Dynamic Pricing under Competition: Challenges and Opportunities

Dr. Rainer Schlosser

Keynote Session

ICORES 2023, Lisbon, Portugal
February 20, 2023
Motivation: Revenue Management & Pricing

- Revenue Management applications
 - E-commerce is everywhere
 - Prices are dynamic

- Challenges and opportunities!
 - Automation is needed
 - But how to do that effectively?

Prices on Amazon Marketplace
(a used book over 10 days)
Motivation: Revenue Management & Pricing

- Revenue Management applications
 - E-commerce is everywhere
 - Prices are dynamic

- Challenges and opportunities!
 - Automation is needed
 - But how to do that effectively?

- Approaches used in practice:
 - Rule-based (suboptimal) & Optimal control (limited applicability)
 - Will we see AI-based solutions (data hungry, less control) soon?

- Vision: Self-tuning data-driven solutions

Prices on Amazon Marketplace (a used book over 10 days)
Outline

- Topic: Dynamic Pricing & Ecommerce
- Personal Background
- I Analytical Solutions
- II Approaches in Practice
- III Self-Learning Approaches in Recommerce Markets
- IV Summary & Outlook
Academic Background

- Humboldt-University of Berlin
 - Master in Business Administration (2010)
 - Master in Mathematics (2010)
 - PhD in Operations Research (2014) at the Institute of OR
 Thesis: Six Essays on Stochastic and Deterministic Dynamic Pricing and Advertising Models

- Field of Research
 - Optimal Control of Markov Decision Processes (MDPs)
 - Dynamic Pricing & Revenue Management (RM)
Group Leader at HPI

- Hasso Plattner Institute (HPI), University of Potsdam (since 2015)
 - PostDoc at the Chair (Enterprise Systems) of Prof. Plattner (cf. SAP)
 - ~12 PhDs working on Computer Science & Data Science
 - Established the group “Data-driven Decision Support” (3 PhDs)
 - Senior Researcher (since 2020)

- Field of Research
 - Control of MDPs, Dynamic Pricing & RM
 - Analytics, Decision Support
 - Self-tuning Algorithms, Resource Allocation Problems
Memories

- ICORES 2017 Dynamic Pricing
- ICORES 2018 Pricing with HMMs
- ICORES 2019 Strategic Consumers
- ICORES 2020 Ride-hailing Dispatch Decisions
- ICORES 2021 Pricing Competition
- ICORES 2022 Resource Allocations for Databases
- ICORES 2023 Reinforcement Learning Techniques
- ICORES 2024 :-)
Research Profile

Background
- Business Adm.
- Mathematics & OR
- CS & Data Science

Research Focus in RM & Pricing
- Analytical Solutions (Theoretical Analysis)
- Application in Practice
- Numerical Solutions (Algorithms)
- Self-learning Solutions & Simulation
I Pricing in Theory
I Analytical Solutions: Overview

- How to set prices over time to optimally control a stochastic sales process?

- Typical model:
 - MDP in continuous time, continuous price sets, monopoly
 - State: remaining items; Rewards: sales profits
 - Stylized dynamics (e.g., iso, exp, lin demand rates, Poisson-type)

- Solution approach: Dynamic programming (DP), Bellman equation

- Results: State-dependent optimal policy
 Managerial insights
I Analytical Solutions: Methodology

- **Objective:** Find a policy to maximize **expected discounted rewards**
 Basic example: Sell N items over the time span $[0, T]$, prices $p \geq 0$

- **Approach:** Consider the **value** of being in **state** $n \in \{0, ..., N\}$ at **time** $t \in [0, T]$
 Use the Bellman equation to find **value function** $V_n(t)$

- **Solution:** 1st order optimality conditions of the Bellman equation
 Obtain a system of difference-differential equations for $V_n(t)$
 Solve for $V_n(t)$ and obtain an **optimal pricing policy** $p_n(t)$

- **Insights:** **Analyze** optimal prices at time t in state n (inventory left)
I Analytical Solutions: Bellman Equation

