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“If it were not for the great variability between individuals,
medicine might as well be a science, not an art”

Sir William Osler (1892)
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Variabilities between individuals Lead to

Different genetic background - Different risks (and different risks over time)
Different environmental exposures Variation in symptoms

Different life-styles Different health and disease trajectories
Different histories and interventions Different responses to treatment
etc. etc.

The “art” of medicine has been to make judgements on
the basis of this information to manage patients

What machine learning can do is turn this art into a science!
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Machine learning can transform healthcare

1) deliver precision medicine at the patient level
2) understand the basis and trajectories of health and disease
3) empower healthcare professionals and patients

4) inform and improve clinical pathways, better utilize resources &
reduce costs

5) transform population health and public health policy
6) enable new discoveries - clinical, therapeutics
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The “augmented” clinician, researcher, patient

Machine learning
...can’t do medicine!
...can provide interpretable, trustworthy actionable information!

Machine learning

algorithms ——  personalized risk scores
Personalized treatment recommendations
Data-driven hypotheses

Trustworthy - Clinical
recommendations s inica
> practice
Data O
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Engagement sessions: Revolutionizing Healthcare
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Revolutionizing Healthcare s a series of engagement sessions aiming to share ideas and discuss topics that will define the future of machine learning in healthcare.

These events target 1 opr in clinical appli f machine learning. We now have roughly 400
clinicians from around the world registered to participate in these sessions.

Asa lab, our purpose is to create new and powerful machine learning techni d methods that foni This doesn't happen in avacuum.
Atinception, we are inspired by ideas and di in we need trust, and partnership to make a real difference.

While you can learn about our work at major conferences in machine learning or in our papers, we thinkit's a better idea to create a community and keep these
conversations going. We're also aware that many people—both in healthcare and machine learning—have questions about what we do, and how they can
contribute.

For more information about Revolutionizing Healthcare—and to sign up to join in—please have a look at the sections below, and keep checking for new updates.

Revolutionizing Healthcare

Themed discussi i ifically for

(primarily clinicians).

‘We would like to:
troduce machi i they relat
- spark new projects and collaborations N
- demonstrate the real-world impact of machine learning in clinical settings \
- discussinstitutional barriers preventing wider adoption

P . .

Standard session format:

ief introductory presentation

- roundtable discussion featuring clinicians
- open QA

https://www.vanderschaar-lab.com/

- Engagement sessions

- Revolutionizing Healthcare
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Revolutionizing Healthcare - ML tools for cancer (post-diagnosis care)

van der Schaar Lab

Revolutionizing Healthcare - ML tools for cancer (risks, screening, diagnosis)

van der Schaar Lab

Revolutionizing Healthcare - tools for acute care

van der Schaar Lab

izing k -a for ML for

van der Schaar Lab

Revolutionizing Healthcare - what machine learning can offer healthcare

van der Schaar Lab
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Engagement sessions: Inspiration Exchange

Inspiration Exchange

Themed discussion sessions specifically for
machine learning students (particularly
sessions masters, Ph.D., and post-docs).

Engagement

We would like to:

- discuss machine learning models and techniques
- share ideas about how machine learning can
vanderschaar-lab.com/ revolutionize healthcare

- Engagement sessions
- Inspiration Exchange

- spark new projects and collaborations
- raise awareness about this unique and exciting
area of machine learning.
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Overview

A healthcare ecosystem powered by Machine Learning (ML)

Time-series in healthcare
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How can ML transform healthcare delivery?

Getting the right care to the right patients

Achieving the best outcomes at the lowest cost

This is possible through

= personalization (for patients, clinicians, and healthcare entities)
|earning at Sca|e; Bespoke medicine Empowering clinicians
identifying better ways of working and inefficiencies;
providing concrete policies for improvement

|
|
|
= optimal allocation of resources (over time)

Population health and Systems, pathways and
public health policy processes

14

oo

1%
i.i.iﬁ‘.i.&

ﬁ&. van_der_Schaar o
E P CAMBRIDGE

5? \ LAB vanderschaar-lab.com



Why is now the right time?

Machine learning methods have come of age and are ready to be used

Unprecedented access to diverse sources of valuable info, including:

clinical notes

electronic health records
clinical registries
prescription info
appointment info
wearables

The COVID-19 pandemic has accelerated digital info collection
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A healthcare ecosystem powered by Machine Learning

Clinical research

& development
{incl. pharma)

i Availability of new life- :
£ saving treatments

Data-driven Personalized
machine recommendations
learning :

aﬂ

Patients

r-_pw data

rﬂ% %

mh‘:far

Analytics and A'i% § screening, diagnosis,
@ i treatment, etc.

operational
support tools

Healthcare Hospital

bodies administrators
le.g. NHS) et isincs i ... 5 s BT T .

