A Tailored Benders Decomposition Approach for Last-mile Delivery with Autonomous Robots

Ivana Ljubić

ESSEC Business School

ICORES, 3 to 5 Feb, 2022

Experiments 000000000000000

Based on the paper

European Journal of Operational Research 299 (2022) 510-525

Production, Manufacturing, Transportation and Logistics

A tailored Benders decomposition approach for last-mile delivery with autonomous robots

Laurent Alfandari, Ivana Ljubić*, Marcos De Melo da Silva

ESSEC Business School, Cergy-Pontoise, France

Context: E-commerce growth

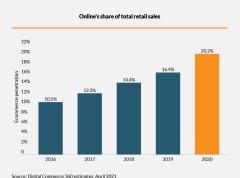
- E-commerce sales worldwide grew sixfold in a decade
- From \$0.57 trillion in 2010 to some \$3.5 trillion in 2019.
- Increase of 24% in worldwide eCommerce revenue between pre- and post-COVID period.
- Food & Personal Care products show the most growth.

Source: Digital Commerce 360 estimates; April 2021

Experiments 0000000000000000

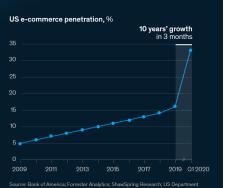
Context: E-commerce growth

 Paradigm shift due to COVID disruptions: drastic increase in online retail sales.



Global ecommerce penetration, 2016-2020

In the US, ten years' worth of growth took place within three months when the pandemic broke out.



of Commerce; McKinsey analysis

Last-Mile Delivery

 Last leg of delivery accounts for more than 50% of shipping and transportation costs

(source: advancedfleetmanagementconsulting.com)

Last-Mile Delivery

Stakeholders:

- Clients: Expect swifter delivery times, but are not ready to pay for it
- Retailers: Increased volumes of goods
 ⇒ slower delivery times, less flexibility in delivery time slots, and higher delivery costs
- Citizens: Delivery traffic rising, underutilized delivery vehicles, increased congestion and pollution

Bottleneck: last-mile delivery systems

Innovative last-mile concepts

- Constraints: same-day deliveries, due dates, etc.
- Innovative last-mile concepts:
 - pickup points networks
 - integrated public and freight transportation
 - deliveries directly into the customer car's trunk
 - crowdshipping
 - unmanned aerial vehicles (drones)
 - self-driving autonomous robots: multi- or single-deliveries (droids)

Recent survey: Archetti, Bertazzi (Networks, 2021)

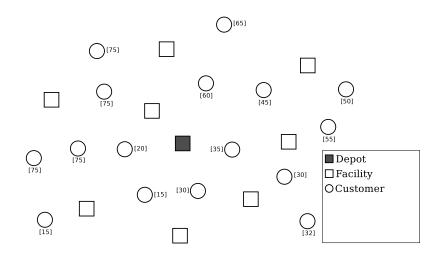
Last-Mile Delivery

- Location: Bring products into pop-up facilities (smaller capacities) closer to customers, to reduce transportation costs.
- Fleet: porters, drones, droids. Autonomous vehicles could make 24/7 deliveries possible and overcome labor-shortages.
- Efficient and environmentally friendly

(c) Starship

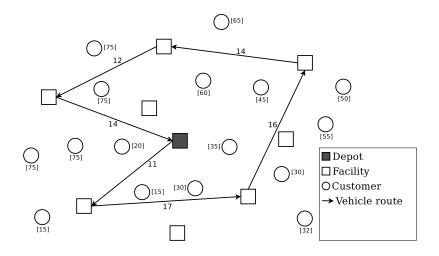
Experiments 0000000000000000

Setting



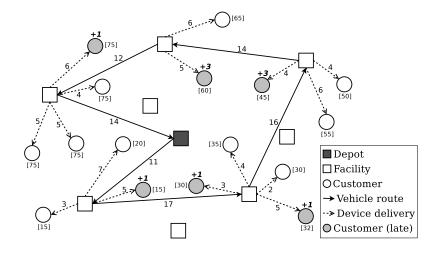
Experiments 00000000000000000

A subset of robot-facilities is chosen and a vehicle brings parcels closer to the clients



Experiments 0000000000000000

Droids are sent out from robot-facilities to end clients



Experiments 0000000000000000

Droids vs Drones?

