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Scheduling objectives

t

δi

Ci

completion time: Ci

due date (deadline): δi
lateness: Li = Ci − δi
(weighted) tardiness:
Ti = max {0,Ci − δi}

Cmax = max
i
{Ci}

F =
∑
i

(wi )Ci

Lmax = max
i
{Li}

T =
∑
i

(wi )Ti
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Earliness and tardiness costs

Assume the due date δi is given for each item i .

t

δi Ci

Ci − δi > 0

Item i is completed late.

”Tardiness” costs:

financial penalties

loss of order / client

loss of reputation

Non-decreasing function ft(ti ) where

ti =

{
Ci − δi if Ci > δi

0 otherwise
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Objective function

minimize
n∑

i=1

(fe(ei ) + ft(ti ))

Some special cases:

linear cost functions
∑n

i=1(αiei + βi ti )

total absolute deviation
∑n

i=1 |Ci − δi |
scheduling around a common due date

∑n
i=1 |Ci − δ| (Kanet 1981, Hall, Kubiak

and Sethi 1991, Hoogeveen, van de Velde 1991)
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Scheduling with a common due date

minimize
∑n

i=1 |δ − Ci |
U - set of independent, nonpreemptable jobs, |U| = n
pi - processing time of job i , i = 1, . . . , n
δ - (large) common due date

Algorithm (Kanet, 1981)
B ← A← ∅;
while (U ̸= 0) do

remove a job k from U such that pk = maxi{pi};
insert job k into the last position in B;
if (U ̸= ∅) do

remove a job k from U such that pk = maxi{pi};
insert job k into the first position in A;

end

end

S ← (B,A);

end.
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i 1 2 3 4 5

pi 7 12 5 4 10

δ = 39

t

δ = 39t0 = 16

J3J4 J5J1J2

δ ”restrictive” (δ < 23) – NP-hard
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Properties of optimal schedules with common due date

the longest job is scheduled first,

V-shaped order of jobs,
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Computational complexity

Problem Complexity

Qm|δi = δ|
∑

(αei + βti ) O(nlogn)

1|δi = δres |
∑
|Ci − δi | NP-hard

1||
∑
|Ci − δi | NP-hard
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Objective function

minimize
n∑

i=1

(fe(ei ) + ft(ti ))

Some special cases:

linear cost functions
∑n

i=1(αiei + βi ti )

total absolute deviation
∑n

i=1 |Ci − δi |
scheduling around a common due date

∑n
i=1 |Ci − δ| (Kanet 1981, Hall, Kubiak

and Sethi 1991, Hoogeveen, van de Velde 1991)

non-linear cost functions
∑n

i=1 |Ci − δ|α, α ∈ R
α ≥ 2 NP-hard (Kubiak 1993)
α ≤ 1 polynomially solvable (for all concave functions)
1 < α < 2 open
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Mass production and personalized orders

10%

15%

50%

25%

Let us assume that assembly of each variant takes the same amount of time (1
unit) and that we need a schedule for 20 time units.
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Mass production and personalized orders

10% 2 pcs.

15% 3 pcs.

25% 5 pcs.

50% 10 pcs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Goal: The number of items completed up to time t as close as possible to amount
proportional to product rate.
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Notation

D total demand
n number of product variants
di demand of variant i , i = 1, . . . , n

ri =
di
D product rate of variant i , i = 1, . . . , n

xit
number of items of variant i , i = 1, . . . , n
completed up to time t, t = 1, . . . ,D

Ideal number of copies of variant i completed up to time t equals tri .

The goal is to minimize the deviation from this ideal.
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Mathematical model

minimize
n∑

i=1

D∑
t=1

|xit − tri |

minimize
n∑

i=1

D∑
t=1

(xit − tri )
2

minimize max
1≤i≤n

max
1≤t≤D

|xit − tri |

subject to:

n∑
i=1

xit = t, t = 1, . . . ,D

0 ≤ xit+1 − xit ≤ 1, i = 1, . . . , n; t = 1, . . . ,D

xiD = di , i = 1, . . . , n

xit ∈ N+ ∪ {0}, i = 1, . . . , n; t = 1, . . . ,D
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Kubiak&Sethi: minimize
∑n

i=1

∑D
t=1 |xit − tri |

1 calculate ideal position of (i , j):

Z i∗
j =

⌈
2j − 1

2ri

⌉
2 calculate the cost C i

jt of scheduling (i , j) in position t:

