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Our OR research at Utrecht University

Our goal is to use OR to solve real-life problems; we try to include as many
relevant details as possible.
We have PhD-students financed by NS (Dutch Railways), KLM (Royal Dutch
Airlines) and Qbuzz.
Qbuzz is a bus company that provides public transport in Utrecht (among other
places)
Marcel van Kooten Niekerk is head planning of Qbuzz; he did his PhD with us
(while being employed by Qbuzz).
In this presentation I will discuss our work for Qbuzz.
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Planning public transport with electric buses

 

How can we organize Public Transport in a reliable fashion against a reasonable price?
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Contents of my talk

Vehicle scheduling problem within Public Transport
diesel buses
electric buses (main part)

Planning drivers (Ongoing work)
sequential approach
integrated approach
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Public Transport (by bus) in the Netherlands

The Dutch government organizes a tender for the public transport in a certain
region for a period of 12 years.
This tender specifies the conditions like the schedule that must be driven.
Each bus company can submit a plan.
May the best plan win ...
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Busplanning in the old times

Assumptions:
Overnight buses are stored in a single depot
There is an unlimited number of identical buses available
There is no limit on the length of a bus route per day (no refueling)

Input:
Set of trips that have to be driven
For each trip the starting place/time and end place/time are known

Goal:
Find a feasible solution with minimum cost
Using a bus implies a fixed cost and a variable cost per kilometer.
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Analyzing the problem

Buses can travel empty from the end point of trip i to the starting point of trip j
if time permits; this is called a deadhead.
A bus schedule is composed of

a deadhead from the depot to the starting point of its first trip
a set of trips and deadheads
a deadhead from the endpoint of its last trip to the depot.

Trips are not important for the cost, as long as they are driven.
We have to decide on which deadheads to drive.
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Graph formulation (1)

Construct the following directed graph (direction according to time)
Each trip i corresponds to a vertex i
Add arc (i , j) if and only if it is possible to drive trip j immediately after trip i ;
this depends on the start time of j , the end time of i and the driving time from
the end point of i to the start point of j at that time of day.
There are two dummy vertices s and t corresponding to the start and end of the
bus schedule at the depot
Add arcs (s, i) and (i , t) for each vertex i
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Graph formulation (2)

A feasible bus schedule corresponds to a path from s to t in the graph.
The goal is to find a set of paths of minimum total length that cover each trip.
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Example

Suppose that we have three trips. Trips 1 and 2 cannot be driven sequentially, but
trips 1 and 3 and trips 2 and 3 can.
Introduce vertices 1, 2, 3 and insert arcs (1, 3) and (2, 3). Next, add dummy
vertices s and t plus (s, j) and (j , t).
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Figure: Example with 3 trips
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Solution approach

Finding this set of paths can be done by either
Solving the problem as a min cost max flow problem.

You must enforce that each trip is driven.
Thereto, split each vertex v into two vertices v1 (start trip v) and v2 (end trip v).
Add an arc (v1, v2).
Demand a flow of size 1 through (v1, v2).

Solving the problem as a bipartite assignment problem; you must assign to each
trip one predecessor and one successor.

11



Extensions

The Multi-depot Vehicle Scheduling Problem, where we demand that the number
of buses per depot remains the same over time, is solvable in polynomial time as
well.
The Multi-depot Vehicle Scheduling Problem, where buses must return to the
depot they left from is N P-hard (multi-commodity flow).
If the buses are not identical anymore, then the problem is N P-hard
(multi-commodity flow).
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New times, new challenges: Electric buses

The battery of the electric buses does not have enough capacity to run the
schedule for the diesel buses.
The capacity depends on the temperature and hence on the season.
To enable an efficient solution, the battery must be charged during the day.
A solution to the e-bus scheduling problem (e-VSP) describes for each bus the
trips that must be driven (including deadheads) together with a schedule that
describes when to charge (at a suitable place).
Marcel van Kooten Niekerk considered this problem (among others) in his PhD
thesis; this paper has appeared in the journal Public Transport.
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Charging and discharging characteristics

The current charge of a battery is specified as a percentage: 100% is full, and 0%
is empty.
The Depth of Discharge (DoD) is defined as the percentage by which the battery
is discharged at the most.
Charging a typical battery (Li-ion) is not linear in time:

From 0% to 80% the amount of charge is linear with the amount of time spent.
After 80% the process slows down.
From 0-80 takes as much time as from 80-100.
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Lifetime of a battery