- Regulation issues (slower adoption of drones due to safety concerns)
- Droids operate at low (pedestrian) speeds, they can safely share sidewalks or bike lanes with people
- Drones allow for unattended delivery, which is (currently) not possible with droids
- Drones travel at a higher speed, so that the trucks can collect them en-route and reuse them for later deliveries

Experiments 00000000000000000

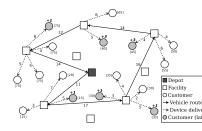
Assumptions (operational decision making)

- Single parcel delivery
- Attended delivery
- Due dates for customer delivery agreed beforehand
- Sufficient number of droids available at robot-facilities
- Droids have a coverage radius (speed/battery)

Objectives?

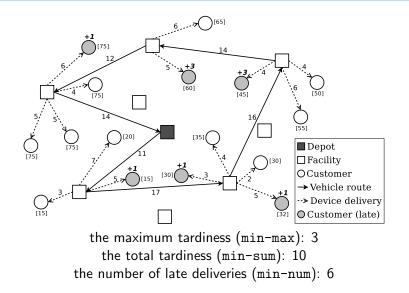
Change of paradigm:

- Distance-Minimization no longer an issue (e-powered vehicles)
- New KPIs based on late deliveries
- Minimization
 - the maximum tardiness (min-max),
 - the total tardiness (min-sum), or
 - the number of late deliveries (min-num)



Experiments 000000000000000

Example



Contribution

- Tardiness-based KPIs have been almost neglected in the last-mile delivery (mainly humanitarian logistics so far)
- What is the complexity of the underlying routing-scheduling optimization problems?
- We use MIP-based techniques to find (nearly) optimal solutions. Advanced decomposition technique (tailored Benders cuts)

Managerial insights:

- What is the impact of the coverage radius (or speed of droids) on the QoS?
- How are the droid speed/radius affecting the environment (the distance traveled by the delivery truck, and CO2 emissions)
- How is the structure of the optimal solution affected by the choice of the KPI?

Experiments 0000000000000000

The Uncapacitated Routing Scheduling Problem

The Uncapacitated Routing Scheduling Problem

- ▶ Given: F set of robot facilities, C set of customers (uk due dates), central depot (0).
- Uncapacitated Routing Scheduling Problem (URSP):
 - Solution: Solution: a route starting from the depot 0 and visiting a subset of facilities so that all customers are delivered from their assigned (closest) facility by a droid.
 - Objective: minimize
 - max (weighted) tardiness, (min-max)
 - total (weighted) tardiness, (min-sum)
 - total (weighted) number of late deliveries, (min-num)

Positioning vs literature

Special case of Boysen et al. (2018). Their paper :

- truck loaded with both customer parcels and droids (this work: only parcels in truck)
- additional drop-off points from where droids in truck can be launched to perform deliveries (this work: droids only sent from facilities)
- truck can be reloaded with new droids at given stations
- heuristic method (this work: exact method, Benders)

For more bibliography: see our paper Alfandari, Ljubić, Melo, EJOR, 2022

Multi-commodity flow MILP formulation.

Notation

• Network is modelled by direct graph G(V, A):

- $V = (C \cup F_0)$ is the set of vertices.
- $A = A_F \cup A_C$, is the set of arcs.
- $F_0 = (F \cup \{0\})$ is the set of facilities + depot.

•
$$A_F = (F_0 \times F_0)$$
 and $A_C = (F \times C)$.

- t_{ij} is the time required for travelling from *i* to *j*.
- Customer $k \in C$ has due date u_k .

Problem Complexity

Central facility policy: Truck delivers all parcels to a single facility, from which all self-driving robots are sent.

When is the central-facility policy optimal?

The central-facility policy is optimal for all three variants of the URSP if droids are at least as fast as the truck and all customers can be reached from any facility.

In this case, the solution can be found in O(|F||C|) time.

Otherwise ..

If travel times do not satisfy the triangle inequality, all three problems are NP-hard, in general.

By reduction from: metric Shortest Hamiltonian Path problem (min-max and min-num), the Traveling Repairman Problem (TRP) (min-sum).

URSP Model - Variables

Variables

► Auxiliary variables s_k ≥ 0: number of late units when serving customer k ∈ C.

