Self-Supervised Fine-Grained Food Recognition

Petia Radeva Universitat de Barcelona & Computer Vision Center, Spain

Which is the year of CNNs?

LeCun, Yann; Léon Bottou; Yoshua Bengio; Patrick Haffner (1998). "Gradient-based learning applied to document recognition". Proceedings of the IEEE 86 (11): 2278–2324

Imagenet

🛓 🔹 🖝 1,607,730 🕬

The magic triangle

The Importance of GPUs

- Nvidia Tensor Cores 2017
- Google Tensor Processing Unit (TPU) 2016
- Intel Nervana Neural Processor 2017

• GPUs in Cloud Computing (Google, 2017)

GPU cores is based on matrix multiplication

Available NNs

The process of training a CNN consists of training all hyperparameters: convolutional matrices and weights of the fully connected layers.

Image databases evolution

Number of objects/Database

ImageNet & Deep learning

Number of images/Database

What are the most popular datasets today?

Dataset	Papers	Benchmarks	Images (K)	Classes	Sizes
Cifar-10	10581	66	60	10	32x32
ImageNet	10046	97	1400	1000	variable
COCO	7160	78	123	80	
MNIST	5911	49	60	10	28x28
Cifar-100	5322	42	60	100	32x32
Cityskapes	2562	37	25	8	
SVHN	2474	11	60	10	32x32
Kitti	2453	120	0,5	11	
CelebA	2408	20	202	10177	178x218
Fashion-MNIST	2150	17	70	10	28x28
CUB-00-2011	2408	37	12	200	
Places	760	4	2500	205	
Tiny ImageNet	516	7	31	200	
Places205	468	1	2500	205	
Caltech-101	393	6	5	101	300x200
Stanford Cars	392	8	16	196	360x240
Caltech-256	345	4	30	257	

Large Scale Food Recognition Dataset

Journals & Magazines > IEEE Transactions on Pattern ... > Early Access 3

Large Scale Visual Food Recognition

Publisher: IEEE

Cite This

Weiqing Min (10); Zhiling Wang; Yuxin Liu; Mengjiang Luo; Liping Kang; Xiaoming Wei; Xia... All Authors

140 Full Text Views		0	<	©	
Abstract	Abstraat				

	Abstract.
Authors	Food recognition plays an important role in food choice and intake, which is essential
	to the health and well-being of humans. It is thus of importance to the computer vision
Keywords	community, and can further support many food-oriented vision and multimodal tasks,
Metrics	e.g., food detection and segmentation, cross-modal recipe retrieval and generation.

Meat	Cheese back ri	bs Tomahaw	Fried pork in scoop	Sheep roll
Vegetables	Eggplant salad	Fruit salad	Shredded cucumber	Fried eggplant
Bread	Tuna pizza	Beef burger	Seafood pancake	Coconut bread
Snack	Egg tart	Roti prata	Strawberry smoothie	Takoyaki
Fried food	Tonkatsu	Fried chicken	Fried cuttlefish balls	Fried tofu
Seafood	Tempura	Spicy crab	Geoduck sashimi	Cod fish steak
Cereal products	Egg fried rice	Salmon sushi	Pan-fried pork bun	Instant noodles

Food recognition popularity

AICrowd: 26000 annotated segmented images

iFood 2011 fine-grained (prepared) food categories with 135733

CONTREMENTAL

LargeFineFoodAI: 1,000 fine-grained food categories and over 50,000 images.

Food image analysis

Why food recognition?

180M #food 90/minute

"Camera eats first"

54% take picture 39% post it

Why is the food recognition a challenge?