Implementation of clinical
* i guidelines, best practices, etc.
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Personalized, comprehensive care with machine learning

Machine learning can offer personalized
= forecasts ] ] oo e

KF:

= screening )

= monitoring =
o el

= treatment plans S EEE

= recommendations - .

Advanced Fier

Q 4 . o z . , T aTat s lsile
N djutorium sty @ Pjetontiocion @ Tesmetprmi/De= 1.2 .3 405 6
Adiueert :

tient inform.
Age at diagnosis Tumor size (mm) Positive nodes
7 © 6
T Tumor detected
®

e.g.

= Adjutorium

= AutoPrognosis
N S e, " = Clairvoyance
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Actionable intelligence across the patient pathway

An integrated clinical decision support ecosystem using machine learning to
provide patient-level recommendations and support

Integrated care:
Prevention
Screening
(Early) Diagnosis
Treatment
Monitoring

Multiple venues/areas:
— In-patient/out-patient
— Athome

Many stakeholders in every
stage of care

— Clinicians, nurses

— Healthcare planners

— Patients!

Time
Diagnosis Survival prediction Risk

I I CPG3+

I |

. . Censored
I Active Surveillance - data collected '
PSA MRI Biopsy |

38 & 335 & &

: ¢
. ‘\\ / Endpoint

-

|
= - - +* i
Baseline covariates |

- - -

History of pathways

. . ; . Prediction Evaluation
Initial PSA, Biopsy, Follow-up PSA, Biopsy, and time time
MRI MRI measurements
measurements
and demographic
features

.......
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Time-series: a multi-faceted problem

Clustering &
phenotyping

Screening &
monitoring

=Py van_der_Schaar
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Dynamic
forecasting

e SEries

Time |
data

Survival
analysis

Early
diagnosis

vanderschaar-lab.com

Treatment
effects
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Time-series: a multi-faceted problem
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1) Dynamic forecasting

2) Time-to-event and survival analysis

3) Clustering and phenotyping

4) Screening and monitoring

5) Early diagnosis

6) Treatment effects

7) AutoML

8) Interpretability

9) Discovery and understanding of event data
10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Part 1: tailoring development of
time series models to healthcare
challenges

Part 2: making time series models
as useful as possible
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More information and updates

van_der_Schaar
\LAB

Thelb  Publiatons  Bigideas News Videos Events Software  Engagementsessions Tutorals  Researchpilars  Spotights  Hubfor Heal

Overview of our work on time series models

Introduction for a variety of audiences , Hub for

Healthcare

Explores the “cross-sectional” interactions between time
series and many other areas of research

vanderschaar-lab.com/

- Research pillars
- Time series

X Find the full paper here
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Healthcare data - Unique challenges

Multiple streams of measurements
Measurements are sparse, irregularly and informatively sampled

Multiple outcomes of interest (various events of interest, various morbidities)
True clinical states are unobserved (e.g., onset of diseases)
Many possible patterns (heterogeneous phenotypes, comorbidities)
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Time-series analysis and dynamic forecasting

* Build disease progression models
* Understand and model carefully the available data!

* Learn the model parameters from available EHR data (Training time)
* Issue dynamic forecasts for the patient at hand (Test time/Run-time)

* Unravel new understanding of disease progression
* Population
* Sub-groups of patients

, - — —\
Personalized Input data Disease progression _ Dynamic
(time-series) model forecasts

g M J

Observational EHR data +
clinical knowledge
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Current disease progression models: formalisms

Markov Models P(Z,.|H: ) Z,112),)
Qs3n2 q“‘z
DISEASE DISEASE DISEASE DISEASE
STAGE1 |- —— = —| STAGEZ2 |- — - - - - - - sTAciEn—z---——— 57 °
Uy 203
- - '\. .F - -
H'l-._‘ q'ln x“‘ ’-_"' qu':! _.,."“.'
Qin h“'-..,‘ - - .-*"-f# P
| | -'. h " | j
., -
STAGEN
D- d ta Population-level representation
ISaavan ges of disease states

 Observable models
* One disease at a time @
« “Average” patient
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Current disease progression models: formalisms
Hidden Markov Models (HMMs)

Introducing latent (hidden/unobservable) disease states
Hidden states

Disease Stages @ e @ @
Clinical findings
Lab measurements
Vital signs
Treatments
Events of interest

Observations Observation times
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Markov models?

History matters! One size fits all!
Ignore history Only capture population-level
- Previous states transitions across progression stages
- Order of states Ignores individual clinical trajectories

- Duration in a state

Deep learning models?
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Deep learning models?

Observable

models
No latent structure
RETAIN Interpretable predictions,
Uninterpretable latent
structure
Observations
RNN Hidden states

Uninterpretable latent
structure

i Uninterpretable predictions,

Observations
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Two central goals of longitudinal models

Goal A: Accurately forecasting individual-level disease trajectories

® What are the risks of mortality, relapse, comorbidities, complications, etc. in
the future?

