Protecting IoT Ecosystems and AI
Leveraging TCG Standards
Thorsten Stremlau is a Systems Principal Architect at NVIDIA. He is known for identifying digital transformation strategies and integrating AI and technologies into the product development processes to improve security capabilities. Thorsten has been part of TCG for over 20 years and is currently the co-chair of the Marketing Work Group.
Trusted Computing Group (TCG)

Open Standards for Trusted Computing

- TCG is the **only** group focused on Trusted Computing standards

- You know TCG for our technical specs & guidance such as:
 - Trusted Platform Module (TPM = ISO 11889)
 - Self-encrypting drives (SED)
 - Trusted Network Communications (TNC)

- TPM specification implemented in more than a **billion** devices
 - Chips integrated into PCs, servers, printers, kiosks, industrial systems, and many embedded systems
Agenda

• Providing a Foundation for Security
• Different Regulatory Action on AI
• The Problem Statement
• The Four AI Elements
• What TCG standards can be used to mitigate
 • TPM/MARS
 • DICE
 • FIM
 • RIM
 • CyRes
Providing a Foundation for Security

• **Ensure platforms are resilient to attacks**
 – Firmware and data are security-critical components
 – Must remain available and trustworthy in face of attacks
 • *Protect* firmware and critical data from unauthorized changes
 • *Detect* and *Recover* from problems

• **Provide secure and scalable means to recover systems, applications, and AI/enterprise data**
 – These mechanisms must themselves be resilient to tampering/corruption by destructive malware
 – Built upon trust in the platform recovery support
Company fined £44,000 after 27,000 chickens die after overheating after farm ventilator failure

EU AI ACT

[Diagram showing a list of requirements and best practices for AI systems]

- Use high-quality training, validation and testing data (relevant, representative etc.)
- Establish documentation and design logging features (traceability & auditability)
- Ensure appropriate certain degree of transparency and provide users with information (on how to use the system)
- Ensure human oversight (measures built into the system and/or to be implemented by users)
- Ensure robustness, accuracy and cybersecurity

[Text box with the EU commission logo and proposal details]
Test, Evaluation, Verification, and Validation (TEVV)
Multiple Attack Surfaces

4 AI Elements

- Sensors (Light/Temp)
- Data Sources (Edge Devices)
- Algorithms
- Models
- Training

Data Sets
Problem Statement

How to protect AI against illicit modifications and injection of erroneous data

What we would like to do:
1. Ensure the integrity of the data flow and attest to data sources
2. Ensure algorithms are not modified by untrusted sources
3. Establish Integrity and attestation of models
4. Properly identify and attest training sources and input
Trusted Platform Module (TPM)

The **Standard** Hardware Root of Trust

- Trusted Platform Module (TPM)
 - Self-contained security processor
 - Inexpensive & small (~0.1 watt, ~$1)
 - Connects to inexpensive processor buses

- TPM provides:
 - Secure storage of boot state (= hashes of objects)
 - Secure storage of runtime state (= hashes of software applications)
 - Secure storage of cryptographic secrets (e.g. private keys)
 - Cryptographic-quality Random Number Generator
 - Resistance to physical attack (i.e. reverse-engineering) to keep private keys private

- Specified by Trusted Computing Group, a standards group
Platform Configuration Register (PCR)

- PCR Values can only be ‘extended’, no direct write
 - $PCR_{new} = \text{Hash}(\text{Digest} + PCR_{old})$
 - Digest is computed by host machine
- PCR values are usually only resettable by a reset of the TPM
- TPM can bind secrets and policies to the value of a PCR
- TCG defines number of PCRs and which measurements should be stored in them.
DICE

- Device Identifier Composition Engine (DICE, TCG)
- A specification from the Root of Trust for Measurement subgroup in the Trusted Computing Group (TCG)
- Foundational security for HW at near zero cost
- Simple hardware requirements mean DICE is adaptable to most any system or component
- Provides HW-based identity and attestation, and a foundation for sealing, data integrity, device recovery and update
In a DICE Architecture device startup (boot) is layered. Beginning with a Unique Device Secret (UDS), secrets/keys are created that are unique to the device and each layer and configuration. This derivation method means that if different code or configuration is booted, secrets are different. If a vulnerability exists and a secret is disclosed, patching the code automatically re-keys the device.
THE DICE MODEL

Traditional Security Processor

Device Firmware
Boot Loader
CPU
HSM
Fuse/NV-key

DICE Architecture

OS Loader, OS, Apps...

RloT Core

Keys and Certificates for Device Identity, Attestation, sealing, etc.

Compound Device Identity

HW/SoC

Fuse/NV-key
THE DICE MODEL

- Power-on (reset) unconditionally starts the DICE
- DICE has exclusive access to the UDS
- Each layer computes the secret for next layer (via OWF)
- In this derivation chain, each layer must protect the secret it receives
WHEN SOMETHING CHANGES

- The branch illustrates the result of a code/config change

- Updates provide a way to recover a device or component if bad code leaks a secret.
Integrity Measurement

1. Event 1
 - IM
 - PCR ← Hash ([PCR] | IM)
 - Extend

2. Event 2
 - IM
 - PCR ← Hash ([PCR] | IM)
 - Extend

3. Event 3
 - IM
 - PCR ← Hash ([PCR] | IM)
 - Extend

Memory Storage, Etc.

RTMi

PCR ← 0

PCR = Platform State
CyRes Workgroup

Cyber-Resilient Device

Resilience Target
- Application
- Bare-metal substrate, U-Boot, OS kernel, Hypervisor

Resilience Engine
- Various RE functions
- Resilience Engine Core (self-check, device key management)

Normal Boot
- Update
- Recovery

Module Reset in response to Attention Trigger (e.g. Cyber-Resilient Watchdog Timer)

Write-Protected during Resilience Target operation

Resilience Authority

Module Reset after device management operations by Resilience Engine
Call to Action
Questions?
Post Your Questions Now

Thank You!
Contacting Trusted Computing Group

Website:
www.trustedcomputinggroup.org

Email:
admin@trustedcomputinggroup.org

LinkedIn:
https://www.linkedin.com/groups/4555624

Twitter:
@TrustedComputin