- Bellman Equation:
 \[
 \dot{V}_n(t) + \sup_{p \geq 0} \{ \lambda(t, p) \cdot (p - c - \Delta V_n(t)) \} = 0
 \]

- Boundary conditions:
 \[V_n(T) = V_0(t) = 0 \quad \forall n, t \]
I Analytical Solutions: Bellman Equation

- Bellman Equation: \(\dot{V}_n(t) + \sup_{p \geq 0} \{ \lambda(t, p) \cdot (p - c - \Delta V_n(t)) \} = 0 \)

- Boundary conditions: \(V_n(T) = V_0(t) = 0 \quad \forall n, t \)

- Optimality conditions: \(p_n^*(t) - c - \Delta V_n(t) = \frac{\lambda(t, p_n^*(t))}{-\lambda'(t, p_n^*(t))} \)

- Diff.-DE: \(\dot{V}_n^*(t) + \lambda(t, p_n^*(t), \Delta V_n^*(t)) \cdot \left(p_n^*(t; \Delta V_n^*(t)) - c - \Delta V_n^*(t) \right) = 0 \)
I Analytical Solutions: Bellman Equation

- Bellman Equation:
 \[\dot{V}_n(t) + \sup_{p \geq 0} \{ \lambda(t, p) \cdot (p - c - \Delta V_n(t)) \} = 0 \]

- Boundary conditions:
 \[V_n(T) = V_0(t) = 0 \quad \forall n, t \]

- Optimality conditions:
 \[p_n^*(t) - c - \Delta V_n(t) = \frac{\lambda(t, p_n^*(t))}{-\lambda'(t, p_n^*(t))} \]

- Diff.-DE:
 \[\dot{V}_n^*(t) + \lambda(t, p_n^*(t); \Delta V_n^*(t)) \cdot \left(p_n^*(t; \Delta V_n^*(t)) - c - \Delta V_n^*(t) \right) = 0 \]

- Special Case:
 \[\lambda(t, p) = a(t) \cdot e^{-\varepsilon \cdot p}, \quad \dot{V}_n^*(t) + \beta(t) / d \cdot e^{-d \cdot \Delta V_n^*(t)} = 0 \]
I Analytical Solutions: Bellman Equation

- Bellman Equation:
 \[\dot{V}_n(t) + \sup_{p \geq 0} \{ \lambda(t, p) \cdot (p - c - \Delta V_n(t)) \} = 0 \]

- Boundary conditions:
 \[V_n(T) = V_0(t) = 0 \quad \forall n, t \]

- Optimality conditions:
 \[p^*_n(t) - c - \Delta V_n(t) = \frac{\lambda(t, p^*_n(t))}{-\lambda'(t, p^*_n(t))} \]

- Diff.-DE:
 \[\dot{V}_n^*(t) + \lambda(t, p^*_n(t; \Delta V^*_n(t))) \cdot \left(p^*_n(t; \Delta V^*_n(t)) - c - \Delta V^*_n(t) \right) = 0 \]

- Special Cases:
 \[\lambda(t, p) = a(t) \cdot e^{-\varepsilon \cdot p}, \quad \dot{V}_n^*(t) + \beta(t) / d \cdot e^{-d \cdot \Delta V^*_n(t)} = 0 \]

- Special Case Solution:
 \[V_n^*(t) = \frac{1}{d} \cdot \ln \left(\sum_{i=0}^{n} \left(\left(\int_t^T \beta(s) \ ds \right) \cdot (T - t) \right)^i \cdot \frac{1}{i!} \right) \]
I Analytical Solutions: Illustrations

Price $p_n(t)$

Example of a realized sales path

Pricing policy

Expected inventory over time

Reward distributions

$\gamma = 0.0001$

$\gamma = 2.5$
I Analytical Solutions: Summary & Takeaways

(+) Beautiful closed-form solutions of differential equations

(+) Theoretical insights

(+) Sensitivity results

(+) Publishable

(−) Highly stylized, inflexible

(−) Limited to simple settings

(−) Hardly applicable in practice
II Pricing in Practice
II Application in Practice: Online Pricing

- How to set prices in practice?

