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“If  it were not for the great variability between individuals, 
medicine might as well be a science, not an art” 

Sir William Osler (1892)
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Variabilities between individuals
- Different genetic background
- Different environmental exposures
- Different life-styles
- Different histories and interventions

etc.

The “art” of  medicine has been to make judgements on       
the basis of  this information to manage patients

What machine learning can do is turn this art into a science!

Lead to
- Different risks (and different risks over time)
- Variation in symptoms 
- Different health and disease trajectories
- Different responses to treatment

etc.
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1) deliver precision medicine at the patient level
2) understand the basis and trajectories of  health and disease
3) empower healthcare professionals and patients
4) inform and improve clinical pathways, better utilize resources & 

reduce costs
5) transform population health and public health policy  
6) enable new discoveries – clinical, therapeutics

Machine learning can transform healthcare
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Machine learning 

…can’t do medicine! 

...can provide interpretable, trustworthy actionable information!

Data

Machine learning 
algorithms

Clinical
practice

Personalized risk scores

Personalized treatment recommendations

Data-driven hypotheses

Trustworthy
recommendations

The “augmented” clinician, researcher, patient
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Engagement sessions: Revolutionizing Healthcare
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A healthcare ecosystem powered by Machine Learning (ML)

Time-series in healthcare
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Overview



How can ML transform healthcare delivery?

Getting the right care to the right patients

Achieving the best outcomes at the lowest cost

This is possible through
 personalization (for patients, clinicians, and healthcare entities)
 learning at scale; 
 identifying better ways of  working and inefficiencies; 
 providing concrete policies for improvement
 optimal allocation of  resources (over time)
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Why is now the right time?

Machine learning methods have come of  age and are ready to be used

Unprecedented access to diverse sources of  valuable info, including:
 clinical notes
 electronic health records
 clinical registries
 prescription info
 appointment info
 wearables

The COVID-19 pandemic has accelerated digital info collection
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A healthcare ecosystem powered by Machine Learning 
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Personalized, comprehensive care with machine learning

Machine learning can offer personalized 
 forecasts
 screening
 monitoring
 treatment plans
 recommendations
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e.g.
 Adjutorium
 AutoPrognosis
 Clairvoyance



Integrated care:
– Prevention
– Screening
– (Early) Diagnosis 
– Treatment
– Monitoring

Multiple venues/areas:
– In-patient/out-patient
– At home

Many stakeholders in every 
stage of  care

– Clinicians, nurses
– Healthcare planners
– Patients!

An integrated clinical decision support ecosystem using machine learning to 
provide patient-level recommendations and support

Actionable intelligence across the patient pathway

vanderschaar-lab.com



Time-series: a multi-faceted problem
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Dynamic 
forecasting

Treatment 
effects

Survival 
analysis

Clustering & 
phenotyping

Screening & 
monitoring

Early 
diagnosis

Time 
series 
data



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem

vanderschaar-lab.com

Part 1: tailoring development of  
time series models to healthcare 
challenges

Part 2: making time series models 
as useful as possible



More information and updates
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Overview of  our work on time series models

Introduction for a variety of  audiences

Explores the “cross-sectional” interactions between time 
series and many other areas of  research
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 Research pillars
 Time series



Part 1: 
tailoring development of  time series models 

to healthcare challenges
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Time-series: a multi-faceted problem
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization



• Multiple streams of  measurements
• Measurements are sparse, irregularly and informatively sampled
• Multiple outcomes of  interest (various events of  interest, various morbidities)
• True clinical states are unobserved (e.g., onset of  diseases)
• Many possible patterns (heterogeneous phenotypes, comorbidities)

Healthcare data - Unique challenges
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• Build disease progression models 
• Understand and model carefully the available data!