Goal B: Understanding disease progression mechanisms.

m Underlying latent structure of disease evolution

m Causal pathways and comorbidity networks

m Patients’ subgroup analysis

B Refined phenotypes
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Attentive state space models [aiaa & vds, 2018, NeurIPS 2019

Main idea: a general and versatile deep probabilistic model capturing
complex, non-stationary representations for patient-level trajectories

Maintain probabilistic structure of HMMs But use RNNs to model state dynamics

Hidden states T T OUiput

RNN RNN RNN

(t-1) > (t) —>  g+q) [ State
Observations Input

P{Zmtm A X mbm | Y Alm}m) = H Xt | Zr) - P(Z |-7'_tm,_1)

ﬁ&, van_der_Schaar Emission Transition [

5" \ LAB vanderschaar-lab.com ﬁ > CAMBRIDGE



Going beyond Markov

« Attention weights determine the influences of past state realizations
on future state transitions

Attention weights Patient context

A
A \ | |

|
(af,...,al) = RNN(Xq,..., X;)

Hidden states

Observations

1A 1
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Overcomes shortcoming of Markov Models

Attention weights create a "soft" version of a non-stationary, variable-order Markov model where
underlying dynamics of a patient change over time based on an individual’s clinical context!

Attention weights Patient context
A

A \ | !
= RNN(X1, ..., X;)

/"V‘
NN N NN e

—

Hidden states

Observations
ASSM - “memory” is shaped by patient’s current context (clinical events, treatments, etc.)
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ASSM: A General, Versatile and Clinically Actionable Model

a
QE

[ CT-HMM ]

[Hoiles and van der Schaar, 2016]
[Alaa and van der Schaar, 2017]

HSMM,
HASMM

[Lim and van der Schaar, 2018]

Multi-task
RNN

Bs» van_der_Schaar
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[ DT-HMM ]

ASSM

2018]

[Alaa and van der Schaar,

Autoregressive
Models

|

vanderschaar-lab.com

Model

Deep Markov

Sequential

Hypothesis
Testing

[Alaa and van der Schaar, 2016]

o

Variable-order
HMM
(Context Trees)
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Dynamic-DeepHit [Lee & vds, TBME 2019]

Longitudinal survival data: D = {(X("),r(i),k("))}liil
= X'!: History of longitudinal measurements until time the last measurement
- X'() ={x'(t}):0<t} <t forj=1,--,M} where M'is the number of measurements.
= 7:Time-to-event including right-censoring
= k: Eventlabel

BH UNIVERSITY OF
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Dynamic-DeepHit [Lee & vds, TBME 2019]

Estimation of the incidence of the occurrence of an event
while taking competing risks into account!

New goal: Estimate “dynamic” Cumulative Incidence Function

Fo(t|X*) & P(T < 1,E = k|X*, T > ty-)
_—7 A

Longitudinal measurements The patient was alive at the
accrued by the time of risk time of the last measurement!
predictions
ﬁ& van_der_Schaar B UNIVERSITY OF
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Dynamic-DeepHit [Lee & vds, TBME 2019]

Network architecture and loss functions Event 1
(— — )
— 011
5> 2!
@ @ 01,2
‘[ —| | > -
8 = 0
L UL |
1 . - - .
1 n
: : {hj}]_l \\_/ ./ % Olemax
Iy j=1 J g
Ly » Temporal | € S
: . : + =
ey »| Attention Event K -
| (" ~— ) =
I < | %1
' & )
[ -~
5 - . Ok 2
@ @ >
— | T P> = T Ok 3
J-1 (ijmj) %‘D (g
=1 - -
— UK, Tmax
(\— /)
) Shared Subnetwork ' ) Cause-Specific Subnetworks '
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Dynamic-DeepHit [Lee & vds, TBME 2019]

Network architecture and loss functions

Loss functions: Step-ahead
Prediction loss — ——
—— —
L —_— CH% g e
Total - -
- —
/l_ N % %: l_. 0?3
» .
Log-likelihood of joint Ranking loss — —) § o1
. . . > Temporal 8
TTE distribution | Attention Event K =
( — ) % Ox1
o o el Es] Ok 2
= Prediction loss (£;): S8 R = 1 I I P
penalizes error on the step-ahead predictions {xjomy, 5p) ) (xj,m)) E E
N M;—1 = _J)
LI' 3 — “-3] : (:(Xm—l—l ? y T )‘. Shared Subnetwork Cause-Specific Subnetworks
1=1 m=0

where Ca(ag.ba) = [aa —bal* or  (y(ag.bg) = aglogby+ (1—ag)log(1—by)
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Motivation: How should we group patients?

Example of 3 patients diagnosed with breast cancer (BC)
Should we group patients based on similarity in the time-series observations?