Experiments 00000000000000000

URSP Model - Constraints 01

Tour Constraints $x(\delta^{-}(i)) = x(\delta^{+}(i))$ $i \in F$ (1) $x(\delta^{-}(i)) \leq 1$ $i \in F$ (2) $x(\delta^{+}(0)) = x(\delta^{-}(0)) = 1$ (3) $x_{ij} \in \{0, 1\}$ $(i, j) \in A_F$ (4)

Subtour-elimination constraints

$$x(A(S)) \le |S| - 1$$
 $S \subseteq F, |S| \ge 2$ (5)

 Experiments 0000000000000000

URSP Model - Constraints 02

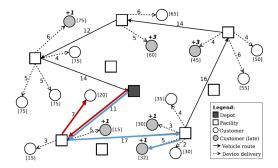
Facility Assignment Constraints

$$z_{ik} \le x(\delta^{-}(i)) \qquad k \in C, \ i \in F(k)$$
(6)

$$\sum_{i \in F(k)} z_{ik} = 1 \qquad k \in C \tag{7}$$

$$0 \le z_{ik} \le 1 \qquad k \in C, i \in F(k)$$
(8)

How to model travel time?



we need to access the unique path between the depot and a customer, to calculate the arrival time

URSP Model - Constraints 02

Flow Constraints

$$\sum_{j \in F_0} f_{ji}^k - \sum_{j \in F_0} f_{ij}^k = \begin{cases} -1, \text{ if } i = 0\\ z_{ik}, \text{ if } i \in F(k) \\ 0, \text{ otherwise} \end{cases} \quad i \in F, \ k \in C \quad (9)$$

$$0 \le f_{ij}^k \le x_{ij} \qquad (i,j) \in A_F, \ k \in C \tag{10}$$

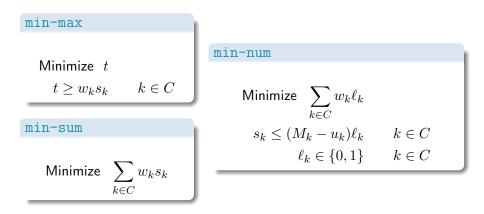
Travel-time Constraints: s_k is #(late units)

$$\sum_{(i,j)\in A_F} t_{ij} f_{ij}^k + \sum_{i\in F(k)} t_{ik} z_{ik} \le u_k + s_k \qquad k \in C \qquad (11)$$

Methodology

Experiments 0000000000000000

URSP Model - Objective Functions



Experiments 0000000000000000

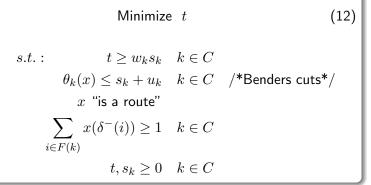
Benders Decomposition

- Structure of the problem fits on the Benders Decomposition framework:
 - Master: "difficult" routing constraints (binary variables).
 - Subproblems: "easy" flow constrains (continuous variables).
- General: Applicable to all three objective functions
- Decomposable: Benders subproblem is separable, one subproblem per customer.

Methodology

URSP Benders - Master

Master Problem



We are projecting out flow (f) and assignment (z) variables. Adding Benders cuts on-the-fly in a branch-and-cut fashion.

To generate Benders cuts...

- Given a route x and a "guess" of the lateness-times sk: is there a feasible solution such that
 - ► each client k ∈ C can be reached from the depot within the time u_k + s_k?

$$\theta_k(x) \leq s_k + u_k \quad k \in C \quad /* \mathsf{Benders \ cuts}*/$$

θ_k(x) has to evaluate what is the time needed to reach *k*?
 For a given *x* ⇒ the shortest path problem in the support graph induced by *x*.

Non-standard Benders approach

- Textbook implementation: generate Benders feasibility cuts, add a cut for an extreme ray, etc.
- Problems: numerically unstable, slow convergence, choice of rays,...

Our approach:

- Normalization: Instead of checking the unboundedness of the dual of the LP, we are solving a well-posed shortest-path-like problem (optimal solution always exists).
- Separation: instead of solving an LP, we have a combinatorial way of separating normalized Benders cuts (labeling algorithm, runs in linear time).
- Our cuts are **numerically stable** and **sparse**.

Methodology

Two major theoretical results - Part 1

Theorem [Alfandari, L., Melo da Silva, 2022]

For a master solution $x^*\in\{0,1\}^{|A_F|}$ and customer $k\in C$, coefficients (α^*,β^*) of the the Benders cut

$$oldsymbol{lpha}_k^* - oldsymbol{lpha}_0^* - \sum_{(i,j)\in A_F}oldsymbol{eta}_{ij}^* x_{ij} \leq s_k + u_k$$

can be computed as: $\alpha_k^* = t_T^*(0, k) = \min_{i \in T} \{t_T(0, i) + t_{ik}\}$ and for facility nodes $i \in F$:

