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Motivation: Revenue Management & Pricing 
 

 Revenue Management applications 

 – E-commerce is everywhere 

 – Prices are dynamic 

 Challenges and opportunities! 

 – Automation is needed 

 – But how to do that effectively? 

  

( 10 )

Prices on Amazon Marketplace

a used book over days
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Motivation: Revenue Management & Pricing 
 

 Revenue Management applications 

 – E-commerce is everywhere 

 – Prices are dynamic 

 Challenges and opportunities! 

 – Automation is needed 

 – But how to do that effectively? 

 Approaches used in practice: 

 – Rule-based (suboptimal) & Optimal control (limited applicability) 

 – Will we see AI-based solutions (data hungry, less control) soon? 

 Vision:  Self-tuning data-driven solutions 
  

( 10 )

Prices on Amazon Marketplace

a used book over days
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Outline 
 

 Topic: Dynamic Pricing & Ecommerce 

 Personal Background 

 I Analytical Solutions 

 II Approaches in Practice 

 III Self-Learning Approaches in Recommerce Markets 

 IV Summary & Outlook 
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Academic Background 
 

 Humboldt-University of Berlin 

 – Master in Business Administration (2010) 

 – Master in Mathematics (2010) 

 – PhD in Operations Research (2014) at the Institute of OR 

  Thesis: Six Essays on Stochastic and Deterministic  

  Dynamic Pricing and Advertising Models 

 

 Field of Research 

 – Optimal Control of Markov Decision Processes (MDPs) 

 – Dynamic Pricing & Revenue Management (RM)  
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Group Leader at HPI 
 

 Hasso Plattner Institute (HPI), University of Potsdam (since 2015) 

 – PostDoc at the Chair (Enterprise Systems) of Prof. Plattner (cf. SAP) 

 – ~12 PhDs working on Computer Science & Data Science 

 – Established the group “Data-driven Decision Support” (3 PhDs) 

 – Senior Researcher (since 2020) 

 
 Field of Research 

 – Control of MDPs, Dynamic Pricing & RM 

 – Analytics, Decision Support 

 – Self-tuning Algorithms, Resource Allocation Problems  
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Memories 
 

 

 ICORES 2017 Dynamic Pricing 

 ICORES 2018 Pricing with HMMs 

 ICORES 2019 Strategic Consumers 

 ICORES 2020 Ride-hailing Dispatch Decisions 

 ICORES 2021 Pricing Competition 

 ICORES 2022 Resource Allocations for Databases 

 ICORES 2023 Reinforcement Learning Techniques 

 ICORES 2024 :-) 
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Research Profile 
 

 Background  Research Focus in RM & Pricing 
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 I  Pricing in Theory 
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I Analytical Solutions: Overview 
 

 How to set prices over time to optimally control a stochastic sales process? 

 Typical model: 

 – MDP in continuous time, continuous price sets, monopoly 

 – State: remaining items;    Rewards: sales profits 

 – Stylized dynamics (e.g., iso, exp, lin demand rates, Poisson-type) 

 Solution approach: Dynamic programming (DP), Bellman equation 

 Results: State-dependent optimal policy 

  Managerial insights 
  



10 

 

I Analytical Solutions: Methodology 
 

 Objective: Find a policy to maximize expected discounted rewards 

  Basic example: Sell N items over the time span [0, ]T , prices 0p   

 Approach: Consider the value of being in state {0,..., }n N  at time [0, ]t T  

 Use the Bellman equation to find value function ( )nV t  

 Solution: 1
st
 order optimality conditions of the Bellman equation 

   Obtain a system of difference-differential equations for ( )nV t  

  Solve for ( )nV t  and obtain an optimal pricing policy ( )np t  

 Insights: Analyze optimal prices at time t in state n (inventory left) 
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I Analytical Solutions: Bellman Equation 
 

 Bellman Equation:    
0

( ) sup ( , ) ( ) 0n n
p

V t t p p c V t


    ɺ
 

 Boundary conditions: 0( ) ( ) 0 ,nV T V t n t    
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I Analytical Solutions: Bellman Equation 
 