(Patient B

BMI PV V— g

Density @Q——@—__

r

Py van_der_Schaar
¢ \LAB

Patient A )
BMI W—W
Density @Q————@—_
o >
tlmf:‘.‘/

vanderschaar-lab.com

conventional notion of clustering

Key idea: similarity in time-series observations
(e.g. dynamic time warping, auto-encoders)

\
/rPatientC
BMI
Density Q———@—
= >
\_ time )

Autoencoder-based approaches
= N. S. Madiraju et al., 2018
= Q.Maetal., 2019

14

oo

1%
i.i.iﬁ‘.i.&

QP CAMBRIDGE



Motivation: How should we group patients?

Example of 3 patients diagnosed with breast cancer (BC)

What if both Patient A and C will have an adverse event (e.g., death) that can be expected by
increases in cancer antigen and mammographic density

no adverse outcomes

(Patient B

BMI 7V V—— oy

Density o—o0—_

L >
\_ time Y,

Py van_der_Schaar
S \LAB

| BC-related Death

: fPatientA )
| BMI W—W

: Density O

1
|

BC-related Death
(Patient C A
BMI
o tme.

our notion of clustering

Key idea: similarity in future outcomes

vanderschaar-lab.com
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Outcome-Oriented Temporal Phenotyping [Lee & vds, icML 2020]
[Lee, Rashbass, vdS, TBME 2021]

New Patient -

q’ime tq

1
1
1

BMI
Antigen i
Density !

I z CVvD
I B
: | time-to-event Past Patients
P
I ) CcvD
| E@g
I time
l
|
l
|
l
NG
i Y
. _Traﬂticialﬁotiin ci PIEnoHpilg ______________
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PH time . I
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time
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Personalized screening/monitoring

Who to Screen? When to Screen? What to Screen?
 Deep Sensing [Yoon, Zame, vdS, ICLR 2018]
 Disease Atlas [Lim, vdS, ML4HC 2018]

Which Modality of Screening?

 [Alaa, Moon, Hsu, vdS, TMM 2016]

Hidden states

Observations g \

Lab test Event of
Interest

1

&P CAMBRIDGE
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Deep Sensing: Active Sensing using multi-directional
recurrent neural networks [voon, zame, vds, ICLR 2018]

* |deas:
* A neural network must learn — at training time — how to issue predictions at various cost-
performance points.
* To do this, it creates multiple representations at various performance levels associated
with different measurement rates (costs).
« Each representation is learned and constructed recursively and adaptively learned by
deliberately introducing missing data

ﬁ&. van_der_Schaar
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Deep sensing architecture

Original Multiple
data (D) Ift[ Prediction (Q,) Representation (U,.)
: nference (M-RNN) RNN)
Data (D,) .| Interpolation (P,.) Imputation (‘¥,.)| ! Adaptive
Tl Bi-RNN CLayer) || Samnli
A 'k i ) (EC Layen .’ Error Estimation (Y,.) am? me
---------------------------------------------------------- g > @'{-RNI‘J:}

Trained functions A = {®,.,¥,, Q,, Y. },_1.r

s ¥
_T_l El:ll_nlg_Sia_g_e ______________ . Select r” based on the o e e e e e .
Runtime Stage Acceptable I acceptable performance level
Performance level
I,f" ““““"“p'“"“"““-“-““"“-“"“"“i“““""-““1‘ \ 4

New Interpolation Imputation Error Prediction Active

Instance | (DP,+) (W) | Estimation (Y;-) () Sensing
A \ ! :

4
-

When / Which measurements should be sensed

.......
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Why is Early Diagnosis and Detection (ED&D) hard?

Patient’s progression
through hidden states

Healthy Emerging pre- Pathology Disease
malignant conditions present progresses

Clinical observations

Genetic Early signs Non-specific Specific
“offset” etc. and indicators symptoms symptoms

Window for risk- Window for detection Window for early-stage Late-st di i based
based mitigation or based on early signs and diagnosis based on non-specific ate-s age.fllagn05|ts ase
prevention indicators signs or symptoms on speciticsymptoms
ﬁ& van_der_Schaar UNIVERSITY OF
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Revolutionizing Healthcare: roundtable on ED&D

Double-header (February 8 and
March 10) on ED&D - one of
healthcare’s holy grails!