Motivation

Food Analysis Problems

Ingredients

- Intra-class variability
- Inter-class similarity

Intra-class variability example: Apple. Image source: Recipes5k

Inter-class similarity example: Tomato sauce and Curry sauce. Image source: Recipes5k

Decreasing in Precision

The food recognition is a Fine-grained recognition problem

Challenges of Food image analysis

Food256: 25.600 images (100 images/class) Classes: 256

Food101 – 101.000 images (1000 images/class) Classes: 101 FoodX-251 Classes: 251 140K images Food1K Classes: 1000 370K images

Current SoA on Food recognition

- 79% on UECFOOD
- 44% on ChinaFood1000

How to leverage from the huge amount of non-annotated data/images?

Data-centric Food image analysis

Uncertainty modelling

Fine-grained Food recognition

Large-scale Food recognition

Self-supervised Learning

Learning with Noisy Labeling Food recognition

Generative AI for Food Volume Estim

Food ontology-based Deep learning

Supervised vs unsupervised learning

What is self-supervised learning?

What is self-supervised learning (SSL)?

SSL: Benefits & Uses in 2023

https://research.aimultiple.com/self-supervised-learning/

Self-Taught AI Shows Similarities to How the Brain Works

SSL allows a neural network to **figure out for itself what matters**.

Explore neural networks trained with little or no human-labelled data.

Computational models of the mammalian visual and auditory systems built using selfsupervised learning models have shown a closer correspondence to brain function than their supervised-learning counterparts.

Alexei Efros, University of California, Berkeley, "Most modern AI systems are too reliant on human-created labels. They don't really learn the material".

Babies learn how the world works by observation

Largely by observation, with remarkably little interaction.

Early conceptual acquisition in infants (from Emmanuel Dupoux)

Artifical vs Natural NNs

Understand brain through NNs:

• the brain is full of feedback connections, while current models have few such connections, if any.

An obvious next step: use SSL to train highly recurrent networks and see how the activity in NNs compares to real brain activity.

Crucial step: match the activity of NNs in SSL models to the activity of individual biological neurons.

"No doubt that 90% of what the brain does is selfsupervised learning," <u>Blake Richards</u>, a computational neuroscientist at McGill University and Mila, the Quebec Artificial Intelligence Institute.

Hypothesis: the visual systems of humans and other primates are the best studied of all animal sensory systems,

- but neuroscientists have struggled to explain why they include two separate pathways:
 - the ventral visual stream, which is responsible for recognizing objects and faces, and
 - the dorsal visual stream, which processes movement (the "what" and "where" pathways, respectively).

Self-supervised vs supervised learning

What can you do if you have a lot of just data?

What can you do if you have a lot of just data and may be a not-trained model?

data and may be a not-trained model?

State-of-the-art Contrastive SSL models

BYOL

SimSiam

Barlow Twins

Momentum Contrasting (MOCO)

Given an image x_i , MoCo learns a query encoder $q = f_q(x_i)$ able to differentiate $q_i = f_q(x_i)$ from the other images.

Positive pairs: 2 representations of the same image without augmentation.

An asynchronously updated momentum encoder $f_k(.)$ is used to generate the positive counterpart $k^+ = f_k(x_i)$.

Negative samples: MoCo derives from a memory bank, storing previously encoded representations.

The model optimizes the following objective function:

$$L_i^{MoCo} = -log(\frac{exp(q_i \cdot k_i^+/\tau)}{\sum_{k=1}^{K} exp(q_i \cdot k_k^-/\tau)})$$

where K is the number of negative samples in the queue.

Exponential Moving Average Prediction

EMA denotes exponential moving average updates.

 $\xi \leftarrow \tau \xi + (1 - \tau)\theta$

The EMA-teacher framework with standard Batch Normalization.

SSL Framework: SimSiam

X. Chen and K. He. "Exploring Simple Siamese Representation Learning". CVPR, 2021, pp. 15750–15758^{21:22}

SSL Framework: BYOL

Avoid negative sampling!