The lifetime of a battery is specified in the Cycle Lifetime: the number of times a
battery can be discharged for 100%.
The lifetime is further determined by the Depth of Discharge (DoD).
The lifetime is not linear in the DoD: 10 times 10% is much better than 1 time
100%. Try to reduce the DoD.
Using regression, for a typical battery Marcel estimated the function

cycles(x) = 4825, 3e2,519x ,

where x is the DoD value and cycles(x) is the number of charge/discharge cyles
that can be made until end-of-life.
The wear-out cost of the battery can be approximated using this function.
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Charging

Charging must take place at a charging station
We assume that the infrastructure is given
We assume that there is enough capacity to charge multiple buses at the same
time.
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Cost of a charging schedule

The charging schedule determines the wear-out cost (batteries are very expensive!)
The price of the electricity varies over the day; this can be taken into account
(not yet done; later more about this).

Important consideration
It is better for the lifetime to have a small DoD, but for efficiency it is better to have a
larger DoD.
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Additional features of the e-VSP

The basis stays the same: trips, deadheads, etc.
Driving a trip or deadhead requires a given amount of charge.
Buses must charge to avoid an empty battery; this can happen in between trips,
which may require another deadhead.
The time required for charging depends on the current charge and the target
charge.
The cost of driving is determined by the cost of the charging schedule.
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Our previous work

In his PhD-thesis Marcel has presented three models with the following properties.

Property Model 1 Model 2 Model 3
continuous discrete CG

Charge variable Exact Rounded Rounded
Time-of-day price electricity No Yes Yes
Non-linearity of charging time No Yes Yes
Effects DoD on lifetime No Yes Yes
Maximum problem size ≤ medium ≤ medium Large
Optimal solution guaranteed Yes Yes No

I will highlight the ideas behind the Column Generation approach.
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Column generation approach

A bus schedule is meant to be driven by one bus; it contains the list of trips that
the bus drives together with a charging scheme.
A solution to the e-VSP consists of a set of feasible bus schedules that together
cover all trips exactly once.
Suppose that we know all possible, feasible bus schedules; then we can find the
best combination by solving the problem as an Integer Linear Program.
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Notation

T : set of trips that must be driven (remark that a trip of the same line at another
time is another trip).
S: set containing all feasible bus schedules (charging included).
cs : cost of bus schedule s
ats : parameter that indicates whether trip t (t ∈ T ) is included in bus schedule s
(s ∈ S).

ats =
{

1 if s contains trip t
0 otherwise

Introduce for each bus schedule s a binary variable xs that indicates whether bus
schedule s is chosen.
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ILP formulation

min
∑
s∈S

csxs

∑
s∈S

atsxs = 1 ∀t ∈ T ( or ≥ 1)

xs ∈ {0, 1} ∀s ∈ S

The first constraint ensures that each trip is covered once in the solution.

Complication
We do not know all feasible bus schedules, and the overwhelming majority of bus
schedules is useless.
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Finding a good subset of S (1)

We only need the bus schedules that are needed to find a very good (preferrably
optimal) solution.
Therefore, we try to find a subset of S that we hope contains these desired bus
schedules.

Basic idea
Bus schedules that are needed to solve a relaxation of the original problem (ILP) might
be useful to solve the original problem as well.
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Finding a good subset of S (2)

The relaxation that we look at is the LP-relaxation: relax the constraints
xs ∈ {0, 1} to xs ≥ 0 (the other constraints prevent xs from exceeding 1).
We solve the LP-relaxation using Column Generation.
This approach together with some additional features has been proven very
successful in solving for example the Gate Assignment problem and Nurse
Rostering problems.
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Column generation

Approach in a nut shell:
1 Start with any subset of bus schedules that allows a feasible solution to the LP
2 Solve the LP for the current set of bus schedules
3 Check whether you can improve the current solution by adding a new feasible bus

schedule to the current subset of bus schedules; this is done by solving the pricing
problem.