Healthcare

\
. Building a shared vision for

i}/\ early detection & diagnosis (1/2)

February 8 2022 roles for machine learning o
ion and diagnosis —— =]
16:00 BST i

https://www.vanderschaar-lab.com/

- Engagement sessions
- Revolutionizing Healthcare

n_der_Schaa
* \lap

Visit our extensive new reference o s e v o e o o i
page On ML fOl' ED&D! Early detection and diagnosis: how

machine learning can bring
healthcare’s holy grail within reach

https://www.vanderschaar-lab.com/
- |Impact

- Early detection and diagnosis

ﬁ&. van_der_Schaar BB UNIVERSITY OF
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Individualized treatment effects over time

Electronic Health

Breast cancer
patient

o

Longitudinal patient features:

Records

Lab test

Treatments administered

Symptoms

Hospital visits

CT scans

= ) Train .
-’ Estimate
N\ P d

\ -’ counterfactual
‘[Patient history ] ‘ Causal inference ] trajectories

Diagnosis (baseline)
information

ﬁ&. van_der_Schaar
5

& \LAB

o model J
g

=

o

>

Y

S

g

= :

Past .
Current time Time

vanderschaar-lab.com

v
Tumor volume

Decide best future treatment plan

1 [ Patient history ] Counterfactual

i outcomes

A e
: ~ \’ .

Predictions

Past

Current time Time

® Chemotherapy ® Radiotherapy

‘‘‘‘‘‘‘
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Individualized treatment effects over time

L How to treat? [ When to give treatment? [ When to stop treatment?
® Chemotherapy ® Radiotherapy
To.: . Counterfactual ? . Counterfactual . '
Patient history Patient history ountcriactua Counterfactual
outcomes outcomes Patient history oteomes
Q

Q Q
2 - z » =
= ° S E

\ o
S > ) g
S @ Best g 'I \\ Best 5 Best
S outcome = AN outcome & @ e
ﬁ @ ~ N ﬁ { outcome

@ / “"\/ )
S S \ /
— 7 — — \
Past Predictions Past Predictions Past Predictions ‘\ .
Current Tin;e Current Tim; Current Time;
(a) Decide treatment plan } (b) Decide optimal time of treatment J (c) Decide when to stop treatment J

ﬁ&. van_der_Schaar
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Causal effect inference based on

longitudinal patient observational data
ﬁ.ongitudinalpatient \

features: Electronic Health

Lab test Records
Treatments
Breast cancer administered
patient *  Symptoms
*  Hospital visits

Longitudinal patient observational data J

@ Time-dependent patient features: Xt = (Xl, .. .Xt)

@ Time-dependent treatments: At = (Al, .. .At) where

O \\ CT scans ‘/
\ , Train
\ /
4 Patient hist Causal inference
{ atien 1sory] —’[ AtE{Aly-“)AK}

model
Diagnosis
(baseline)
information

m Static patient features: V.

Tumor volume

|

Past

|
> - Patient history: I:It = (Xm At—1>V)

Current time  Time

Observed (factual) outcome for treatment A, given patient history H, :Yt+1J

ik

=

I
z.;.aﬁ..u

ﬁ&. van_der_Schaar o
E P CAMBRIDGE
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Challenges in using longitudinal observational data for
estimating individualized outcomes

The patient history H; = (X;, A;_;, V) contains time-dependent confounders
which bias the treatment assignment A in the observational dataset.

Patient covariates - affected by past treatments which then influence future treatments and outcomes

Bias from time-dependent confounders. J

< B
=
2 [
ik ;ﬁa.a.a

aﬁ& van_der_Schaar e
i <P CAMBRIDGE
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Handling time-dependent confounding bias

L Inverse probability of treatment weighting

— Marginal structural models [Robins, Hernan, Brumback, Epidemiology 2000]

— Recurrent marginal structural networks [Lim, Alaa, van der Schaar, NeurlPS 2018]

{f(A¢|Ap-1)
{ f(A¢IHD
= SW(t,0)

f(Ct=0]A¢_1)
f(Ct=0|Lt—1,At-1,X)
=SW*(t,0)

Ae1 He g

Propensity’"ﬁ
Network A;{Li_1,Ai-1,X}

- -—--—"<«---—-—---"-"-"-"-">"""F""F"F\"="-"-"F\"="=-"="-"""-" """ 1

Encoder

—_—————— e —

_ Decoder)|
Yiia l
|

|

Ziy2 Zit3 Zita I
|

|

|

I |
|

Apy3 QApig |

—_—————— e

t‘-‘,-&. van_der_Schaar
¢ \LAB

t-I-T

n (k)| An—

1)

t+71
n|An 1 H Hk 1f
vanderschaar-lab.com

An(k)[Hn)

i
=
2 I
i ;ﬁ;.z.z
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Handling time-dependent confounding bias

L Inverse probability of treatment weighting

— Marginal structural models [Robins, Hernan, Brumback, Epidemiology 2000]

— Recurrent marginal structural networks [Lim, Alaa, van der Schaar, NeurlPS 2018]

L Numerically unstable L High variance

L Representation Learning

— Counterfactual recurrent network [Bica, Alaa, Jordon, van der Schaar, ICLR 2020]

Balanced representations/
L Treatment invariant representations =5 UNIVERSITY OF

1A

P CAMBRIDGE

Py van_der_Schaar ).k
% 5

5! \LAB vanderschaar-lab.com



Counterfactual Recurrent Network (Bica, Alaa, Jordon & van der Schaar,
ICLR 2020]

o L Builds treatment invariant representations using domain adversarial training [Ganin et al., 2016].