C i
jt =

max(t,Z i∗
j )−1∑

l=min(t,Z i∗
j )

||lri − j | − |lri − (j − 1)||
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Kubiak&Sethi: minimize
∑n

i=1

∑D
t=1 |xit − tri |

Optimal solution is found by solving the following assignment problem:

minimize
∑

(i ,j)∈J

D∑
t=1

C i
jty

i
jt

s.t.
D∑
t=1

y ijt = 1

∑
(i ,j)∈J

y ijt = 1

(i , j) ∈ J ⇔ i ∈ {1, 2, . . . , n} ∨ j ∈ {1, 2, . . . , di}

y ijt =

{
1 if j-th copy of i completes in t
0 otherwise
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Steiner&Yeomans: minimize maxit |xit − tri |

Theorem

A just in time sequence with

max
it
|xit − tri | ≤ T

≤ 1− 1

D

exists if and only if there exists a sequence that allocates the j-th copy of product i
in the interval [E (i , j), L(i , j)] where

E (i , j) =
⌈

1
ri
(j − T )

⌉
L(i , j) =

⌊
1
ri
(j − 1 + T ) + 1

⌋

The algorithm tests values T ∈
{

D−dmax
D , D−dmax+1

D , . . . , D−1
D

}
in ascending order.
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Problem of apportionment

Given are:

the number of states s,

an integer vector of populations: p = (p1, p2, p3, . . . , ps)

an integer size of the house, h ≥ 0

An apportionment of h seats among s states is an integer vector a such that:

a = (a1, a2, a3, ..., as)

s∑
i=1

ai = h.

Goal: Find a fair apportionment.
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Objective functions - criteria

Hamilton:
∑s

i=1

∣∣∣aih − pi∑
i pi

∣∣∣

Webster, Hamilton:
∑s

i=1 f
(
ai − hpi∑

i pi

)
where f is any lp norm

Hill:
∑s

i=1 ai

(
pi
ai
−

∑
i pi
h

)2

Burt & Harris: maxi ,j

{
pi
ai
− pj

aj

}
maxi ,j

{
ai
pi
− aj

pj

}
Jefferson: maxi

{
ai
pi

}
Adams: maxi

{
pi
ai

}
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Alabama paradox

It was observed in 1880 by C. W. Seaton (chief clerk of U. S. Census Office, USA)
that in a house of 299 seats Alabama receives 8 seats while in a house of 300 seats
Alabama receives 7 seats.

Hamilton method

1 Allocate
⌊ pi
SD

⌋
seats to each state i , i = 1, . . . , s, where

SD =

∑s
i=1 pi
h

2 Assign the remaining seats to the states with biggest fractional value of pi
SD .
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Alabama paradox - example

Hamilton method

1 Allocate
⌊ pi
SD

⌋
seats to each state i , i = 1, . . . , s, where

SD =

∑s
i=1 pi
h

2 Assign the remaining seats to the states with biggest fractional value of pi
SD ).

state h = 21 h = 22
i pi

pi
SD

⌊ pi
SD

⌋
ai

pi
SD ⌊ pi

SD ⌋ ai
A 7 270 14.24 14 14 14.92 14 15
B 1 230 2.41 2 3 2.52 2 2
C 2 220 4.35 4 4 4.56 4 5

Total 10 720 22.00 20 21 22.00 20 22
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House monotonicity

Balinski & Young, 1970

House monotone methods

An apportionment method is called house monotone if the number of seats
assigned to any state i , i = 1, . . . , n, in a parliament of size h + 1 is greater than or
equal to the number of seats assigned to the same state in a house of size h.

Property

Hamilton method is not house monotone.
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Population monotonicity

Population monotone methods

An apportionment method M is called population monotone if for any two vectors
of populations p, p

′
> 0 and vectors of apportionments a ∈ (M, h), a′ ∈ (M, h) the

following implication holds:

p′i ′

p′j′
≥ pi

pj
⇒


a′i ′ ≥ ai or a

′
j′ ≤ aj

or
p′
i′

p′
j′
= pi

pj
and a′i ′ , a

′
j′ can be substituted for ai , aj in a

Property (Balinski & Young)

Any population monotone method is house monotone but not vice versa.
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Divisor methods

Assign the next seat to the state with maximum value of pi
d(ai )

, where d(ai ) is
divisor defined below.

