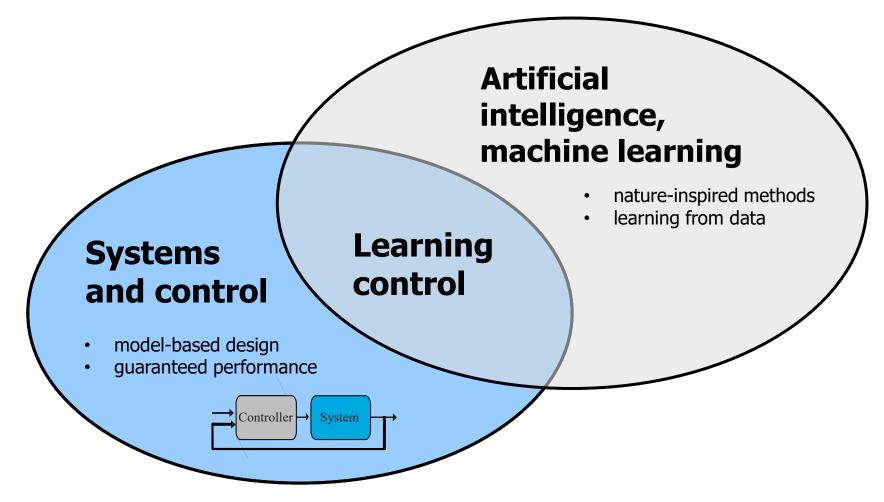


Toward transparent and physically consistent machine learning models

Robert Babuška

Czech Institute of Informatics, Robotics, and Cybernetics, CTU in Prague, Czech Republic Department of Cognitive Robotics, TU Delft, The Netherlands email: r.babuska@tudelft.nl