4 If you can find such a bus schedule, then add it and continue; otherwise, stop.
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Pricing problem

Goal is to find a feasible bus schedule that improves the current LP-solution
The cost should be as small as possible, but you get a reward for driving trips; this
reward depends on the current LP-solution (shadow prices, etc.).
Remark that a bus schedule corresponds to a path in the graph, just like for the
problem with the diesel buses.
The battery constraint and charging can be included by adding nodes and arcs
(PhD thesis by Marcel).
To solve the pricing problem we must solve a shortest path problem in an
extended graph.
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Example continued
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Split a trip vertex in a ‘start’ and ‘end’ point with an arc in between.
Discretize the current charge (for example 0%, 25%, 50%, 75%, 100%) at that
point.
Include arcs between charge levels to depict the charge possiblities.
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Graph for solving the pricing problem

The cost of a trip is modified by including the shadow prices!
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Options to find a feasible integral solution

If you can solve the LP-relaxation to optimality, then you can apply
branch-and-price to find an optimal solution (may require quite some time; not
applicable here).
Solve the ILP for a subset of all feasible bus schedules. You can use the bus
schedules discovered when solving the LP-relaxation plus a set of additional
schedules generated by perturbations, etc. This usually works very well, but not
in this case.
Use some rounding heuristic. For example, choose one bus schedule, update the
instance, and solve the LP-relaxation and ILP again.
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Currently not as successful as hoped for

We had to use the latter option, but this increases the cost more than desired. The gap
between the lower bound (LP-relaxation) and the solution found was more than 1%.

Can we do better?
Are we to blame, or is the gap due to a bad lower bound?
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Local search

‘If in need of a good solution, then you can always try local search’.
Simulated annealing approach.
Start with an initial solution: let every trip be driven by a separate bus.
Two neighborhoods (equal probability):

Move a trip (next slide)
Swap tails (next slide)

We only consider feasible solutions.
We charge whenever possible. The price of electricity is not taken into account
yet; this can be easily included (will be discussed later).
We use a multistart strategy.
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Move neighborhood

Choose two vehicle schedules v1 and v2

Select a range of trips to be moved from v1 to v2

v1

v2

T T
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Swap neighborhood

Choose two vehicle schedules v1 and v2

Select a point in time t
Swap the tails of the bus schedules v1 and v2 after time t

v1

v2
t
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Cost of charging

Situation
You know the schedule of a bus => you know the possible charging intervals.

Electricity prices fluctuate tremendously. It is easy to make general predictions of
the cost per hour.
Use these predictions to find the charging schedule with minimum expected price.
This includes the wear out cost of the battery.
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Finding the best charging schedule (1)

We can solve this problem as a shortest path problem with discretized charging
levels (example will come up soon).
Dummies s and t correspond to charging during the night at the depot; the
corresponding charge is 100%.
An optimal charge schedule corresponds to a shortest path from s to t.
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Finding the best charging schedule (2)

Introduce a cluster of vertices corresponding to charge levels at the start and at
the end of each possible charging interval CI.
Connect the charge vertices at the start with the charge vertices at the end of CI
with arcs that correspond to charging the battery with some feasible amount.
Connect the charge vertices at the end of a CI with the charge vertices at the end
of the next CI to account for the charge used for driving.
Since we know the corresponding charge levels and time of charging, the cost of
each arc is readily determined.
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Finding the best charging schedule: example
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Simulated Annealing with ILP

The multistart Simulated Annealing produces decent results ...

and it produces loads of feasible bus schedules.

We can use these to form our set S that we need to solve the ILP.

As far as we know, this is a new solution approach.
This is a new solution approach

Unfortunately for us, it is not new.
Fortunately for you and Qbuzz: it works very well!
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ILP formulation

min
∑
s∈S

csxs

∑
s∈S

atsxs = 1 ∀t ∈ T

xs ∈ {0, 1} ∀s ∈ S
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Results

Dataset CG-LP CG-ILP Gap SA-M Gap SA-ILP Gap

3 23920 24322 1.68% 24018 0.41% 23920 0.00%
7 20712 21568 4.13% 21018 1.48% 21004 1.41%
8 21446 22020 2.68% 21732 1.33% 21530 0.39%
7+8 42344 time - 42764 0.99% 42394 0.12%
3+7+8 66183 time - 67610 2.15% 66878 1.05%

Headers:
CG-LP is the value of the LP-relaxation;
CG-ILP is the solution of the ILP with S equal to the bus schedules discovered by
the Column Generation;
SA-M: optimal solution of the multistart SA over 100 runs.
SA-ILP: result of the ILP with input the bus schedules found by SA-M
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Effect of the number of SA runs on the quality
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The red dots indicates the best value found in the runs of SA; the black line indicates
the value found by the ILP.
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Effect of the number of SA runs on the runtime
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The red dots indicates the amount of time needed for the runs of SA; the black line
indicates the total amount of time needed.
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Summarizing the first part

We solve the problem by combining individual bus schedules to a solution for the
e-VSP
We compared two techniques to determine the individual bus schedules:

Column Generation: we find one bus schedule at a time, but we take the
‘combinability’ into account by solving the pricing problem
Simulated Annealing: here we look for full solutions to the e-VSP, which are then
split.