Method Divisor d(a)

Adams a

Dean a(a+1)
a+0.5

Hill
√
a(a+ 1)

Webster a+ 0.5
Jefferson a+ 1

Property (Balinski & Young)

An apportionment method is a divisor method iff it is population monotone.
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Quota methods

A method of apportionment stays within the quota if all its allocations satisfy the
following inequalities: ⌊

h · pi∑s
i=1 pi

⌋
≤ ai ≤

⌈
h · pi∑s
i=1 pi

⌉

Theorem (Balinski & Young)

No method of apportionment exists for n ≥ 4 and h ≥ n + 3 that is population
monotone and stays within the quota.
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Transformation

Scheduling Apportionment
product i , i = 1, . . . , n state i , i = 1, . . . , s

di demand for product i pi population of state i

time unit considered t size of the house h

xit cumulative number of copies ai number of seats assigned to
of product i completed up to time t state i in a house of size h
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Classification of methods

HM NHM

QM Still,
Steiner&Yeomans,
quota-divisor methods

Hamilton

NQM Kubiak&Sethi,
divisor methods
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Real time systems (Liu-Layland, 1973)

n periodic, preemptive and independent tasks

single processor

task i , i = 1, . . . , n, is characterized by

its request period Ti

run-time Ci , such that Ti ≥ Ci

execution of the k-th request of task i , which occurs at time (k − 1)Ti , must
finish by the time kTi

t

Example: T = 2,C = 1
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Real time systems (Liu-Layland, 1973)

Example: T1 = 4,C1 = 2,T2 = 10,C2 = 5
Task 1:

t

C1

T1

Task 2:
t

C2

T2
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Real time systems (Liu-Layland, 1973)

Example: T1 = 4,C1 = 2,T2 = 10,C2 = 5
Rate monotonic algorithm: priority to tasks with smaller Ti .

t
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Real time systems (Liu-Layland, 1973)

Example: T1 = 4,C1 = 2,T2 = 10,C2 = 5
Deadline driven algorithm: priority to tasks with the closest deadline.

t
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Liu-Layland problem and apportionment

Ci
Ti

expresses the desired proportion of time units allocated to task i in a

schedule of any given length - it corresponds to pi∑
pi
;

the schedule length corresponds to the size of the house h;

Theorem (Kubiak 2004)

Any house monotone method satisfying the quota solves the Liu-Layland problem.

HM NHM

QM Still,
Steiner&Yeomans,
quota-divisor methods

Hamilton

NQM Kubiak&Sethi,
divisor methods
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Liu-Layland problem and apportionment

HM NHM

QM Still,
Steiner&Yeomans,
quota-divisor methods

Hamilton

NQM Kubiak&Sethi,
divisor methods

Theorem (Józefowska et.al. 2008)

Satisfying quota is a necessary condition for any divisor method to solve the
Liu–Layland problem.

Corollary

No divisor method solves the Liu–Layland problem.
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Stride scheduling

n competing clients,

wi the importance of client i , i = 1, 2, ..., n,

goal: allocating units of a discrete resource among clients in such a way that
after any allocation the accumulated number of units of the resource
possessed by client i is proportional to wi ,

dynamic environment: the number of clients n or the values wi , i = 1, 2, ..., n,
associated with clients may change in an unpredictable way.
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Solution approach (Waldspurger and Weil, 1995)

the problem of scheduling n processes on a single processor,

each client is assigned a number of tickets which are mapped to the values
wi , i = 1, 2, ..., n,

the stride, inversely proportional to tickets, is calculated for each client,

pass represents the virtual time index for the clients next selection,

the client with minimum pass is selected and its pass is advanced by its stride,

after the quantum passes the process is preempted and the processor can be
allocated to another client.
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Summary

Stefan Banach (1892-1945)

A mathematician is a person who can find analogies between theorems;

a better mathematician is one who can see analogies between proofs
and the best mathematician can notice analogies between theories.
One can imagine that the ultimate mathematician is one who can see analogies
between analogies.
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Józefowska J, Józefowski  L, Kubiak W, (2006) Characterization of just in time sequencing via
apportionment. in: Yan H., Yin G., Zhang Q. (Eds.) Stochastic Processes, Optimization, and Control
Theory Applications in Financial Engineering, Queuing Networks, and Manufacturing Systems/ A
Volume in Honor of Suresh Sethi, Series: International Series in Operations Research & Management
Science. Vol. 94, Springer Verlag 175–200
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