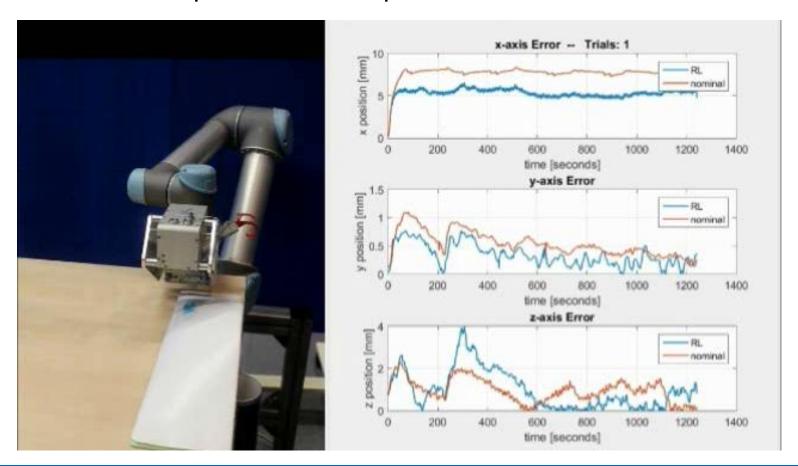
Background



Current research interests

Reinforcement learning for nonlinear motion control in robotics

Performance optimization in repetitive tasks

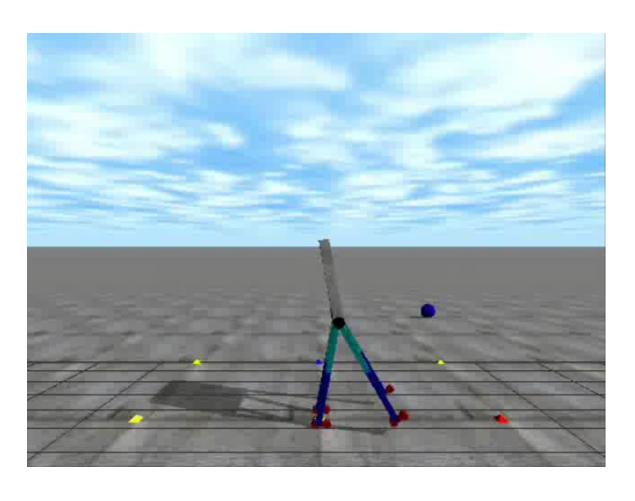


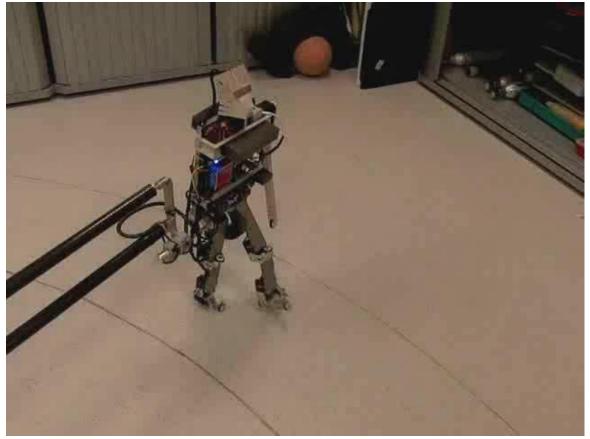
Research interests

Reinforcement learning for nonlinear motion control in robotics

- Performance optimization in repetitive tasks
- Bipedal walking

Model-based reinforcement learning





Research interests

Reinforcement learning for nonlinear motion control in robotics

- Performance optimization in repetitive tasks
- Bipedal walking
- Complex flight maneuvers

Research interests

Reinforcement learning for nonlinear motion control in robotics

- Performance optimization in repetitive tasks
- Bipedal walking
- Complex dynamic maneuvers

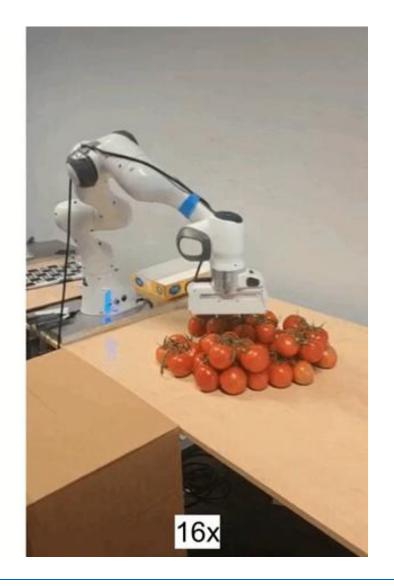
Machine learning for vision-based robot control in unstructured environments

Grasping and manipulation of complex objects

Clearing a pile of tomato trusses

Results:

- Successfully clearing the pile in every attempt
- 93% needed one attempt
- 6% needed two attempts
- 1% required more than two attempts



Research interests

Reinforcement learning for nonlinear motion control in robotics

- Performance optimization in repetitive tasks
- Bipedal walking
- Complex dynamic maneuvers

ML for vision-based robot control in unstructured environments

- Grasping and manipulation of complex objects
- Tree pruning
- Fruit harvesting

Learning nonlinear dynamic models from data by using symbolic regression

Limitations of deep learning and neural networks

- Large amounts of training data
- Many hyperparameters
- Black-box models
- No straightforward way to include prior knowledge

Symbolic regression as an alternative machine learning approach

Symbolic regression

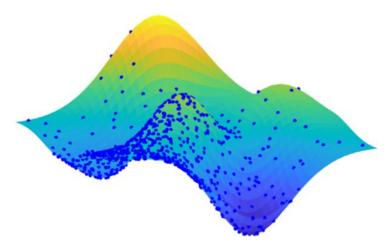
Data (from experiments or operation)

x1	x2	У
-3.14	-30.10	-23.34
-2.93	-10.14	-22.67
-2.72	2.31	-22.07
-2.30	13.22	-21.29

Analytic model

$$y = -15.42 + 2.43 * (-1.49*x1 + 0.51*x2 + 0.07)$$

+ sqrt(x2 + power(2.17*x1 -2.93*x2, 2) + 1)