In contrast to earlier experiences, Column Generation did not work very well;
Simulated Annealing saved the day.
Qbuzz will use these results to plan the buses in Utrecht (total cost 200M per
year).
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Research questions left: explaining the (lack of) success

Why it is so successful?
Why did Column Generation fail? Can we identify reasons why the bus schedules
needed to solve the LP-relaxation are not useful to solve the ILP?
Does Simulated Annealing always find good columns, or it is just luck? How
about extending neighborhoods? It may work contraproductive.

Observations
You need a lot of variation in the bus schedules produced by local search.
A lousy implementation of Simulated Annealing is perfect for that purpose.
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Research questions left: applying it to other problems

Simulated Annealing is a very general technique, just like ILP.
Using the combination of the two is much easier than using Column Generation
A disadvantage of Column Generation is that you need to solve the pricing
problem; if you do not find an improvement to the current solution, then the
method will stop.
Which problems are suitable to this approach? The potential seems huge; we have
applied it successfully already a number of times.
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Planning the drivers: sequential approach

Major assumption: we have decided on the bus schedule already!
We need to plan the drivers given the trips and deadheads that must be driven;
we need a driver for each shift (or at least one).
Drivers can work in several shifts: morning, day, evening, broken shift.
Individual duties (rosters) must comply with working regulations: minimum
working hours, maximum working hours, short breaks, meal breaks, etc.
Moreover, we want to have robust solutions (can also be used as a pee break).
Given a duty, we can easily determine its cost.
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ILP approach

We can formulate it as an ILP using duties (rosters)
Given the entire set of feasible rosters, we must select a subset with minimum
total cost such that all trips and deadheads are covered.
This ILP is ‘the same’ as the one for the vehicle scheduling problem.
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Notation for the duty selection problem

D: set of all feasible duties.
cd : cost of duty d
btd and bqd indicate whether trip t and deadhead q are included in duty d
yd is a binary decision variable for each duty d ∈ D that indicates whether duty d
is chosen.
T and Q are the sets containing all trips and necessary deadheads.
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ILP formulation

min
∑
s∈S

cdyd

∑
d∈D

btdyd = 1 ∀t ∈ T ( or ≥ 1)

∑
d∈D

bqdyd = 1 ∀q ∈ Q ( or ≥ 1)

yd ∈ {0, 1} ∀d ∈ D

Again: we do not know all feasible duties, and the overwhelming majority of bus
schedules is not necessary.
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Branch-and-price approach

We have tried to solve this problem to optimality using branch-and-price.
First step: find a very good heuristic solution by applying the combination of
local search and ILP approach (similar to the one we used for the bus scheduling
problem).
Second step: solve the LP-relaxation to optimality using column generation.
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Solving the LP-relaxation to optimality

The pricing problem corresponds to a constrained shortest path problem; here
we take the working regulations into account.
The vertices in the graph correspond to the start/end of a trip or deadhead; hence
we know the corresponding time at which this event takes place.
There are arcs between the vertices other than the ones corresponding to trips
and deadheads; these correspond to simply waiting at the spot. If desired, you can
also add taxi rides.
If we know the start and end vertex of the duty, then we know the type of shift,
number of breaks needed, etc.
This problem is solved using a labeling algorithm (comparable to dynamic
programming).
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Branching rules

Our first type of branching rule is based on the number of shifts of a certain type.
This part is successful: in this way we can determine how many shifts of each type
we should use.
Next, we can branch on using deadheads, but this has a limited success.
If an optimal solution is not determined quickly, then it is not possible (for us at
least) to find an optimal solution.

If we cannot find an optimal solution, then we should be satisfied with a very good
solution.

We can again use our combination of Simulated Annealing and ILP to find a good
solution; we can use here our knowledge about the types of shifts needed.
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Solving the integrated problem

Observations
We do not know which deadheads are required, and there are very many possible
deadheads.
Local search is hard to apply on the integrated problem because of the
dependencies: if you plan a deadhead, then you need both a bus and a driver.

There are two different subproblems: e-VSP and duty scheduling problem.
Main question: how can we enforce that the solutions to the two subproblems are
compatible?
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ILP formulation

ILP formulation using possible bus schedules and possible duties.
Select bus schedules and duties such that

All trips are covered by a bus and a driver.
Possible deadheads can be selected if and only if there is a driver!

Complication
There are very many possible deadheads => MANY constraints
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Notation: ILP for the integrated approach

Trips: T is the set of all trips (index t);
Deadheads: Q is the set of all possible deadheads (index q).