Introduces predictor:

It tries to predict different views (regression targets) of the same image directly in the representation space using a predictor.

$$L_i^{BYOL} = \|p_i^1 - z_i^2\|_2^2 = 2 - 2 \cdot \frac{\langle p_i^1, z_i^2 \rangle}{\|p_i^1\|_2 \cdot \|z_i^2\|_2}$$

<u>SimCLR</u> by the Google AI team

Introduces projectors: a learnable nonlinear transformation between the representation and the contrastive loss

Positive sampling: Given a batch of N samples, the pretext task P generates two augmented views x^{a}_{i} and x^{+}_{i} for each sample x_{i} of the batch.

Negative sampling: the rest of the images x_i^- on the same batch to form the negative pairs (x_i^a, x_i^-) .

Batch sizes of 8196 are used.

Loss function:

$$L_i^{SimCLR} = -log(\frac{exp(z_i^a \cdot z_i^+/\tau)}{\sum_{k=1}^N exp(z_i^a \cdot z_k^-/\tau)})$$

Ting Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations". 37th ICMLL 2020, pp. 1597–1607.

https://analyticsindiamag.com/what-is-contrastive-self-supervised-learning/
SSL Framework: SimCLR

SINCLR

SSL Framework: NNCLR

MSFCLR

Mean shift for Self-supervised learning (MSF)

S. A. Koohpayegani, A. Tejankar, and H. Pirsiavash. "Mean Shift for Self-Supervised Learning", CVPR 2021, pp. 10326–10335.

BYOL vs MSF

SSL Framework: Barlow Twins

J. Zbontar et al. "Barlow Twins: Self-Supervised Learning via Redundancy Reduction". 38th ICML. 2021, pp. 12310–12320

Barlow Twins architecture

Image

Image₃^A

Image^B₃

 Z^A

	,,	,2	,,,	,,	,,,
$Image_1^B$					
Image ^B					

 f_1 f_2 f_3 f_4 f_5

21:22

Barlow Twins architecture

 Z^A

 Z^B

С

P_1^A			
e_2^A			
A			

 f_1 f_2 f_3 f_4 f_5

$Image_1^B$			
Image ^B 2			
Image ^B ₃			

 f_1 f_2 f_3 f_4 f_5

Barlow Twins architecture

$$f_1$$
 f_2 f_3 f_4 f_5

$Image_1^A$			
$Image_2^A$			
$Image_3^A$			

 f_1 f_2 f_3 f_4 f_5

С

Barlow Twins architecture

 Z^A

 Z^B

С

Barlow Twins' Loss Function

Redundancy reduction term

Remember: in the SimSiam architecture

f_1	f_2	f_3	f_4	f_5

Image₁^A Image₂^A

 P^A

$Image_2^A$		
Image ^A		

 f_1 f_2 f_3 f_4 f_5

 Z^B

$Image_1^B$			
$Image_2^B$			
Image ^B ₃			

Remember: in the SimSiam architecture

Image Image

 P^A

 Z^B

$Image_1^B$			
$Image_2^B$			
Image ^B ₃			

Remember: in the SimSiam

 $f_1 \quad f_2 \quad f_3 \quad f_4 \quad f_5$

Image P^A Image Image

A L			
A			
A			

 f_1 f_2 f_3 f_4 f_5

 Z^B

Image ^B			
$Image_2^B$			
Image ^B			

 $Image_1$ Image₂ Image₃

Image^E

Remember: in the SimSiam architecture

Image^B₃

 P^A

 Z^B

SimSiam architecture

OptSSL's Loss Function

$$\mathcal{L}_{Opt-SSL} = \mathcal{L}_{i-diag} + \lambda_1 \cdot \mathcal{L}_{i-off-diag} + \mathcal{L}_{f-diag} + \lambda_2 \cdot \mathcal{L}_{f-off-diag}$$

where
$$\mathcal{L}_{diag} = \sqrt{\frac{1}{2N} \left(\sum_{i=1}^{N} \left(1 - c_{ii}^{(1)} \right)^2 + \sum_{i=1}^{N} \left(1 - c_{ii}^{(2)} \right)^2 \right)}$$

$$\mathcal{L}_{off-diag} = \sqrt{\frac{1}{2N(N-1)} \left(\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \left(c_{ij}^{(1)} \right)^2 + \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \left(c_{ij}^{(2)} \right)^2 \right)}$$

Applied both: to images in the batch and the features!