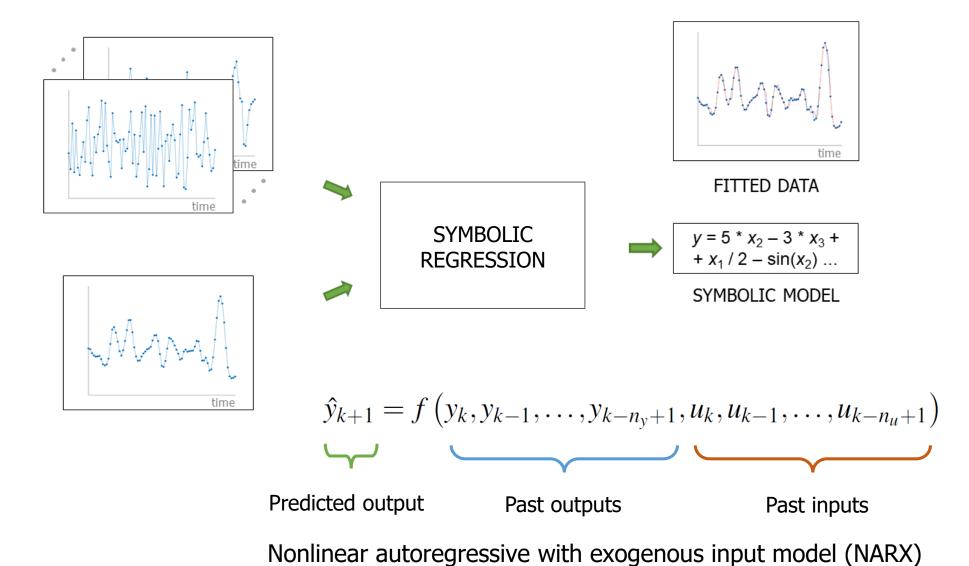
Model must be

accurate

simple

physically plausible

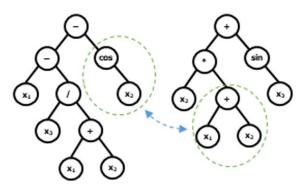
Modeling dynamic systems



ICINCO 2025, Marbella - Spain, October 21, 2025

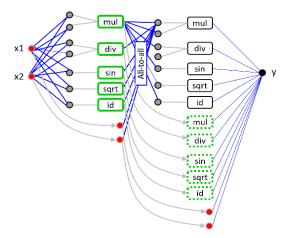
Symbolic regression methods

1. Genetic algorithms and evolutionary programming gradient-free optimization, genetic operators, global exploration



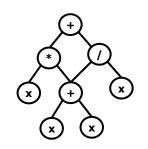
2. Feedforward multilayer neural networks gradient-based optimization, sparse topology, fine-tuning coefficients

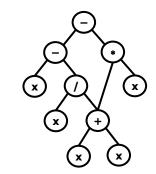
3. Transformers and foundation models train a transformer on a large number of data – formula pairs



Genetic algorithms for symbolic regression

$$y = \sum_{j=0}^{n_f} \alpha_j F_j(x_1, \dots, x_n)$$





- Multiple Regression Genetic Programming [1]
- Evolutionary Feature Synthesis [2]
- Multi-Gene Genetic Programming [3]
- Single Node Genetic Programming [4, 5]
- [1] I. Arnaldo et al.: Multiple regression genetic programming (2014)
- [2] I. Arnaldo et al.: Building predictive models via feature synthesis (2015)
- [3] M. Hinchliffe et al.: Modelling chemical process systems using a multi-gene genetic programming algorithm (1996)
- [4] D. Jackson: Single node genetic programming on problems with side effects (2012)
- [5] J. Kubalík et al.: An improved Single Node Genetic Programming for symbolic regression (2015)

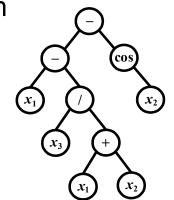
Example: value function approximator in value iteration

Target data

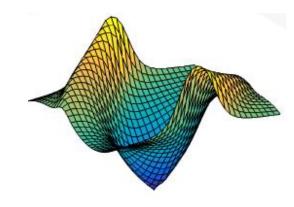
$$t_{i,\ell} = \max_{j} (r_{i,j} + \gamma V_{\ell-1}(x_{i,j}))$$

Symbolic regression

$$J_{\ell}^{\text{SVI}} = \frac{1}{n_x} \sum_{i=1}^{n_x} \left[\underbrace{t_{i,\ell}}_{\text{target}} - \underbrace{V_{\ell}(x_i)}_{\text{evolved}} \right]^2$$