(i)
$$\alpha_i^* = t_T^*(0, i)$$
, if $i \in F_T$, $i \in P_T^*(0, k)$
(ii) $\alpha_i^* = \min(t_T^*(0, i), \ \alpha_k^* - t_G^*(i, k))$, if $i \in F_T$, $i \notin P_T^*(0, k)$
(iii) $\alpha_i^* = \alpha_k^* - t_G^*(i, k)$, if $i \in F_{\overline{T}} = F \setminus T$
and finally

$$\beta_{ij}^* = \max(0, \ \alpha_j^* - \alpha_i^* - t_{ij}), \ \forall (i,j) \in A_F$$

Two major theoretical results - Part 2, Sparsity

Theorem [Alfandari, L., Melo da Silva, 2019]

For the coefficients (α^*, β^*) of the Benders cut computed as above, and the proportion of facility nodes including 0 that are in tour $T \ \rho = |F_T|/|F_0| \in [\frac{2}{m}, 1]$), where $m = |F_0|$), the fraction of variables β^*_{ij} equal to zero in the Benders cut is at least

$$g(\rho) = 1 - \rho + \frac{\rho^2}{2} + \frac{1, 5\rho - 1}{m} - \frac{1}{m^2} \ge \frac{1}{2}.$$
 (13)

Moreover, we have $\lim_{\rho \to 2/m} g(\rho) = 1 - o(1/m)$.

- At least half of the coefficients in the cut are zero
- All coefficients are integer (for t_{ij} integers)

Heuristics to initialize Branch-and-Cut

► A greedy heuristic to build initial tour T':

- Greedy insertion of facilities following the most-urgent-deadline-first policy. We apply the best insertion policy with respect to the total tardiness criterion.
- Local search applied to T': node re-insertions and swaps in a Variable Neighborhood Descent fashion, and finally remove unused facilities.

Methodology

Experiments 0000000000000000

Computational Study

Experiments - Implementation and Instances

- ► Algorithms were implemented in C/C++.
- Machine: Intel Core[™] i7 4.00 GHz, 64.0 GB of RAM, running under GNU/Linux Arch.
- ► LP/MIP Solver: CPLEX 12.8:
 - Time limit: One hour (3600s).
 - Comparison against: CPLEX Automatic Benders, CPLEX compact model, our Benders with LP-separation.

Experiments - Implementation and Instances

- Facilities and customers coordinates: uniformly generated on a 10 × 10 km square grid.
- Customer due dates computed as in Boysen et al. (2018).
- Two sets of instances based on devices coverage area:
 - 1. All customers within facility's coverage radius (comparison of methods).
 - 2. Coverage radius limited (managerial study).
- A greedy heuristic + local search was implemented for computing feasible solutions.
- Connectivity cuts separated for integer master solutions.

Parameters considered

Table 1: Parameters with * used for the managerial study.

Parameters	Values
Number of Customers (C)	25, 50*, 75, 100
Number of Facilities (F)	10, 15, 20*, 25
Device speed (km/h)	5*, 6, 10, 15
Device coverage radius (R min.)	30, 35, 40, 45, 60*
Objective function	min-max*, min-sum, min-num

(*) default values.

Starship (6km coverage radius, 6km/h speed). e-novia (80km radius, 6-20km/h speed)

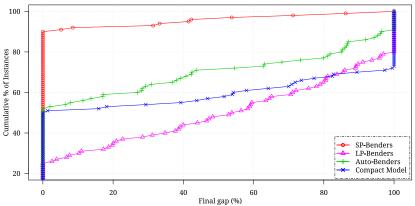
Methods Comparison: 20 facilities, up to 100 customers, min-max

	Compact Model (Cplex)			Auto-Benders (Cplex)		
Instances	#Solved	Time (s)	Gap (%)	#Solved	Time (s)	Gap (%)
rsp_20_25	23	626.50	1.36	15	1568.36	35.84
rsp_20_50	17	1714.56	20.65	14	1643.19	28.58
rsp_20_75	10	3005.53	46.10	13	1932.53	22.24
rsp_20_100	0	3600.00	95.60	9	2617.63	35.64
Total/Avg.	50		41.06	51		30.58

	LP-Benders			Ta	Tailored Benders		
Instances	#Solved	Time (s)	Gap (%)	#Solved	Time (s)	Gap (%)	
rsp_20_25	10	2317.31	40.55	25	253.65	0.00	
rsp_20_50	10	2844.46	47.45	21	669.23	8.31	
rsp_20_75	3	3272.03	51.52	23	525.43	5.14	
rsp_20_100	2	3454.41	62.68	21	1020.25	5.48	
Total/Avg.	25		50.55	90		4.73	

URSP Computational Results - Methods Comparison

- No coverage radius instances:
 - $\blacktriangleright |F| = 20, |C| = \{25, 50, 75, 100\}.$
 - Vehicle speed: $30 \ km/h$. Device speed: $5 \ km/h$.
 - 25 instances in each group.
- Objective function: min-max.