- **Project:**
 - Firm selling on Amazon MP
 - 100K distinct books (used)
 - ~10 updates/day/item (every 2-3h)
 - Competition
 - Multiple offer dimensions (price, quality, ratings, etc.)

- **Benchmark:**
 - Automated **rule-based** decisions of domain experts (Top10 seller)
 - includes: undercutting, cost-based, mark-down, . . .

- **Goal:**
 - Max **expected profits** & beat the firm’s benchmark policy
 - Be able to balance **profitability vs. speed of sales**
II Automated Repricing on Online Marketplaces (2011)
II Automated Repricing on Online Marketplaces (2011)
II Automated Repricing on Online Marketplaces (2016)
II Price Updates on Amazon Marketplace

- (i) request market situation, (ii) calculate price, (iii) send price update
II Project: Selling Used Books in Practice

- Our data-driven approach

 (1) Demand Estimation
 - ~10 market situations/day/item with 1-20 firms (100 Mio obs.)
 - 2 000 sales/month (1 year of data)
 - **Predict sales probabilities** (for time intervals & situations)

 (2) Price Optimization
 - Maximize long-term profit (**aggressiveness** via discount factor)
 - **Dynamic programming** (with relaxations)
 - Computation time for one final price adjustment: 0.001 seconds
II Estimation of Price Impacts and Optimization

- Our data-driven approach

(1) Demand Estimation

- ~10 market situations/day/item with 1-20 firms (100 Mio obs.)
- 2 000 sales/month (1 year of data)
- **Predict sales probabilities** (for time intervals & situations)

(2) Price Optimization

\[
\max E(G_t \mid X_t = n, \bar{S}_t = \bar{s}_t), \quad G_t := \sum_{s=t}^{T-1} \delta^{s-t} \cdot \left((a(X_s, \bar{S}_s) - c) \cdot (X_s - X_{s+1}) - l \cdot X_s \right) \\
\]

\[
a(n, \bar{s}) = \arg \max_{a \in A} \left\{ \sum_{i \geq 0} \tilde{P}(i, a \mid \bar{s}) \cdot \left((a - c) \cdot \min(n, i) - n \cdot l + \delta \cdot V((n - i)^+, \bar{s}) \right) \right\} \\
\]

\[
V(n, \bar{s}) = \max_{a \in A} \left\{ \sum_{i > 0} \tilde{P}(i, a \mid \bar{s}) \cdot \left((a - c) \cdot \min(n, i) - n \cdot l - z \cdot \delta \cdot V((n - i)^+, \bar{s}) \right) \right\} / \left(1 - \tilde{P}(0, a \mid \bar{s}) \cdot z \cdot \delta \right) \\
\]
II Application in Practice: Results

Comparison: Our **data-driven** strategy vs. the seller’s **rule-based** strategy

Our solution allows to balance the speed of sales vs. profitability

<table>
<thead>
<tr>
<th>Strategy</th>
<th>#Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-Based</td>
<td>5,534</td>
</tr>
<tr>
<td>HPI₁ (high prices)</td>
<td>5,206</td>
</tr>
<tr>
<td>HPI₂</td>
<td>5,407</td>
</tr>
<tr>
<td>HPI₃</td>
<td>5,241</td>
</tr>
<tr>
<td>HPI₄ (low prices)</td>
<td>5,200</td>
</tr>
</tbody>
</table>
II Application in Practice: Results

Comparison: Our **data-driven** strategy vs. the seller’s **rule-based** strategy

Our solution allows to balance the speed of sales vs. profitability

<table>
<thead>
<tr>
<th>Strategy</th>
<th>#Books</th>
<th>% Sold (3 months)</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-Based</td>
<td>5,534</td>
<td>42 %</td>
<td>100.0 %</td>
</tr>
<tr>
<td>HPI1 (high prices)</td>
<td>5,206</td>
<td>29 %</td>
<td>−30 %</td>
</tr>
<tr>
<td>HPI2</td>
<td>5,407</td>
<td>37 %</td>
<td>−12 %</td>
</tr>
<tr>
<td>HPI3</td>
<td>5,241</td>
<td>44 %</td>
<td>+6 %</td>
</tr>
<tr>
<td>HPI4 (low prices)</td>
<td>5,200</td>
<td>45 %</td>
<td>+8 %</td>
</tr>
</tbody>
</table>
II Application in Practice: Results