Symbolic V-function from previous iteration



$$V_{\ell}(x) = 5 * x_2 - 3 * x_3 + \cos(x_1) - \sin(x_2) \dots$$

Pendulum swing-up

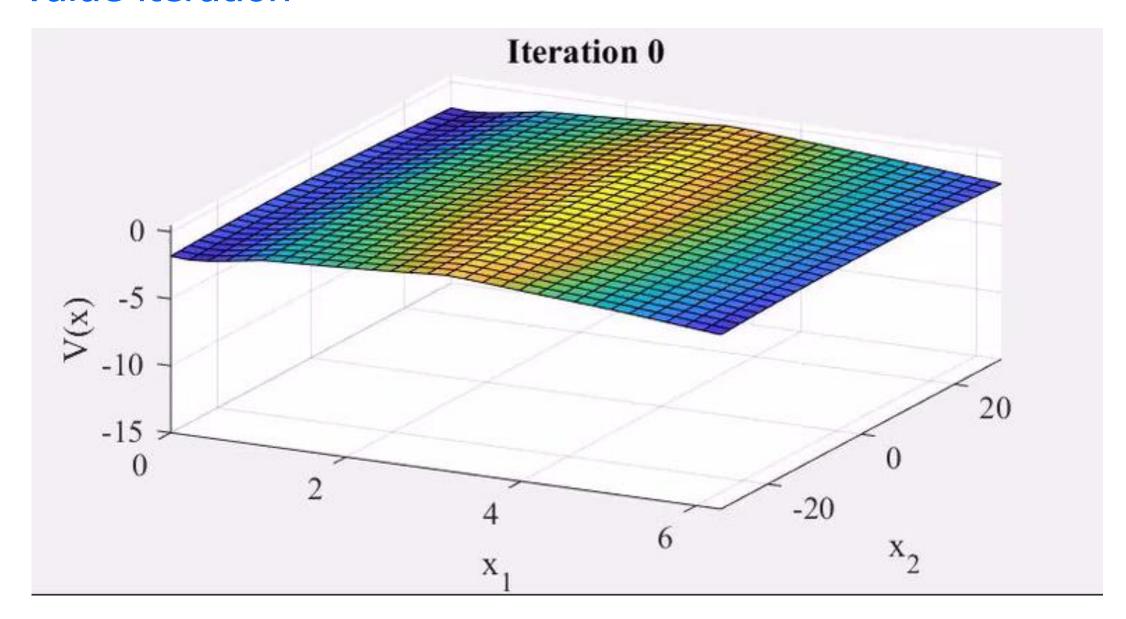
$$J\ddot{\alpha} = -mgl\sin(\alpha) - (b + \frac{K_t^2}{R})\dot{\alpha} + \frac{K_t}{R}u$$



Control goal: bring mass to the upper equilibrium under the control action limited to:

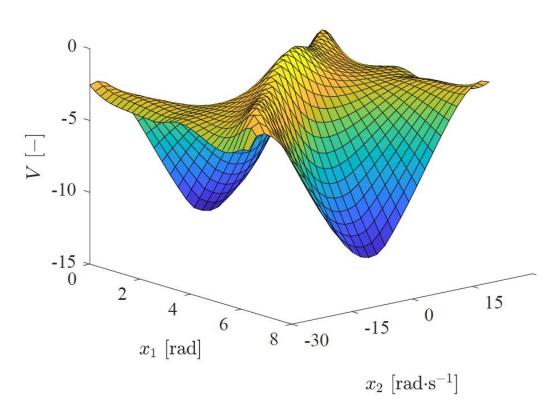
$$|u_k| \le 2[V], \quad \forall k$$

Value iteration



Value function: analytic expression

symbolic V-function



$$V(x) = 1.7 \times 10^{-5} (10x_2 - 12x_1 + 47)(4.3 \times 10^{-2}x_2 - 3.5x_1 + 11)^3$$

$$- 7.1 \times 10^{-4}x_2 - 4.6x_1 - 8.2 \times 10^{-6} (4.3 \times 10^{-2}x_2 - 3.5x_1$$

$$+ 11)^3 (0.2x_1 + 0.3x_2 - 0.5)^3 - 9.8 \times 10^{-3} (0.4x_1 + 0.1x_2 - 1.1)^6$$

$$+ 11(0.1x_1 - 1.5)^3 + 11((0.6x_1 + 6.3 \times 10^{-2}x_2 - 1.7)^2 + 1)^{0.5}$$