= L Estimates counterfactual trajectories using sequence-to-sequence architecture.

At ?t+1

GRL . Gradient reversal layer

Ay

Yt+2 A-t+2 YH—S

Encoder for building the balancing representation Decoder for sequence prediction of treatments effects

ﬁ& van_der_Schaar
J-i&" \ LAB vanderschaar-lab.com
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Which time-series method to select?

a
!j'_i

B8 van_der_Schaar 3
5’ \LAB vanderschaar-lab.com &

What is the challenge?

* RNN cells (e.g. LSTM, GRU)
« Architectures (e.g. Bidirectional, Encoder-decoder)
» Attention or not?

Long or short memory?

Temporal distribution Best model for each time step is
. . . , Ste
shifts, risk factors are » different! Can’t manually select »
changing! the best model for each time step

o o o

Stepwise Model Selection for Sequence Prediction
via Deep Kernel Learning [Zhang, Jarrett, vdS, AISTATS 2020]

pwise Model
Selection

Solution: novel BO algorithm to tackle model selection challenge

BB UNIVERSITY OF
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Select one optimal sequence model for all time steps? No!

Treat performance at each time step as its Black box functions
own black-box function
Hho o 3 - fr

Objective: Model performance at each
time step T T T T
€1 €9 €3 ... | €T
Multi-Objective Bayesian Optimization § " " }
finds one model with best trade-off M
across all objectives *
t t t t
Expensive to compute volume 0O (09 (03 ... OT

gain w.r.t all the objectives ®

Multi-Objective
Other solutions? Bayesian Optimization (MOBO)

BB UNIVERSITY OF

RN g
1%
Pl
ket
&

ﬁ&. van_der_Schaar
ik ¥ CAMBRIDGE
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Apply BO sequentially across time-steps as multi-task? No!

S f2 f3 Ir
I I I I
] €1 €2 1 €3 €T
i t t t
L t t t t i t
01 01 |02 01 (02 [0O3 o7

Multi-Task Bayesian Optimization (MTBO)

© Warm-start: Transfer knowledge gained from previous optimizations to new tasks,
such that subsequent optimizations are more efficient

.....

40
it
At
R

1

ﬁ&. van_der_Schaar
E % CAMBRIDGE
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Apply BO sequentially across time-steps as multi-task? No!

f2 f3 Jr
I I T
€2 1 €3 €r
t I t
t t t t i t

® MTBO requires evaluating deep learning models on large datasets which is prohibitively

expensive

® MTBO requires solving T separate BO procedures in a sequence - unclear how to allocate
evaluations among these subproblems

® MTBO does not take full advantage of information from all acquisition functions

&% van_der_Schaar BB UNIVERSITY OF
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SMS-DKL [zhang, Jarrett, vdS, AISTATS 2020]

A hyperparameter optimization tool for sequence model

h P f3 i
€1 €9 €3 er
t t t t
My, ™ My, — M, — My
t t t t t t t t t t
01 01 09 01 02 O3 01 09 O3 or

Solve the multiple black-box function optimization problem jointly and efficiently by learning
and exploiting correlations among black-box functions using deep kernel learning

Stepwise Model Selection via Deep Kernel Learning — SMS-DKL

!J-g& van_der_Schaar B UNIVERSITY OF
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SMS-DKL [zhang, Jarrett, vdS, AISTATS 2020]

How do we jointly and efficiently learn and exploit correlations among black-box functions?

Dy H; Xt
(01,7,61,7)321 hl,t
(02,7, 62,7)3:1 1 Ji h2,t
(03.7,€3.,)5 4 —  RNN —+h;; — DeepSets — 2z —  MLP

1~ 1

(OI,T7€I,T)T:1 )t 8t

Idea: Using deep kernel learning
Create feature maps to measure similarities between data tuples

BH UNIVERSITY OF

QP CAMBRIDGE

ﬁ& van_der_Schaar
J-E'J" \ LAB vanderschaar-lab.com



Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Engagement sessions: Inspiration Exchange

Inspiration Exchange

Themed discussion sessions specifically for
machine learning students (particularly
sessions masters, Ph.D., and post-docs).

Engagement

We would like to:

- discuss machine learning models and techniques
- share ideas about how machine learning can
vanderschaar-lab.com/ revolutionize healthcare

- Engagement sessions
- Inspiration Exchange

- spark new projects and collaborations
- raise awareness about this unique and exciting
area of machine learning.