Comparison: Our **data-driven** strategy vs. the seller’s **rule-based** strategy

Our solution allows to balance the speed of sales vs. profitability

<table>
<thead>
<tr>
<th>Strategy</th>
<th>#Books</th>
<th>% Sold (3 months)</th>
<th>Profit per sale (EUR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-Based</td>
<td>5,534</td>
<td>42 %</td>
<td>100.0 % 2.56 € 100.0 %</td>
</tr>
<tr>
<td>HPI1 (high prices)</td>
<td>5,206</td>
<td>29 %</td>
<td>−30 % 3.58 € +40 %</td>
</tr>
<tr>
<td>HPI2</td>
<td>5,407</td>
<td>37 %</td>
<td>−12 % 3.03 € +19 %</td>
</tr>
<tr>
<td>HPI3</td>
<td>5,241</td>
<td>44 %</td>
<td>+6 % 2.94 € +15 %</td>
</tr>
<tr>
<td>HPI4 (low prices)</td>
<td>5,200</td>
<td>45 %</td>
<td>+8 % 2.52 € −1 %</td>
</tr>
</tbody>
</table>

Result: Our strategy sold faster *and* more profitable!
II Application in Practice: Results

Comparison: Our **data-driven** strategy vs. the seller’s **rule-based** strategy

Our solution allows to balance the speed of sales vs. profitability

<table>
<thead>
<tr>
<th>Strategy</th>
<th>#Books</th>
<th>% Sold (3 months)</th>
<th>Profit per sale (EUR)</th>
<th>Acc. profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-Based</td>
<td>5,534</td>
<td>42 %</td>
<td>100.0 %</td>
<td>2.56 €</td>
</tr>
<tr>
<td>HPI1 (high prices)</td>
<td>5,206</td>
<td>29 %</td>
<td>-30 %</td>
<td>3.58 €</td>
</tr>
<tr>
<td>HPI2</td>
<td>5,407</td>
<td>37 %</td>
<td>-12 %</td>
<td>3.03 €</td>
</tr>
<tr>
<td>HPI3</td>
<td>5,241</td>
<td>44 %</td>
<td>+6 %</td>
<td>2.94 €</td>
</tr>
<tr>
<td>HPI4 (low prices)</td>
<td>5,200</td>
<td>45 %</td>
<td>+8 %</td>
<td>2.52 €</td>
</tr>
</tbody>
</table>

Result: Our strategy sold faster *and* more profitable!
II Pricing in Practice: Summary & Takeaways

(−) Ordinary numerical results

(−) No theoretical insights, no sensitivity results

(−) **State transitions** of the problem (MDP) have to be known/assumed

(−) Large datasets of good quality required

(−) **Dimensionality** of the MDP is limited (curse of dimensionality)

(+) Free use of estimations/predictions

(+) Data-driven DP heuristics outperform rule-based benchmarks

(+) Applicable in practice
III Self-Learning Approaches in More Complex Markets

(or: AI in the Circular Economy)
III Recommerce Markets: Motivation

Usecase: **Pricing & Rebuying** in the Recommerce Industry
III Recommerce Markets are Growing

Re-Commerce market is a huge opportunity

Consumers want it

40% of Gen Z & Millennials bought Second-Hand products in the last year (Oct 20-21)

Customers are asking for it

$64B estimate of the secondhand apparel only market in 2024

Aligns with SAP’s strategy and RTW

60% of Fortune 500 have at least one GHG emission reduction target

It helps achieve sustainability goals

60-70% carbon reduction per secondhand garment (us new)

It is a viable business model

12-17% operating margin expansion opportunity for mid/ premium / luxury markets

Source: (1) ThredUp for US, ~60% Millennials in the UK (Mara); 79% of Americans bought secondhand (post pandemic) (3) ThredUp, all categories resale market is ~$64B in the US (castedData); (4) WWF, How we live and 4 (2021); (4) Green Story Inc and ThredUp Study, (8) The Future of Circular Fashion by Fashion for Good & Accenture
III Recommerce in Practice