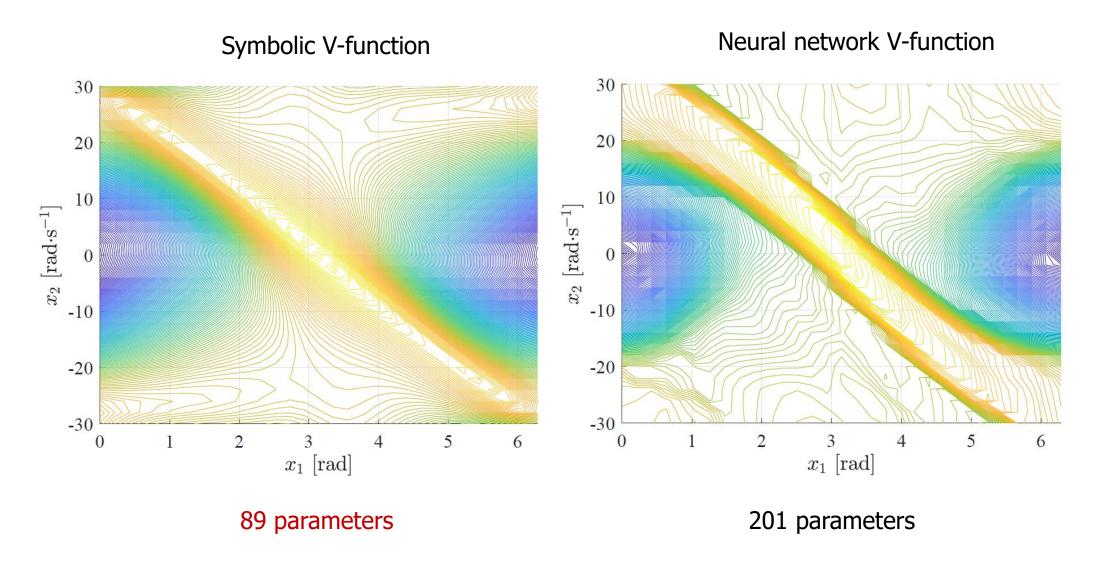
$$+ 8.7 \times 10^{-6} ((10x_2 - 12x_1 + 47)^2 (4.3 \times 10^{-2}x_2 - 3.5x_1 + 11)^6 + 1)^{0.5}$$

$$+ 0.3((1.1x_1 + 0.4x_2 - 3.3)^2 + 1)^{0.5} + (3.9 \times 10^{-3} (4.3 \times 10^{-2}x_2 - 3.5x_1 + 11)^2 (0.2x_1 + 0.3x_2 - 0.5)^2 + 1)^{0.5} + 6.5 \times 10^{-5} ((1.2x_1 + 14x_2 - 10)^2 (9.1 \times 10^{-2}x_2 - 2.9x_1 + 0.5((9.1 \times 10^{-2}x_2 - 2.9x_1 + 8.3)^2 + 1)^{0.5} + 7.8)^2 + 1)^{0.5} - 5.5 \times 10^{-2} (4.3 \times 10^{-2}x_2 - 3.5x_1 + 11)(0.2x_1 + 0.3x_2 - 0.5) - 1.7((3.6x_1 + 0.4x_2 - 11)^2 + 1)^{0.5}$$

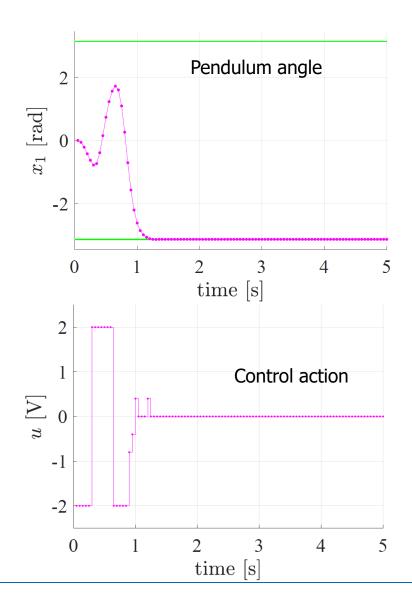
$$- 2((x_1 - 3.1)^2 + 1)^{0.5} - 1.3 \times 10^{-4} (1.2x_1 + 14x_2 - 10)(9.1 \times 10^{-2}x_2 - 2.9x_1 + 0.5((9.1 \times 10^{-2}x_2 - 2.9x_1 + 8.3)^2 + 1)^{0.5} + 7.8) + 23.$$