 Bellman Equation:    
0

( ) sup ( , ) ( ) 0n n
p

V t t p p c V t


    ɺ
 

 Boundary conditions: 0( ) ( ) 0 ,nV T V t n t    

 Optimality conditions: 

*
*

*

( , ( ))
( ) ( )

( , ( ))

n
n n

n

t p t
p t c V t

t p t




   
  

 Diff.-DE:  * * * * * *( ) ( , ( ; ( ))) ( ; ( )) ( ) 0n n n n n nV t t p t V t p t V t c V t      ɺ
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I Analytical Solutions: Bellman Equation 
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 Special Case: ( , ) ( ) pt p a t e     ,  

* ( )*( ) ( ) / 0nd V t

nV t t d e    ɺ  
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I Analytical Solutions: Bellman Equation 
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I Analytical Solutions: Illustrations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

10n 

1n 

Pricing policyprice

time

example of a

realized sales path

Reward distributions

0.0001 

2.5 



.Exp inventory over time
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I Analytical Solutions: Summary & Takeaways 
 

 

(+) Beautiful closed-form solutions of differential equations 
 

(+) Theoretical insights 
 

(+) Sensitivity results 
 

(+) Publishable 
 

 

(–) Highly stylized, inflexible 
 

(–) Limited to simple settings 
 

(–) Hardly applicable in practice 
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 II  Pricing in Practice 
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II Application in Practice: Online Pricing 
 

 How to set prices in practice?  

 Project: – Firm selling on Amazon MP 

   – 100K distinct books (used) 

   – ~10 updates/day/item (every 2-3h) 

   – Competition 

   – Multiple offer dimensions (price, quality, ratings, etc.) 

 Benchmark: – Automated rule-based decisions of domain experts (Top10 seller) 

  – includes: undercutting, cost-based, mark-down, . . . 

 Goal: – Max expected profits & beat the firm’s benchmark policy 

  – Be able to balance profitability vs. speed of sales 
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II Automated Repricing on Online Marketplaces (2011) 
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II Automated Repricing on Online Marketplaces (2011) 
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II Automated Repricing on Online Marketplaces (2016) 

 

 
  



22 

 

II Price Updates on Amazon Marketplace 
 

 (i) request market situation, (ii) calculate price, (iii) send price update 
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II Project: Selling Used Books in Practice 
 

 Our data-driven approach 
 

 (1) Demand Estimation 

   ~10 market situations/day/item with 1-20 firms (100 Mio obs.) 

   2 000 sales/month (1 year of data) 

   Predict sales probabilities (for time intervals & situations) 

 (2) Price Optimization 

   Maximize long-term profit (aggressiveness via discount factor) 

   Dynamic programming (with relaxations) 

   Computation time for one final price adjustment:  0.001 seconds 
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II Estimation of Price Impacts and Optimization 
 

 Our data-driven approach 
 

 (1) Demand Estimation 

   ~10 market situations/day/item with 1-20 firms (100 Mio obs.) 

   2 000 sales/month (1 year of data) 

   Predict sales probabilities (for time intervals & situations) 

 (2) Price Optimization 
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1

1max ( , ), : ,( )
T

s t

t t t t t s s s

s

s s

t

E G X n S s G a X S c X X l X







        
� ��

  
0

( , ) arg max ( , | ) ( ) min( , ) ( ) ,
a A i

a n s P i a s a c n i n l V n i s 

 

 
         

 


� � �ɶ

   
0

( ) min( , )
( , ) max ( , | ) 1 (0, | )

( ) ,a A
i

a c n i n l
V n s P i a s P a s z

z V n i s


 


       
             

� � �ɶ ɶ�

(1)

(2)

(3)



25 

 

II Application in Practice: Results 
 

Comparison: Our data-driven strategy  vs.  the seller’s rule-based strategy 

 Our solution allows to balance the speed of sales vs. profitability 

 

Strategy #Books    

Rule-Based 5,534      

HPI1 (high prices) 5,206      

HPI2 5,407      

HPI3 5,241      

HPI4 (low prices) 5,200      
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II Application in Practice: Results 
 

Comparison: Our data-driven strategy  vs.  the seller’s rule-based strategy 

 Our solution allows to balance the speed of sales vs. profitability 

 