Leading brands and SAP customers have already started

- Levi’s
- Nike
- Lululemon
- REI
- Kering
- Patagonia
- Eileen Fisher
- Arc’Teryx
III Recommerce Markets: Model Overview

Basis: A flexible simulation framework for **pricing agents**

Components: (i) Consumer, (ii) Firms, (iii) Marketplace, (iv) Resources in use

Market Simulation

Episode length: 50

Time step: 42
III Recommerce Model Description (What do we need?)

- Infinite horizon

- Discrete time (Periods)

- Duopoly competition (sequential updating of actions)

 Actions: Price new, price used, rebuy price

- Multiple consumer arrive (per period) in a certain way

 Buying behavior: Compare offers for new & used items

 Reselling behavior: Compare current rebuy prices

- Firms have individual inventory levels for used products
III MDP Formulation (Perspective of Firm 1)

- **Discrete time** \(t = 0, 1, \ldots, \) vs. periods \((t, t + 1)\)
- **Actions:** \(p_{\text{new}}^{(1)} \in A, p_{\text{used}}^{(1)} \in A, p_{\text{rebuy}}^{(1)} \in A\) (competitors update within period)
- **A single consumer’s buying decision** (cf. Rewards)

 Buying probabilities:
 \[
 P_{\text{no buy}}^{(0)}(\tilde{p}_{\text{new}}, \tilde{p}_{\text{used}}) + \sum_{k=1,\ldots,K} P_{\text{new}}^{(k)}(\tilde{p}_{\text{new}}, \tilde{p}_{\text{used}}) + \sum_{k=1,\ldots,K} P_{\text{used}}^{(k)}(\tilde{p}_{\text{new}}, \tilde{p}_{\text{used}}) = 1
 \]
- **A single consumer’s selling decision** (cf. Rewards)

 Buying probabilities:
 \[
 P_{\text{no sell}}^{(0)}(\tilde{p}_{\text{new}}, \tilde{p}_{\text{used}}, \tilde{p}_{\text{rebuy}}) + \sum_{k=1,\ldots,K} P_{\text{sell}}^{(k)}(\tilde{p}_{\text{new}}, \tilde{p}_{\text{used}}, \tilde{p}_{\text{rebuy}}) = 1
 \]
- **Firm 1’s state:** own inventory (#used), prices \(\tilde{p}_{\text{new}}, \tilde{p}_{\text{used}}, \tilde{p}_{\text{rebuy}} \)

 (# resources in use, competitors’ inventories)
III Objective: Max Expected Discounted Future Rewards

- Firm k’s rewards from time $t = 0,1,...$, on:

$$G_t^{(k)} := \sum_{i=t}^{\infty} \delta^{i-t} \cdot \left(\begin{array}{c} X_{new}^{(k)}(i) \cdot \left(p_{new}^{(k)}(i) - c_{\text{virgin}} \right) + X_{used}^{(k)}(i) \cdot p_{used}^{(k)}(i) \\ \text{rewards from sales new} \end{array} \right)$$

$$- \begin{array}{c} N_{used}^{(k)}(i) \cdot c_{\text{inv}} \\ \text{inventory holding costs} \end{array} - X_{rebuy}^{(k)}(i) \cdot p_{rebuy}^{(k)}(i) \end{array}$$

$$\begin{array}{c} \text{rewards from sales used} \\ \text{purchase costs} \end{array}$$

- Objective: maximize $E\left(G_0^{(k)} \mid s_0^{(k)} \right)$

- Actions may depend on states: $s_t^{(k)} := \left(N_{used}^{(k)}(t), \tilde{p}_{new}(t), \tilde{p}_{used}(t), \tilde{p}_{rebuy}(t) \right)$
III Solution Approach

- Dynamics known? (consumer behavior & competitors’ reactions)?
- Explicitly estimate dynamics? Optimize afterwards?
- Are states observable? Number of states tractable?
- Dynamic programming methods applicable?
- Hope for analytical or closed-form solutions?
- Simplify setup?