• Learn the model parameters from available EHR data (Training time)

• Issue dynamic forecasts for the patient at hand (Test time/Run-time)

• Unravel new understanding of  disease progression 
• Population 
• Sub-groups of  patients
• Personalized Input data

(time-series)

Observational EHR data +
clinical knowledge

Dynamic
forecasts

Disease progression 
model

Time-series analysis and dynamic forecasting
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Markov Models

Current disease progression models: formalisms 

Disadvantages
• Observable models
• One disease at a time
• “Average” patient

Population-level representation 
of  disease states
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Hidden Markov Models (HMMs)

Introducing latent (hidden/unobservable) disease states

Disease Stages

Clinical findings
Lab measurements
Vital signs
Treatments
Events of  interest
Observation times

Current disease progression models: formalisms 
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24

Ignore history  
- Previous states
- Order of  states
- Duration in a state

Pathological 
event 1

Pathological 
event 2

Pathological
event 1

Pathological
event 2

Most likely future 
Disease A

Most likely future 
Disease B

History matters! One size fits all!

Only capture population-level 
transitions across progression stages
Ignores individual clinical trajectories

Markov models?
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Deep learning models?



Observable 
models

RETAIN

RNN

No latent structure

Interpretable predictions, 
Uninterpretable latent 

structure

Uninterpretable predictions, 
Uninterpretable latent 

structure

Deep learning models?
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Goal A: Accurately forecasting individual-level disease trajectories

Goal B: Understanding disease progression mechanisms.

What are the risks of  mortality, relapse, comorbidities, complications, etc. in 
the future? 

Underlying latent structure of  disease evolution

Causal pathways and comorbidity networks

Patients’ subgroup analysis

Refined phenotypes

Two central goals of  longitudinal models
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Main idea: a general and versatile deep probabilistic model capturing 
complex, non-stationary representations for patient-level trajectories

Maintain probabilistic structure of  HMMs But use RNNs to model state dynamics

Emission Transition

Attentive state space models [Alaa & vdS, 2018, NeurIPS 2019]
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• Attention weights determine the influences of  past state realizations 
on future state transitions

• PASS repeatedly updates attention weights to focus on past state

Attention weights Patient context

v

vanderschaar-lab.com

Going beyond Markov



Attention weights create a "soft" version of  a non-stationary, variable-order Markov model where 
underlying dynamics of  a patient change over time based on an individual’s clinical context!

Attention weights Patient context

ASSM - “memory” is shaped by patient’s current context (clinical events, treatments, etc.) 

Overcomes shortcoming of  Markov Models
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Variable-order 
HMM 

(Context Trees)

DT-HMMCT-HMM

Multi-task
RNN

HSMM,
HASMM

Sequential
Hypothesis 

Testing

Deep Markov 
Model

Autoregressive 
Models

ASSM

[Alaa and van der Schaar, 2016]

[Alaa and van der Schaar, 
2018]

[Hoiles and van der Schaar, 2016]
[Alaa and van der Schaar, 2017]

[Lim and van der Schaar, 2018]

ASSM: A General, Versatile and Clinically Actionable Model
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Dynamic-DeepHit [Lee & vdS, TBME 2019]
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Longitudinal survival data:
 𝒳𝒳𝑖𝑖: History of  longitudinal measurements until time the last measurement

– 𝒳𝒳𝑖𝑖 𝑡𝑡 = {𝑥𝑥𝑖𝑖 𝑡𝑡𝑗𝑗𝑖𝑖 : 0 ≤ 𝑡𝑡𝑗𝑗𝑖𝑖 ≤ 𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,⋯ ,𝑀𝑀𝑖𝑖} where 𝑀𝑀𝑖𝑖 is the number of  measurements.

 𝜏𝜏 : Time-to-event including right-censoring

 𝑘𝑘 : Event label

New goal: Estimate “dynamic” Cumulative Incidence Function

𝒟𝒟 = 𝒳𝒳(𝑖𝑖), 𝜏𝜏(𝑖𝑖),𝑘𝑘(𝑖𝑖)
𝑖𝑖=1
𝑁𝑁

�𝐹𝐹𝑘𝑘 𝜏𝜏 𝒳𝒳∗ ≝ 𝑃𝑃 𝑇𝑇 ≤ 𝜏𝜏,𝐸𝐸 = 𝑘𝑘 𝒳𝒳∗,𝑇𝑇 > 𝑡𝑡𝑀𝑀∗
∗

The patient was alive at the 
time of the last measurement!