Strategy #Books % Sold (3 months)   

Rule-Based 5,534 42 % 100.0 %    

HPI1 (high prices) 5,206 29 % –30 %    

HPI2 5,407 37 % –12 %    

HPI3 5,241 44 % +6 %    

HPI4 (low prices) 5,200 45 % +8 %    

 

  



27 

 

II Application in Practice: Results 
 

Comparison: Our data-driven strategy  vs.  the seller’s rule-based strategy 

 Our solution allows to balance the speed of sales vs. profitability 

 

Strategy #Books % Sold (3 months) Profit per sale (EUR)  

Rule-Based 5,534 42 % 100.0 % 2.56 € 100.0 %  

HPI1 (high prices) 5,206 29 % –30 % 3.58 € +40 %  

HPI2 5,407 37 % –12 % 3.03 € +19 %  

HPI3 5,241 44 % +6 % 2.94 € +15 %  

HPI4 (low prices) 5,200 45 % +8 % 2.52 € –1 %  

 

Result:  Our strategy sold faster and more profitable! 
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II Application in Practice: Results 
 

Comparison: Our data-driven strategy  vs.  the seller’s rule-based strategy 

 Our solution allows to balance the speed of sales vs. profitability 

 

Strategy #Books % Sold (3 months) Profit per sale (EUR) Acc. profit 

Rule-Based 5,534 42 % 100.0 % 2.56 € 100.0 % 100.0 % 

HPI1 (high prices) 5,206 29 % –30 % 3.58 € +40 % –1.5 % 

HPI2 5,407 37 % –12 % 3.03 € +19 % +4.3 % 

HPI3 5,241 44 % +6 % 2.94 € +15 % +23.1 % 

HPI4 (low prices) 5,200 45 % +8 % 2.52 € –1 % +6.4 % 

 

Result:  Our strategy sold faster and more profitable! 
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II Pricing in Practice: Summary & Takeaways 
 

 

(–) Ordinary numerical results 
 

(–) No theoretical insights, no sensitivity results 
 

(–) State transitions of the problem (MDP) have to be known/assumed 
 

(–) Large datasets of good quality required 
 

(–) Dimensionality of the MDP is limited (curse of dimensionality) 
 

 

(+) Free use of estimations/predictions 
 

(+) Data-driven DP heuristics outperform rule-based benchmarks 
 

(+) Applicable in practice 
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 III  Self-Learning Approaches  

 in More Complex Markets 

 

  (or: AI in the Circular Economy) 
 

   



31 

 

III Recommerce Markets: Motivation 
 

Usecase: Pricing & Rebuying in the Recommerce Industry 
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III Recommerce Markets are Growing 
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III Recommerce in Practice 
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III Recommerce Markets: Model Overview 
 

Basis: A flexible simulation framework for pricing agents 

Components: (i) Consumer, (ii) Firms, (iii) Marketplace, (iv) Resources in use 
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III Recommerce Model Description (What do we need?) 
 

 Infinite horizon 

 Discrete time (Periods) 

 Duopoly competition (sequential updating of actions) 

  Actions: Price new, price used, rebuy price 

 Multiple consumer arrive (per period) in a certain way 

  Buying behavior: Compare offers for new & used items 

  Reselling behavior: Compare current rebuy prices 

 Firms have individual inventory levels for used products 
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III MDP Formulation (Perspective of Firm 1) 
 

 Discrete time 0,1,...t  , vs.  periods ( , 1)t t   

 Actions: (1) (1) (1), ,new used rebuyp A p A p A      (competitors update within period) 

 A single consumer’s buying decision (cf. Rewards) 

 Buying probabilities:  (0) ( ) ( )

 

1,..., 1,...,

( , ) ( , ) ( , ) 1k k

no buy new used new new used used new used

k K k K

P p p P p p P p p
 

   
� � � � � �

 

 A single consumer’s selling decision (cf. Rewards) 

 Buying probabilities:  (0) ( )

 

1,...,

( , , ) ( , , ) 1k

no sell new used rebuy sell new used rebuy

k K

P p p p P p p p


 
� � � � � �

 