- **Our approach: Apply & test RL techniques!**
III Self-Learning Approaches (Reinforcement Learning)

- Consider a dynamic system (MDP environment) unknown to the agent
- Observe current state
- Perform an action
- Receive a reward and the new state

- Exploration: Play different actions
- Update Value Function estimation
- Exploitation: Play in line with the Bellman Equation
- Simulate many runs/episodes
- Algorithms: QL, DQN, SAC, PPO
- Use of neural networks (to estimate V) allows for large state & action spaces
III Apply RL Algorithms (What do we need?)

- Play **actions** in the Recommerce **environment** (unknown to the agent)
 Observe realized **reward signals** and transition from old to **new state**

- Setup: Stationary, discrete time, infinite horizon
- Actions: Combinations of 3 own prices
- State space: Prices of all players + own inventory level
- Rewards: Define consumer behavior (arrival and decision)
- State transitions: Define competitors’ price response strategies
- Apply standard RL algorithms, e.g.: DQN, A2C, SAC, PPO
III Evaluation (Specific Rule-based Competitors)

\[p_{\text{new}}^{(k)}(N_{\text{used}}^{(k)}, \vec{p}_{\text{new}}, \vec{p}_{\text{used}}, \vec{p}_{\text{rebuy}}) := \max \left(\min_{i \in \{1, \ldots, K\} \setminus \{k\}} \{p_{\text{new}}^{(i)}\} - h, c_{\text{virgin}} + h \right) \]

\[p_{\text{used}}^{(k)}(N_{\text{used}}^{(k)}, \vec{p}_{\text{new}}, \vec{p}_{\text{used}}, \vec{p}_{\text{rebuy}}) := \begin{cases}
\min_{i \in \{1, \ldots, K\} \setminus \{k\}} \{p_{\text{used}}^{(i)}\} + h & , N_{\text{used}}^{(k)} < M/15 \\
\min_{i \in \{1, \ldots, K\} \setminus \{k\}} \{p_{\text{used}}^{(i)}\} - h & , N_{\text{used}}^{(k)} < M/8 \\
\min_{i \in \{1, \ldots, K\} \setminus \{k\}} \{p_{\text{used}}^{(i)}\} - 2h & , \text{else}
\end{cases} \]

\[p_{\text{rebuy}}^{(k)}(N_{\text{used}}^{(k)}, \vec{p}_{\text{new}}, \vec{p}_{\text{used}}, \vec{p}_{\text{rebuy}}) := \begin{cases}
\min_{i \in \{1, \ldots, K\} \setminus \{k\}} \{p_{\text{rebuy}}^{(i)}\} + h & , N_{\text{used}}^{(k)} < M/15 \\
\min_{i \in \{1, \ldots, K\} \setminus \{k\}} \{p_{\text{rebuy}}^{(i)}\} - h & , N_{\text{used}}^{(k)} < M/8 \\
\min_{i \in \{1, \ldots, K\} \setminus \{k\}} \{p_{\text{rebuy}}^{(i)}\} - 2h & , \text{else}
\end{cases} \]
III Evaluation (Specific Consumer Behaviour)

To compare prices of different competitors we use the following two preference functions $u_{new}(p), \ p \in A_{new}$, and $u_{new}(p), \ p \in A_{used}$, defined by

$$u_{new}(p) := \frac{p_{new}^{(max)}}{p} - e^{p - 0.8p_{new}^{(max)}}$$

and

$$u_{used}(p) := \frac{0.55 \cdot p_{used}^{(max)}}{p} - e^{p - 0.5p_{used}^{(max)}}.$$