Longitudinal measurements 
accrued by the time of risk 
predictions 



Dynamic-DeepHit [Lee & vdS, TBME 2019]
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Longitudinal survival data:
 𝒳𝒳𝑖𝑖: History of  longitudinal measurements until time the last measurement

– 𝒳𝒳𝑖𝑖 𝑡𝑡 = {𝑥𝑥𝑖𝑖 𝑡𝑡𝑗𝑗𝑖𝑖 : 0 ≤ 𝑡𝑡𝑗𝑗𝑖𝑖 ≤ 𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,⋯ ,𝑀𝑀𝑖𝑖} where 𝑀𝑀𝑖𝑖 is the number of  measurements.

 𝜏𝜏 : Time-to-event including right-censoring

 𝑘𝑘 : Event label

New goal: Estimate “dynamic” Cumulative Incidence Function

𝒟𝒟 = 𝒳𝒳(𝑖𝑖), 𝜏𝜏(𝑖𝑖),𝑘𝑘(𝑖𝑖)
𝑖𝑖=1
𝑁𝑁

�𝐹𝐹𝑘𝑘 𝜏𝜏 𝒳𝒳∗ ≝ 𝑃𝑃 𝑇𝑇 ≤ 𝜏𝜏,𝐸𝐸 = 𝑘𝑘 𝒳𝒳∗,𝑇𝑇 > 𝑡𝑡𝑀𝑀∗
∗

The patient was alive at the 
time of the last measurement!

Longitudinal measurements 
accrued by the time of risk 
predictions 

Estimation of  the incidence of  the occurrence of  an event
while taking competing risks into account!



Dynamic-DeepHit [Lee & vdS, TBME 2019]
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Network architecture and loss functions
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Loss functions:

 Prediction loss (ℒ3): 
penalizes error on the step-ahead predictions

Step-ahead 
Prediction loss

ℒ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ℒ1 + ℒ2 + ℒ3

Log-likelihood of joint 
TTE distribution

Ranking loss

where or

Dynamic-DeepHit [Lee & vdS, TBME 2019]

Network architecture and loss functions



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Motivation: How should we group patients?

vanderschaar-lab.com

Example of  3 patients diagnosed with breast cancer (BC)
Should we group patients based on similarity in the time-series observations?

conventional notion of  clustering
Key idea: similarity in time-series observations

Autoencoder-based approaches 
 N. S. Madiraju et al., 2018
 Q. Ma et al., 2019

(e.g. dynamic time warping,  auto-encoders)



Motivation: How should we group patients?
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Example of  3 patients diagnosed with breast cancer (BC)
What if  both Patient A and C will have an adverse event (e.g., death) that can be expected by 
increases in cancer antigen and mammographic density

our notion of  clustering
Key idea: similarity in future outcomes

no adverse outcomes BC-related Death BC-related Death



Outcome-Oriented Temporal Phenotyping [Lee & vdS, ICML 2020]
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Outcome-Oriented Temporal Phenotypes

[Lee, Rashbass, vdS, TBME 2021]



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Lab test Event of  
Interest

Personalized screening/monitoring
Who to Screen? When to Screen? What to Screen?
• Deep Sensing [Yoon, Zame, vdS, ICLR 2018] 
• Disease Atlas [Lim, vdS, ML4HC 2018]
Which Modality of  Screening? 
• [Alaa, Moon, Hsu, vdS, TMM 2016]
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• Motivation:
• Monitoring and screening (sensing) is costly
• Trade-off  between value of  information and cost of  sensing
• Sensing should be an active choice

• Challenges:
• Value of  information is unknown & dynamically changing – needs to be learned!

