the final approximate answer is obtained 
as:
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-Syn Query Model/2
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 We provided paradigms for improving the 
performance of big-data-based IoT frameworks

 Analysis and trade-offs have been discussed as well

 We focused on the top-quality solution represented 
by data cube compression paradigms

 Many other compressiong paradigms to explore and 
to adapt to IoT frameworks

Conclusions
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