Based on the preference functions u_{new} and u_{used} and the fixed preference value of one associated to the no buy option, we use $\Sigma := e^1 + \sum_{i=1,...,K} e^{u_{new}(p_{new}^{(i)})} + \sum_{j=1,...,K} e^{u_{used}(p_{used}^{(j)})}$ and the softmax function to define $P_{no\ buy}^{(0)}$, $P_{new}^{(k)}$, and $P_{used}^{(k)}, \ k = 1, ..., K$, as:

$$P_{no\ buy}^{(0)}(\vec{p}_{new}, \vec{p}_{used}) := e/\Sigma \quad (9)$$

$$P_{new}^{(k)}(\vec{p}_{new}, \vec{p}_{used}) := e^{u_{new}(p_{new}^{(k)})}/\Sigma \quad (10)$$

$$P_{used}^{(k)}(\vec{p}_{new}, \vec{p}_{used}) := e^{u_{used}(p_{used}^{(k)})}/\Sigma. \quad (11)$$
III Evaluation (Model Parameters)

In the following examples and experiments, if not chosen differently, we use the parameters summarized in Table 1.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>number of competing firms</td>
<td>2</td>
</tr>
<tr>
<td>δ</td>
<td>discount factor per period</td>
<td>0.99</td>
</tr>
<tr>
<td>A</td>
<td>price sets $A_{new} = A_{used} = A_{rebuy} = A$</td>
<td>[0, 10]</td>
</tr>
<tr>
<td>p^{max}</td>
<td>maximum price for all three price sets $A_{new}, A_{used}, A_{rebuy}$</td>
<td>10</td>
</tr>
<tr>
<td>h</td>
<td>incremental price unit</td>
<td>1</td>
</tr>
<tr>
<td>c_{virgin}</td>
<td>Purchase or production price for new products</td>
<td>3</td>
</tr>
<tr>
<td>c_{inv}</td>
<td>Price per stored used product per period (step)</td>
<td>0.1</td>
</tr>
<tr>
<td>B</td>
<td>Number of customers visiting the store per step</td>
<td>$10/K$</td>
</tr>
<tr>
<td>M</td>
<td>Upper reference value for used products in stock</td>
<td>100</td>
</tr>
<tr>
<td>w</td>
<td>Proportion of owners considering resale per step</td>
<td>0.05</td>
</tr>
<tr>
<td>E</td>
<td>number of periods (steps) per episode</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 1: Parameters with brief explanation and default values used for our experiments
III Experiment 1 (RL against a Rule-based Competitor)

Figure 5: learning curves of four SAC runs in direct comparison with PPO
III Experiment 2 (RL against RL via Self-Play)

Figure 8: learning curve from four A2C, PPO, and SAC runs at Self-Play; algorithms were trained for 2000 episodes
III Experiment 3 (Ablation Study for Different State Spaces)

Figure 10: learning curves of A2C, PPO, and SAC with full versus partial observation; (blue) full observation, (orange) without competitor’s stock level, and (green) without competitor’s stock level and number of products.
III Experiment 4 (RL in an Oligopoly with 4 Rule-based Firms)

Figure 14: Profits of typical training runs of A2C, PPO, and SAC compared to their rule-based peers
III Self-Learning Pricing: Summary & Takeaways

(+)

State transitions of the problem (MDP) do not have to be known

(+)

Larger MDPs can be considered

(+)

RL heuristics outperform rule-based benchmarks

(−)

Ordinary numerical results, no theoretical insights, no sensitivity results

(−)

Environment has to be defined

(−)

Many training runs required (cf. online RL)

(+/−)

Will we see the application of RL in practice? What’s next?
Summary & IV Future Research Directions

I Analytical solutions for Pricing

II Dynamic pricing applied in practice

III Self-learning agents in Recommerce markets

IV • Application in practice (fit environment from historical data?)
 • Strategic consumers (reference prices, anticipate price patterns?)
 • Analyze RL against RL (algorithmic collusion?)
 • Trust black-box algorithms? Explainable AI? Hybrid approaches?
Summary & IV Future Research Directions

I Analytical solutions for Pricing

II Dynamic pricing applied in practice

III Self-learning agents in Recommerce markets

IV • Application in practice (fit environment from historical data?)
 • Strategic consumers (reference prices, anticipate price patterns?)
 • Analyze RL against RL (algorithmic collusion?)
 • Trust black-box algorithms? Explainable AI? Hybrid approaches?

Thank You!