 

 Firm 1’s state: own inventory (#used), prices , ,new used rebuyp p p
� � �

 

  (# resources in use, competitors’ inventories) 
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III Objective: Max Expected Discounted Future Rewards 
 

 Firm k’s rewards from time 0,1,...t  , on: 

 ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

:
( ) ( ) ( )

k k k k

new new virgin used used

rewards from sales usedrewards from sales newk i t

t k k k
i t

used inv rebuy rebuy

inventory holding costs purc

X i p i c X i p i

G
N i c X i p i








   

 
   


������������������

�����
hase costs

 
 
 
 
 
 

�������
 

 Objective:    maximize  ( ) ( )

0 0

k kE G s  

 Actions may depend on states:    ( ) ( ): ( ), ( ), ( ), ( )k k

used new used rt ebuys N t p t p t p t
� � �
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III Solution Approach 
 

 Dynamics known? (consumer behavior & competitors’ reactions)? 

 Explicitly estimate dynamics?   Optimize afterwards? 

 Are states observable?   Number of states tractable? 

 Dynamic programming methods applicable? 

 Hope for analytical or closed-form solutions? 

 Simplify setup? 

 Our approach:  Apply & test RL techniques! 
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III Self-Learning Approaches (Reinforcement Learning) 
 

 Consider a dynamic system (MDP environment) unknown to the agent 

 Observe current state 

 Perform an action 

 Receive a reward and the new state 

 

 Exploration: Play different actions 

 Update Value Function estimation 

 Exploitation: Play in line with the Bellman Equation 

 Simulate many runs/episodes 

 Algorithms: QL, DQN, SAC, PPO 

 Use of neural networks (to estimate V) allows for large state & action spaces 
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III Apply RL Algorithms (What do we need?) 
 

 Play actions in the Recommerce environment (unknown to the agent) 

 Observe realized reward signals and transition from old to new state 

 Setup: Stationary, discrete time, infinite horizon 

 Actions: Combinations of 3 own prices 

 State space: Prices of all players + own inventory level 

 Rewards: Define consumer behavior (arrival and decision) 

 State transitions: Define competitors’ price response strategies 

 Apply standard RL algorithms, e.g.: DQN, A2C, SAC, PPO 
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III Evaluation (Specific Rule-based Competitors) 
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III Evaluation (Specific Consumer Behaviour) 
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III Evaluation (Model Parameters) 
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III Experiment 1 (RL against a Rule-based Competitor) 
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III Experiment 2 (RL against RL via Self-Play) 
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III Experiment 3 (Ablation Study for Different State Spaces) 
 

  

full information

least information
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III Experiment 4 (RL in an Oligopoly with 4 Rule-based Firms) 
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III Self-Learning Pricing: Summary & Takeaways 
 

 

(+) State transitions of the problem (MDP) do not have to be known 
 

(+) Larger MDPs can be considered 
 

(+) RL heuristics outperform rule-based benchmarks 
 

 

(–) Ordinary numerical results, no theoretical insights, no sensitivity results 
 

(–) Environment has to be defined 
 

(–) Many training runs required (cf. online RL) 
 

 

(+/–) Will we see the application of RL in practice?   What’s next? 
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Summary & IV Future Research Directions 
 

I Analytical solutions for Pricing 

II Dynamic pricing applied in practice 

III Self-learning agents in Recommerce markets 

IV  Application in practice  (fit environment from historical data?) 

  Strategic consumers  (reference prices, anticipate price patterns?) 

  Analyze RL against RL  (algorithmic collusion?) 

  Trust black-box algorithms?  Explainable AI?  Hybrid approaches? 
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Summary & IV Future Research Directions 
 

I Analytical solutions for Pricing 

II Dynamic pricing applied in practice 

III Self-learning agents in Recommerce markets 

IV  Application in practice  (fit environment from historical data?) 

  Strategic consumers  (reference prices, anticipate price patterns?) 

  Analyze RL against RL  (algorithmic collusion?) 

  Trust black-box algorithms?  Explainable AI?  Hybrid approaches? 

_______________________________________________________________________________ 

 Thank You! 
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