BB UNIVERSITY OF
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Morbidity networks: personalized and dynamic

Personalized morbidity networks

POp“lation'leve| | Depressive disorder .
[ (] I g ‘Il—
morbidity network 8 | g
o i 8 |
| 5
| o
= 2 1
® B |
L]
) b
o s |
| o~
= el
w o |
g
O 3
| o~
> | =1
w - 1
ol 8
| -
— o™
= W
0w B |
w ! R
s g
o | 5
!
Age I I I I I | | | I | I Attention weights
i i o sl " iy - 65 70 75 <01 <05 >05
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Deep Diffusion Processes (DDP) [qian, Alaa, vds, AISTATS 2020]

Dynamic comorbidity network DDP Transmission function
Time step (, Time step ¢, Time step t;

De4.9

O E11.9

170.209 £y Ly ts Time

DDP models temporal relationships between comorbid disease onsets expressed through a
dynamic graph

DDP comprises events modelled as a multidimensional point process, with an intensity
function parameterized by the edges of a dynamic weighted graph.

!J-g& van_der_Schaar B UNIVERSITY OF
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Objective: sequential confidence intervals for RNNs

Predictive intervals for Recurrent Neural Networks (RNNs).

Point prediction

RNN model RNN predictions Yoo
"""""" A. Confidence
Input - T T interval
—) - ;9 * | C
U P
Hidden . ® .
states : - = e : ®
¢ P = H
- L e =
Output :_ —
| | | | | | | | | | | | |
| | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13
Time step
ﬁ& van_der_Schaar B UNIVERSITY OF
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Frequentist Uncertainty in Recurrent Neural Networks via
Blockwise Influence Functions [aiaa & vds, iIcML 2020]

Uncertainty intervals = variability in re-sampled RNN outputs.
RNN outputs are re-sampled by perturbing the model parameters through iterative deletion
of blocks of data and re-training the model on the remaining data

Block deletion RNN model re-training RNN predlgtlon re-
sampling
Sequence Point -
prediction € N\
Yy A
... ¢
"""""" a" Confidence
;‘ interval
~ A
""""""" ¢ Ci
Perturbed Re-sampl; d ' )
RNN models prediction
ﬁ& van_der_Schaar 3. UNIVERSITY OF
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Previous work

Bayesian RNNs Quantile RNNs

Prior over RNN parameters
Uncertainty = credible intervals

Explicitly train a multi-output RNN to
predict intervals

Prior
distribution
Posterior
distribution

Posterior is intractable =

Monte Carlo dropout
(Gal & Ghahramani, 2016)

Quantile loss for RNN training
(Gasthaus et al., 2019)

Py van_der_Schaar
¢ \LAB

vanderschaar-lab.com

Probabilistic RNNs

Combine RNNs with variants of
state-space models

h:(0) +
e Probabilistic model

Attentive state-space model (Alaa
& van der Schaar, 2019)

Deep state-space model
(Rangapuram et al., 2018)

‘‘‘‘‘‘‘
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How is our approach different?

L. RNN model Uncertainty estimates
Post-hoc application (input) (output)

B Does not affect model accuracy

B Does not interfere with model training ‘ Uncertainty
quantification

Loss

gradient

|\ » .. \\'...vsw_..\._l

Generality and versatility

B Does not require changes to model architecture

B Applies to a wide range of sequence prediction settings SR LSTm &

Frequentist coverage guarantees

B Formal frequentist procedure
[Stankeviciate, Alaa, vdS, NeurlPS 2021]

1A b

-
t%
)
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Multi-directional RNN (M-RNN) (voon, zame, vds, TBME 2018]

Time

O@O
OO®
@0
®0O®
O®O

Temporal data streams

* Interpolation — temporal correlations
- Imputation —cross-features correlations
- Both correlations must be simultaneously learned

1

1A

B8 van_der_Schaar
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Multi-directional RNN (M-RNN) (voon, zame, vds, TBME 2018]

)

Xt 1 P Xti1 / , 5
| [ yo T
aye ayers

c FC FC FC
2 Lay: Layers Lay
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Multi-directional RNN (M-RNN) (voon, zame, vds, TBME 2018]

| |
» Correlations across features: ’5 %
FC network l <
j ~ Dropous
* Multiple imputations: ? o
Dropout i e
P

—

v |
-~

a,

I

=

QU

QU

+

=

< uonejodiauy

Bi-RNN and FCN are jointly optimized

5.5 UNIVERSITY OF
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Can we do better? Learn from clinical judgements!
[Alaa, Hu, vdS, ICML 2017]

Data - shaped by clinical judgments!
Probabilistic model for learning from observational data

— 110 -
E ° Informative sampling:
£ 100 + . . .
g ° Time-varying sampling
g 90 ° frequency
= -
g 80 1 ] -
i L
% 70 o an® “ ¥ 00 e m -
i ' [
B0 - &

—250 —200 ~150 ~100 —50 0
Time {hours)

Model a patient’s trajectory as a marked point process modulated by their health state

.....