• Ideas:
• A neural network must learn – at training time – how to issue predictions at various cost-

performance points. 
• To do this, it creates multiple representations at various performance levels associated 

with different measurement rates (costs). 
• Each representation is learned and constructed recursively and adaptively  learned by 

deliberately introducing missing data

Deep Sensing: Active Sensing using multi-directional 
recurrent neural networks [Yoon, Zame, vdS, ICLR 2018]
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Deep sensing architecture
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Why is Early Diagnosis and Detection (ED&D) hard?
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Revolutionizing Healthcare: roundtable on ED&D
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Double-header (February 8 and 
March 10) on ED&D – one of  
healthcare’s holy grails!

https://www.vanderschaar-lab.com/ 
 Engagement sessions

 Revolutionizing Healthcare

Visit our extensive new reference 
page on ML for ED&D!

https://www.vanderschaar-lab.com/ 
 Impact

 Early detection and diagnosis



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Chemotherapy Radiotherapy

Decide best future treatment plan

Tu
m

or
 v

ol
um

e

c

Counterfactual 
outcomes

Patient history

TimeCurrent time
Past Predictions

Longitudinal patient features:
• Lab test
• Treatments administered
• Symptoms
• Hospital visits
• CT scans

Breast cancer 
patient

Tu
m

or
 v

ol
um

e

Patient history

TimeCurrent time
Past

Diagnosis (baseline) 
information

Causal inference 
model

Electronic Health 
Records

Train
Estimate 

counterfactual 
trajectories

Individualized treatment effects over time
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Chemotherapy Radiotherapy
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Time
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c

Counterfactual 
outcomes

Patient history Counterfactual 
outcomes

Counterfactual 
outcomes

Patient history Patient history

TimeCurrent    
time

Current    
time

Time Current    
time

Past Predictions Past PredictionsPast Predictions

Best 
outcome

Best 
outcome

Best 
outcome

How to treat? When to give treatment? When to stop treatment?

(a) Decide treatment plan (b) Decide optimal time of  treatment (c) Decide when to stop treatment

Individualized treatment effects over time
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Observed (factual) outcome for treatment         given patient history        :

Time-dependent patient features:

Time-dependent treatments:

Patient history:

where

Static patient features:

Longitudinal patient 
features:
• Lab test
• Treatments 

administered
• Symptoms
• Hospital visits
• CT scans

Breast cancer 
patient

Tu
m

or
 v

ol
um

e

Patient history

TimeCurrent time
Past

Diagnosis 
(baseline) 

information

Causal inference 
model

Train

Electronic Health 
Records Longitudinal patient observational data

Causal effect inference based on 
longitudinal patient observational data
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The patient history                                         contains time-dependent confounders 
which bias the treatment assignment         in the observational dataset. 

Bias from time-dependent confounders. 

Patient covariates - affected by past treatments which then influence future treatments and outcomes

Challenges in using longitudinal observational data for 
estimating individualized outcomes
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Inverse probability of  treatment weighting 

Marginal structural models [Robins, Hernan, Brumback, Epidemiology 2000]

Recurrent marginal structural networks [Lim, Alaa, van der Schaar, NeurIPS 2018]

Handling time-dependent confounding bias
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Inverse probability of  treatment weighting 

Marginal structural models [Robins, Hernan, Brumback, Epidemiology  2000]

Recurrent marginal structural networks [Lim, Alaa, van der Schaar, NeurIPS 2018]

Representation Learning

Counterfactual recurrent network [Bica, Alaa, Jordon, van der Schaar, ICLR 2020]

Balanced representations/
Treatment invariant representations

Numerically unstable High variance

Handling time-dependent confounding bias
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Estimates counterfactual trajectories using sequence-to-sequence architecture.

Builds treatment invariant representations using domain adversarial training [Ganin et al., 2016].

Counterfactual Recurrent Network [Bica, Alaa, Jordon & van der Schaar, 
ICLR 2020]
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Part 2: 
making time series models as useful as possible
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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What is the challenge?

Stepwise Model 
Selection

Temporal distribution 
shifts, risk factors are 

changing!

Best model for each time step is 
different! Can’t manually select 

the best model for each time step

RNN cells (e.g. LSTM, GRU)
Architectures (e.g. Bidirectional, Encoder-decoder) 
Attention or not?
Long or short memory? 