Our proposal 1: OptSSL

Nil Ballús, Bhalaji Nagarajan, Petia Radeva: Opt-SSL: An Enhanced Self-Supervised Framework for Food Recognition. IbPRIA 2022: 655-666

Our Proposal 2: Musketeer

All for One: Centroid contrast

Self-Attention in order to obtain "context-aware" representations

Reducing Redundancy: Feature Contrast

11

Validation

Dataset and Evaluation Metrics

Dataset

Food-101

Evaluation Metrics

SSL Model

 Top 1 and top 5 accuracy using a k-NN classifier

Classifier

- Overall accuracy
- Variance
- Entropy
- Mutual Information

Baselines

Results and analysis (SSL)

Performance of different SSL Models

■Top 1 accuracy ■Top 5 accuracy

		K-NN	Acc.
SSL Model	λ	Top 1 acc. (%)	Top 5 acc. (%)
Barlow Twins	0,0051	49,89	79,07
SimSiam	-	54,33	81,62
OptSSL	0,5	63,52	87,48

What about Musketeer?

SSL Frameworks: Results

Framework	Main Characteristics
SimCLR	Starting point, use of Negative samples, high batch size, contrastive loss
BYOL	Randomly initialized network instead of Negative samples, MSE loss, lower reliance on batch size, introduces the predictor
SimSiam	SimCLR without Negative samples, BYOL without the target network, use of stop-gradient, siamese structure
Barlow Twins	Innovative loss function that uses cross- correlation matrixes, use of batch normalization, benefits from high dimensional representations
NNCLR	Introduces NN algorithm to provide more richness, modified version of SimCLR

Method	Top-1	Top-5	
PIRL	63.6	-	
CPC v2	63.8	85.3	
PCL	65.9	-	
CMC	66.2	87.0	
MoCo v2	71.1	-	
SimSiam	71.3	-	
SimCLR v2	71.7	-	
SwAV	71.8	-	
InfoMin Aug.	73.0	91.1	
BYOL	74.3	91.6	
NNCLR (ours)	75.4	92.3	
BARLOW TWINS (ours)	73.2	91.0	

ImageNet linear classification results from Debidatta Dwibedi et al. (2021)

Quantitative Results: CIFAR

CIFAR-10

CIFAR-100

Method	Backbone	Epochs	Acc@1 (Online)	Acc@5 (Online)	Method	Backbone	Epochs	Acc@1 (Online)	Acc@5 (Online)	k-NN Acc@1 (Online)
BYOL	ResNet18	1000	92.58	99.79	BYOL	ResNet18	1000	70.46	91.96	
DeepCluster V2	ResNet18	1000	88.85	99.58	DeepCluster V2	ResNet18	1000	63.61	88.09	10 172
DINO	ResNet18	1000	89.52	99.71	DINO	ResNet18	1000	66.76	90.34	-
MoCo V2+	RogNot18	1000	02.04	00.70	MoCo V2+	ResNet18	1000	69.89	91.65	5
MOCO V2T	D N 10	1000	92.94	99.19	MoCo V3	ResNet18	1000	68.83	90.57	-
MoCo V3	ResNet18	1000	93.10	99.80	ReSSL	ResNet18	1000	65.92	89.73	
ReSSL	ResNet18	1000	90.63	99.62	SimCLR	ResNet18	1000	65.78	89.04	-
SimCLR	ResNet18	1000	90.74	99.75	Simsiam	ResNet18	1000	66.04	89.62	
Cimaiam	Dec Not 19	1000	00.51	00.79	SwAV	ResNet18	1000	64.88	88.78	<u>-</u>
Simsiam	neshet10	1000	90.51	99.12	VIbCReg	ResNet18	1000	67.37	90.07	5
SwAV	ResNet18	1000	89.17	99.68	VICReg	ResNet18	1000	68.54	90.83	<u> </u>
VIbCReg	ResNet18	1000	91.18	99.74	W-MSE	ResNet18	1000	61.33	87.26	-
VICReg	ResNet18	1000	92.07	99.74	NNCLR	ResNet18	1000	69.62	91.52	2
W-MSE	ResNet18	1000	88.67	99.68	NNCLR*	ResNet18	1000	69.17	91.70	62.16
Barlow Twine	RocNot18	1000	02.10	00.73	Barlow Twins	ResNet18	1000	70.90	91.91	<u></u>
Dariow 1 wills	nesive:10	1000	92.10	99.10	Barlow Twins*	ResNet18	1000	71.21	92.46	63.11
NNCLR	ResNet18	1000	91.88	99.78	MSF*	ResNet18	1000	67.84	91.64	63.36
Musketeer (Our	s)ResNet18	1000	93.24	99.88	Musketeer (Ou	rsResNet18	1000	72.17	93.35	64.84