1
1%
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ket
&
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Elements of the probabilistic model (l):
the observation process

- Nature of Informative Sampling is Problem-dependent

- E.g. Cancer patient in regular hospital wards: evidence that
sampling rate increases when patient is in a bad health state

ICU admission onset

- Hospitalization in regular ward .IQ Intensive Care =

Patient A ! ! : ! !

1
| I I h

w
=
20
w
-
-8 ~150 -100 -50 0 50 100 150
B £ Time (hours)

-+~
L oo & Hospitalization in regular ward >
= : : s ,
& 'E, Patient B Discharge onset
a - © GBINNS CoNmENED ¢ ® ° ® ° ° ] . . . .
E E ¢ Patient A: clinically deteriorating

w

| L 1 | | 1 1 | L
45 —40 _35 -30 —25 -20 -15 -10 -5 0 e Patient B: clinically stable patient

Time (hours)

i

=

i
i.i.iﬁi.&.i

ﬁ& van_der_Schaar o
ik qP CAMBRIDGE

5’ \ LAB vanderschaar-lab.com



Elements of the probabilistic model (ll):
the observation process

Clinicians observe the patient’s vital signs and lab tests according to a Hawkes process

t N
...doubly stochastic tm }men, X (1)

point process X,

Captures impact of
patient’s health state on
clinicians’ sampling behavior

...with a self-exciting
Triggering kernel A(t,

Captures dependence
between observation events A(t) }\

ﬁ&. van_der_Schaar
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Time-series: a multi-faceted problem

1)
2)
3)
4)
5)
6)
7)
8)
9)

Dynamic forecasting

Time-to-event and survival analysis
Clustering and phenotyping

Screening and monitoring

Early diagnosis

Treatment effects

AutoML

Interpretability

Discovery and understanding of event data

10) Uncertainty estimation

11) Missing data and informatively missing data
12) Synthetic data generation

- Reproducibility and visualization
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Healthcare data: not easy to access

m Strict regulations for data access

m ..the result of perfectly valid concerns regarding privacy

A

Impossible to share directly

Data holders
(e.g., hospitals)

—
-—

Private data

COMPLIANCE

Health Insurance Portability
and Accountability Act

ML Community

Strong Regulation

@ But we need data to develop analytics and facilitate reproducible research



Overview of our work on synthetic data

Introduction for a variety of audiences

Outlines the importance of synthetic
data; explores and summarizes recent
cutting-edge synthetic data
approaches and methods |

Links to a range of additional
resources
- vision, papers, software

vanderschaar-lab.com/

- Research pillars
- Synthetic data

I a guardians would no longer need to worry about whether or not to trust individual data users, and could ultimately reap the benefits of new healthcare tools devel:

T UNIVERSITY OF
P CAMBRIDGE
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New Frontiers: Healthcare problems (and models) are
interconnected

Dynamic
forecasting

Survival
analysis

Clustering &
phenotyping

Time
e SEries
data

Treatment
effects

Screening &
monitoring

Early
diagnosis

BB UNIVERSITY OF
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More information and updates

van_der_Schaar
\LAB

Thelb  Publiatons  Bigideas News Videos Events Software  Engagementsessions Tutorals  Researchpilars  Spotights  Hubfor Heal

Overview of our work on time series models

Introduction for a variety of audiences , Hub for

Healthcare

Explores the “cross-sectional” interactions between time
series and many other areas of research

vanderschaar-lab.com/

- Research pillars
- Time series

X Find the full paper here

] UNIVERSITY OF
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Individual

At scale

Patient-oriented

Profession-oriented

Bespoke medicine

e Riskscores

* Competing risks

e Screening and monitoring

* Diagnostic support

* Longitudinal disease trajectories
e Treatment effects

Empowering healthcare
professionals

e Personalised ML assistants to

support clinicians

* Interpretable, explainable,

trustworthy

*  Multi-disciplinary clinical

contributions

Population health and public
health policy

* Discover & disentangle public risks and
risk factors

* Population risk assessment >
personalized risk

* Data-driven guidelines, protocols,
standards

* Cross-country learning and interventions

Systems, pathways and

processes

Improving healthcare pathways
Integrating and curating data sources
Integrating a multitude of analytics
into delivery systems

Cooperation, interaction and
learning

!ﬁ&' van_der_Schaar
5
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Catalyze
a revolution
in healthcare

.......
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Want to learn more?

Inspiration Exchange

Themed discussion sessions specifically for
machine learning students (particularly
sessions masters, Ph.D., and post-docs).

Engagement

We would like to:

- discuss machine learning models and techniques
- share ideas about how machine learning can
vanderschaar-lab.com/ revolutionize healthcare

- Engagement sessions
- Inspiration Exchange

- spark new projects and collaborations
- raise awareness about this unique and exciting
area of machine learning.
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