Bus schedules:
S: set of all bus schedules;
cs : cost of bus schedule s
ats and aqs indicate whether trip t and deadhead q are included in bus schedule s
xs is a binary decision variable for each bus schedule s ∈ S

Duties:
D: set of all feasible duties.
cd : cost of duty d
btd and bqd indicate whether trip t and deadhead q are included in duty d
yd is a binary decision variable for each duty d ∈ D
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ILP formulation integrated approach

min
∑
s∈S

csxs +
∑
d∈D

cdyd

∑
s∈S

atsxs = 1 ∀t ∈ T (drive all trips)

∑
d∈D

btdyd = 1 ∀t ∈ T (a driver for each trip)

∑
s∈S

aqsxs =
∑
d∈D

bqdyd ∀q ∈ Q (a driver for each chosen deadhead)

xs , yd ∈ {0, 1} ∀s ∈ S, d ∈ D
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Decoupling the subproblems

What makes it complicated
We can solve the e-VSP problem and the duty scheduling problem independently.
For a given set of bus schedules and duties, we can solve the combined ILP.
The problem is find bus schedules that enable using good duties, and vice-versa.

Remedy
We decouple the two subproblems by removing the deadhead constraints, which
connect the two.
Hereto, we apply Lagrangean relaxation to the deadhead constraints.
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Lagrangean problem

Introduce Lagrangean multipliers λq for all q ∈ Q
For all q ∈ Q:

Remove constraint q ∑
s∈S

aqsxs =
∑
d∈D

bqdyd

from the set of constraints.

Add the term
λq(

∑
s∈S

aqsxs −
∑
d∈D

bqdyd)

to the objective function.
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Resulting problem

min
∑
s∈S

(cs +
∑
q∈Q

λqaqs)xs +
∑
d∈D

(cd −
∑
q∈Q

λqbqd)yd

∑
s∈S

atsxs = 1 ∀t ∈ T

∑
d∈D

btdyd = 1 ∀t ∈ T

xs , yd ∈ {0, 1} ∀s ∈ S, d ∈ D
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Lagrangean relaxation

Since the e-VSP and duty scheduling problem are no longer connected, we can
split this problem into two separate, independent problems with Lagrangean
multipliers in the cost
The cost of using deadhead q in the e-VSP is increased by λq, since the cost of
bus schedule s has now become

(cs +
∑
q∈Q

λqaqs)

Similarly, the cost of using deadhead q in the e-VSP is decreased by λq in the
duty scheduling problem, since cost of duty d has now become

(cd −
∑
q∈Q

λqbqd)
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How further?

Basic iteration
We solve the bus scheduling problem using local search.
We solve the LP-relaxation of the duty problem by column generation. This is
independent from the solution to the e-VSP! It is also possible to apply local
search here.
Store the discovered bus schedules and duties.

Adjust the Lagrangean multipliers to improve the coordination between the
solutions of the subproblems.
If there is still time left, then apply another iteration.
Finally, solve the ILP with the discovered bus schedules and duties.
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Adjusting the multipliers

The two subproblems seem to be independent, but they are both influenced by
the Lagrangean multipliers.
Compare the solutions to the subproblems:

If there is a deadhead q in the e-VSP solution without a driver, then decrease λq:
this makes the deadhead more expensive for the e-VSP and cheaper to cover for the
duty scheduling problem.
If there is a driver for deadhead q, but this deadhead is not in the e-VSP solution,
then increase λq: this makes the deadhead cheaper for the e-VSP and more
expensive for the duty scheduling problem.

By adjusting the Lagrangean multipliers, we hope that the two subproblems converge
to a feasible solution for the integrated problem!
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Results

Ongoing work
Reasonable computation times
You can stop generating columns when you are running out of time
Preliminary computational experiments: gain of 5%-10% compared to the
sequential approach.
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Wrap-up
Decomposition for e-VSP

We compared two techniques to determine the individual bus schedules:
Pricing within Column Generation
Split up solutions found with Simulated Annealing

ILP fed by Simulated Annealing was great.
Qbuzz will use these results to plan the buses in Utrecht (total cost 200M per
year).

Ongoing work: planning drivers
The integrated approach combines Lagrangean relaxation, column generation, and
local search.
Preliminary results are very promising. Gain of 5%-10% compared to the
sequential approach.
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That’s it

Questions?

Han Hoogeveen
Utrecht University
j.a.hoogeveen@uu.nl
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