Quantitative Results: ImageNet-100

Method	Backbone	Epochs	Acc@1 (online)	Acc@5 (online)
BYOL ++	ResNet18	400	80.16	95.02
DeepCluster V2	ResNet18	400	75.36	93.22
DINO	ResNet18	400	74.84	92.92
MoCo V2+ $++$	ResNet18	400	78.20	95.50
MoCo V3 $++$	ResNet18	400	80.36	95.18
ReSSL	ResNet18	400	76.92	94.20
SimCLR ++	ResNet18	400	77.64	94.06
Simsiam	ResNet18	400	74.54	93.16
SwAV	ResNet18	400	74.04	92.70
VIbCReg	ResNet18	400	79.86	94.98
VICReg ++	ResNet18	400	79.22	95.06
W-MSE	ResNet18	400	67.60	90.94
Barlow Twins $++$	ResNet18	400	80.38	95.28
NNCLR $++$	ResNet18	400	79.80	95.28
Musketeer (Ours)	ResNet18	400	81.93 🔶	96.23 🔶

Quantitative Results: Objective importance

Method	NNCLR	Centroid	Redundanc y	EMA	Acc@1	NN Acc@1
Musketeer (v0)	\checkmark	×	X	×	69.62	68.8
Musketeer (v1)	×	\checkmark	×	×	67.4	82.8
Musketeer (v2)	\checkmark	\checkmark	×	×	71.02	85.28
Musketeer (v3)	\checkmark	\checkmark	X	\checkmark	71.08 ┥	86.16
Musketeer (v4)	×	\checkmark	\checkmark	\checkmark	71.31	80.6
Musketeer (v5)	\checkmark	×	\checkmark	\checkmark	71.64	78.8
Musketeer (v6)	\checkmark	\checkmark	\checkmark	\checkmark	72.17 ┥	82.16

 \checkmark = Included \checkmark = Not included

Qualitative Analysis: UMAP

Epoch 1

$Epoch \ 100$

Musketeer

Qualitative Analysis: Silhouette

Qualitative Analysis: NN Retrieval

R:woman, P:woman

R:man, P:man

State of Concession, name

R:man, P:woman

R:woman, P:woman

R:kangaroo, P:kangaroo

R-fox P-box

R:man, P:man

R:boy, P:woman

R:woman, P:woman

Riman Pihov

R:mouse, P:kangaroo

R:wolf, P:man

R:man, P:woman Concession in the local division in the loca

R:woman, P:woman

R-mocket P-how

R:kangaroo, P:kangaroo

R:crocodile, P:man

Ricaccoon Pibov

R:man, P:woman

R:shrew, P:kangaroo

1.1

R:flatfish, P:man

21:22

Features of Musketeer

- Not very sensitive regarding the number of neighbours extracted.
- More expensive than single neighbour contrast.