Stepwise Model Selection for Sequence Prediction 
via Deep Kernel Learning [Zhang, Jarrett, vdS, AISTATS 2020]

Solution: novel BO algorithm to tackle model selection challenge

Which time-series method to select?
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Objective: Model performance at each 
time step

Multi-Objective Bayesian Optimization 
finds one model with best trade-off  
across all objectives

Expensive to compute volume 
gain w.r.t all the objectives 

Black box functions

Multi-Objective
Bayesian Optimization (MOBO)Other solutions?

Treat performance at each time step as its 
own black-box function

Select one optimal sequence model for all time steps? No!
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Multi-Task Bayesian Optimization (MTBO)

Warm-start: Transfer knowledge gained from previous optimizations to new tasks,
such that subsequent optimizations are more efficient

Apply BO sequentially across time-steps as multi-task? No!
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 MTBO requires evaluating deep learning models on large datasets which is prohibitively
expensive

 MTBO requires solving T separate BO procedures in a sequence - unclear how to allocate
evaluations among these subproblems

 MTBO does not take full advantage of information from all acquisition functions

Apply BO sequentially across time-steps as multi-task? No!
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A hyperparameter optimization tool for sequence model

Solve the multiple black-box function optimization problem jointly and efficiently by learning 
and exploiting correlations among black-box functions using deep kernel learning 

Stepwise Model Selection via Deep Kernel Learning – SMS-DKL

SMS-DKL [Zhang, Jarrett, vdS, AISTATS 2020]
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Idea: Using deep kernel learning 
Create feature maps to measure similarities between data tuples

SMS-DKL [Zhang, Jarrett, vdS, AISTATS 2020]

How do we jointly and efficiently learn and exploit correlations among black-box functions?
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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vanderschaar-lab.com

vanderschaar-lab.com/
 Engagement sessions
 Inspiration Exchange

Engagement sessions: Inspiration Exchange



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Personalized morbidity networks
Population-level 

morbidity network

Morbidity networks: personalized and dynamic
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DDP models temporal relationships between comorbid disease onsets expressed through a 
dynamic graph
DDP comprises events modelled as a multidimensional point process, with an intensity 
function parameterized by the edges of  a dynamic weighted graph. 

Deep Diffusion Processes (DDP) [Qian, Alaa, vdS, AISTATS 2020]
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Predictive intervals for Recurrent Neural Networks (RNNs). 

RNN model

Input

Hidden 
states

Output

Time step

Confidence 
interval

Point prediction

1 2 3 4 5 6 7 8 9 10 11 12 13

RNN predictions

Objective: sequential confidence intervals for RNNs
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Uncertainty intervals =  variability in re-sampled RNN outputs.
RNN outputs are re-sampled by perturbing the model parameters through iterative deletion 
of  blocks of  data and re-training the model on the remaining data

Perturbed 
RNN models

Sequence

1

2

3

4

5

6

7

Block deletion RNN model re-training
RNN prediction re-

sampling

Confidence 
interval

Point 
prediction

Re-sampled 
prediction

Frequentist Uncertainty in Recurrent Neural Networks via 
Blockwise Influence Functions [Alaa & vdS, ICML 2020]
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Bayesian RNNs Quantile RNNs Probabilistic RNNs

Prior 
distribution

Posterior 
distribution

Prior over RNN parameters
Uncertainty = credible intervals

Posterior is intractable =               
Monte Carlo dropout                          
(Gal & Ghahramani, 2016)

Probabilistic model

Combine RNNs with variants of  
state-space models

Attentive state-space model (Alaa 
& van der Schaar, 2019)

Deep state-space model  
(Rangapuram et al., 2018)

Explicitly train a multi-output RNN to 
predict intervals

Quantile loss for RNN training                         
(Gasthaus et al., 2019)

Previous work

vanderschaar-lab.com



Post-hoc application

Generality and versatility

Frequentist coverage guarantees

Does not affect model accuracy

Does not interfere with model training

Does not require changes to model architecture

Applies to a wide range of  sequence prediction settings

Formal frequentist procedure

Uncertainty 
quantification

RNN model 
(input)

Uncertainty estimates 
(output)