Varying Robots' Speed

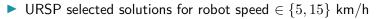
Table 2: Solution properties.

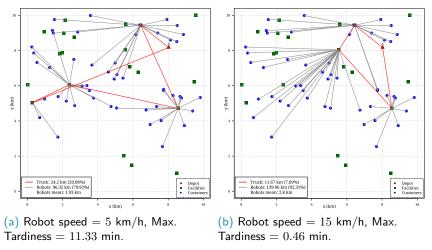
	Varying Robots' Speed					
Speed	Avg. tour	Avg. truck	Avg. all robots	Avg. single robot		
(km/h)	#Facilities	dist. (km)	dist. (km)	dist. (km)		
5	6.06	27.26	183.29	3.67		
6	5.46	24.17	202.12	4.04		
10	4.28	19.68	264.10	5.28		
15	2.90	16.01	360.67	7.21		

Increasing the speed of robots from 5km/h to 15km/h \Rightarrow annual savings of ≈ 0.7 tons of CO₂ (for a single urban area of 10 km²).

Experiments

URSP Computational Results - Cost-benefit Analysis





Varying Coverage Radius

Table 3: Solution properties.

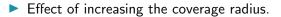
	Varying Coverage Radius							
Radius	Avg. tour	Avg. truck	Avg. all robots	Avg. single robot				
(minutes)	#Facilities	dist. (km)	dist. (km)	dist. (km)				
30	9.08	39.79	143.04	2.86				
35	7.90	35.14	154.56	3.09				
40	7.46	32.46	161.21	3.22				
45	6.92	30.33	169.29	3.39				
60	6.06	27.26	183.29	3.67				

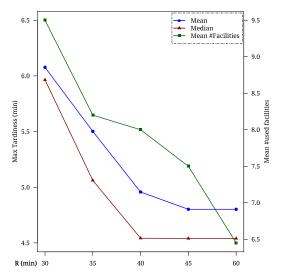
Increasing the coverage radius from 30 minutes to 60 minutes \Rightarrow annual savings of ≈ 0.75 tons of CO₂ (for a single urban area of 10 km²).

Methodology

Experiments

URSP Computational Results - Cost-benefit Analysis



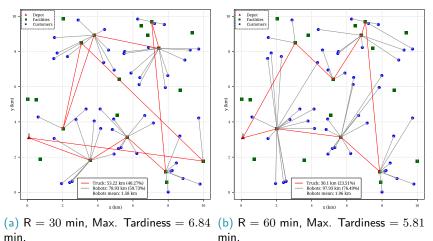


46 / 51

Experiments

URSP Computational Results - Cost-benefit Analysis

▶ URSP selected solutions for coverage radius $R \in \{30, 60\}$ min



Comparing the three different KPIs.

Table 4: Each row: optimal solutions for 25 instances obtained by one of the three objective functions. Each column: KPI evaluation of these solutions.

	max		នា	sum		num	
Objective	Median	Mean	Median	Mean	Median	Mean	
min-max	(3.57)	(4.74)	3.57	5.99	14.60	13.06	
min-sum	5.40	15.63	(5.40)	(11.69)	15.79	20.75	
min-num	3.00	3.72	3.00	2.72	(2.00)	(1.72)	

min-sum and min-max solutions are similar, but can be quite different from min-num solutions.

- If the decision-maker wishes to control both criteria (the number of late customers and the total/max tardiness), both of them should be included in the decision model.
- Bi-objective optimization: ε-constrained methods, linear combination, etc.

Directions for Future Work

- Capacitated RSP: capacities at the facilities
- Single stop for the truck, but multiple trips for self-driving robots
- Optimization under uncertainty: uncertain travel times (robust vs stochastic)
- Dynamic and/or stochastic arrival of the packages at the central depot
- Methodologies: Matheuristics, Monte-Carlo, Reinforcement Learning, Bi-objective optimization

Thank you for your attention!!!

Experiments

URSP Computational Results - Cost-benefit Analysis

Comparing the three key performance indicators