Speaking about Food Applications

Food recognition

Try it: www.logmeal.es/demo

SUCCESS STORY: FOOD intake monitoring of kidney transplant patients

Validithi (EIT Health, 2019/20)

- Automatic food diary construction (UB).
- Accurate, objective and continuous food intake monitoring (UB).
- Semi-automatic volume estimation (Nestle).
- Meal planner and health recommendations (Nestle).

SUCCESS STORY: FOOD intake monitoring for malnutrition prevention in elderly

NESTORE developed a multi-dimensional, personalized coaching system to support healthy ageing:

- 1) Generating and sustaining motivation to take care of health;
- 1) Suggesting healthy nutrition and personalized physical and mental coach, as well as social interaction, to prevent decline and preserve wellbeing.

SUCCESS STORY Diacare: mHealth app to assist diabetic patients

The number of people with diabetes has increased from 108 million in 1980 to 422 million in 2017.

Pulso Edicions and UB are developing an app oriented to diabetic people in order to monitor their food intake and receive objective and timely feedback.

BYS GRUP

SUCCESS STORY Greenhabit: a serious game to promote change behaviour

Ted Talk of Chantal Linders: "Manage the Monster in Your Head"

Greenhabit (EIT Digital, 2020/21)

Success story: Aigecko Technologies

Touchless Checkout System: Plate and food recognition Multiple Payment System User identification (NFC, QR, Face recognition, company card)

API that allows food recognition (ready meals and food) using Artificial Intelligence algorithms with just a photo.

Inicio > Noticias > Nace AlGecko Technologies, la inteligencia artificial al servicio del reconocimiento...

Nace AlGecko Technologies, la inteligencia artificial al servicio del reconocimiento de imágenes

De izquierda a derecha, Marc Bolaños, Petia Radeva, M.ª Carme Verdaguer y Eric Verdaguer.

20/01/2021

Recerca

Ha nacido la nueva *spin-off* AlGecko, que ofrece servicios de reconocimiento y análisis de imágenes basados en los algoritmos desarrollados por miembros del Grupo de Investigación Computer Vision and Machine Learning de la UB, y que han dado pie a diferentes productos. La actividad de la empresa se enmarca en el aprendizaje profundo (*deep learning*), un campo de la inteligencia artificial que en los últimos años ha revolucionado el mercado y nuestro día a día en aspectos como la conducción automática, la visión artificial o los asistentes virtuales, entre muchas otras aplicaciones.

Más información

Compártala an: 🌄 🖬 🗔 🛲 I 🎮 Máa I

AlGecko's Food Image Analysis Applications

FOOD TYPE DETECTION

API to detect cooked food, prepared food, beverages, fresh vegetables and fruits, nonfood products and more.

FOOD GROUP DETECTION

Detects the basic food groups present in food. Ideal for the generation of food records and food diaries.

SINGLE DISH RECOGNITION Detects more than 880 different local and international dishes from any cuisine in the

world.

RECOGNITION OF VARIOUS DISHES Recognises and lists all the foods present in a combination dish.

NUTRITIONAL INFORMATION Provides a nutritional analysis of the image based on ingredients. Micro and Macro Nutrient Extraction

Conclusions

- OptSSL method outperforms SimSiam and Barlow Twins for the food image representation task.
 - Showed the importance of **contrasting both positive and negative** samples.
- Musketeer introduces Self-attention operations to create single representations, defined as centroids, from the extracted neighbours.
 increases the neighbour retrieval accuracy while avoiding efficiency loss.
- Musketeer combines its neighbour contrast objective with a feature redundancy reduction objective, forming a symbiosis that proves to be beneficial in the overall performance of the framework.
- Musketeer consistently outperforms SoTA instance discrimination frameworks on popular image classification benchmarking datasets, namely, CIFAR-10, CIFAR-100 and ImageNet-100.
- Food Image Analysis is highly underexplored problem that could convert in an important benchmark for CV algorithms.
- Multiple real applications and professional opportunities

How much information is the Machine given during Learning?