Loss 
gradient

RNN LSTM GRU

How is our approach different?

vanderschaar-lab.com

[Stankevičiūtė, Alaa, vdS, NeurIPS 2021]



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem

vanderschaar-lab.com



• Interpolation – temporal correlations
• Imputation –cross-features correlations
• Both correlations must be simultaneously learned

Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]

vanderschaar-lab.com



Sequentially operates across streams and within streams

Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]

vanderschaar-lab.com

Timing of  inputs into hidden layers is both lagged in forward direction and 
advanced in the backward direction



Bi-RNN and FCN are jointly optimized

• Correlations across features:

FC network

• Multiple imputations:

Dropout

Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]

vanderschaar-lab.com



Objective: Learning an Early Warning Score
From Observational Data! 

Model a patient’s trajectory as a marked point process modulated by their health state

Data - shaped by clinical judgments!
Probabilistic model for learning from observational data

vanderschaar-lab.com

Can we do better? Learn from clinical judgements!
[Alaa, Hu, vdS, ICML 2017]

Informative sampling:
Time-varying sampling 

frequency



Evidence for the Informative Sampling Hypothesis?

• Nature of  Informative Sampling is Problem-dependent

• E.g. Cancer patient in regular hospital wards: evidence that 
sampling rate increases when patient is in a bad health state

vanderschaar-lab.com

Elements of  the probabilistic model (I):
the observation process



Clinicians observe the patient’s vital signs and lab tests according to a Hawkes process

…doubly stochastic 
point process

…with a self-exciting
Triggering kernel

Time

Time

Captures impact of  
patient’s health state on 

clinicians’ sampling behavior

Captures dependence 
between observation events

Elements of  the probabilistic model (II):
the observation process

vanderschaar-lab.com



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Discovery and understanding of  event data
10) Uncertainty estimation
11) Missing data and informatively missing data 
12) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem

vanderschaar-lab.com



Healthcare data: not easy to access

• But we need data to develop analytics and facilitate reproducible research 

• Strict regulations for data access

• …the result of perfectly valid concerns regarding privacy

Private data
ML Community

Strong Regulation

Data holders 
(e.g., hospitals)

Impossible to share directly



Introduction for a variety of  audiences

Outlines the importance of  synthetic 
data; explores and summarizes recent 
cutting-edge synthetic data 
approaches and methods

Links to a range of  additional 
resources
- vision, papers, software

vanderschaar-lab.com/
 Research pillars
 Synthetic data

Overview of  our work on synthetic data

vanderschaar-lab.com



New Frontiers: Healthcare problems (and models) are 
interconnected

vanderschaar-lab.com

Dynamic 
forecasting

Treatment 
effects

Survival 
analysis

Clustering & 
phenotyping

Screening & 
monitoring

Early 
diagnosis

Time 
series 
data



More information and updates

vanderschaar-lab.com

Overview of  our work on time series models

Introduction for a variety of  audiences

Explores the “cross-sectional” interactions between time 
series and many other areas of  research

vanderschaar-lab.com/
 Research pillars
 Time series



Individual

At scale

Patient-oriented Profession-oriented

Bespoke medicine Empowering healthcare 
professionals

Population health and public 
health policy

Systems, pathways and 
processes

• Risk scores
• Competing risks 
• Screening and monitoring
• Diagnostic support 
• Longitudinal disease trajectories
• Treatment effects 

• Personalised ML assistants to 
support clinicians

• Interpretable, explainable, 
trustworthy

• Multi-disciplinary clinical 
contributions

• Improving healthcare pathways
• Integrating and curating data sources
• Integrating a multitude of analytics 

into    delivery systems
• Cooperation, interaction and 

learning

• Discover & disentangle public risks and 
risk factors

• Population risk assessment 
personalized risk

• Data-driven guidelines, protocols, 
standards

• Cross-country learning and interventions

Catalyze
a revolution
in healthcare

vanderschaar-lab.com



vanderschaar-lab.com

Want to learn more?

vanderschaar-lab.com/
 Engagement sessions
 Inspiration Exchange