89 parameters

Comparison with a neural network



Swing-up experiment on the real system

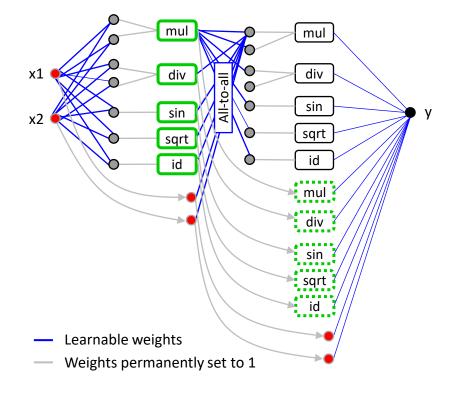


Pro's and con's of genetic programming

- + Straightforward approach, few hyperparameters
- + Global exploration of search space
- + Can build compact models for a broad range of systems, incl. hybrid systems
- + Prior knowledge in terms of expected mathematical functions
- Tuning real-valued parameters
- Computationally demanding

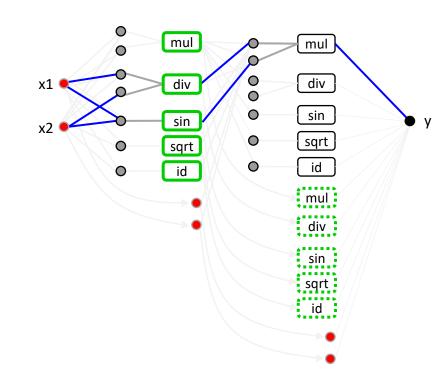
Neural networks for symbolic regression

Initial network



Final model: $y = \sin(0.3 * x_1 - 1.2 * x_2) * \frac{x_1}{2 * x_2}$

Backpropagation & regularization



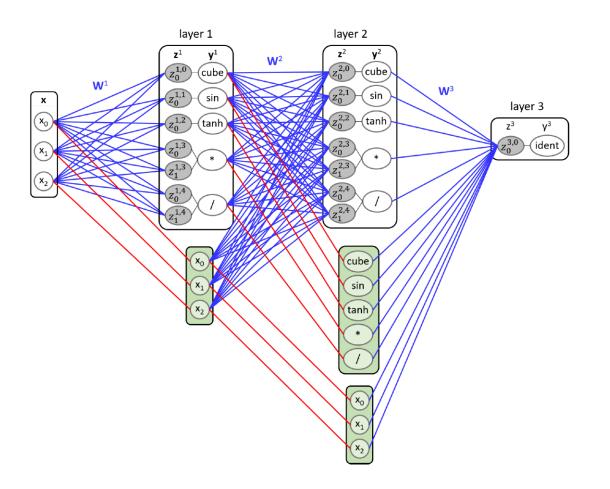
Kubalik et al. Toward Physically Plausible Data-Driven Models: A Novel Neural Network Approach to Symbolic Regression, IEEE 2023

Pro's and con's of neural networks

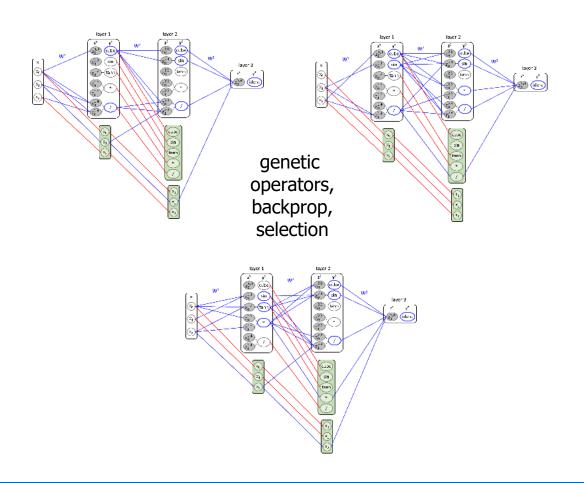
- + Prior knowledge in terms of expected mathematical functions
- + Tuning real-valued parameters
- + Regularization for accuracy complexity tradeoff
- Gradient-based method local convergence, sensitive to learning rate
- More hyperparameters than genetic programming methods
- Needs differentiable functions

Neuro-Evolutionary Approach to Symbolic Regression

Master topology



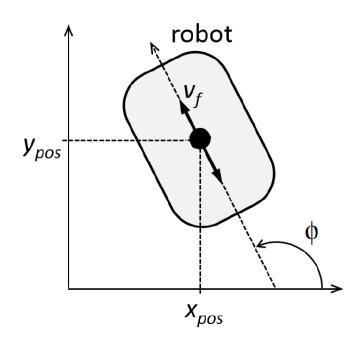
Population of subtopologies



Mechanistic models vs. models learned from data

- Mechanistic models correctly represent the physics but are inaccurate as prediction models.
- Data-driven models are accurate but typically do not respect physical constraints.

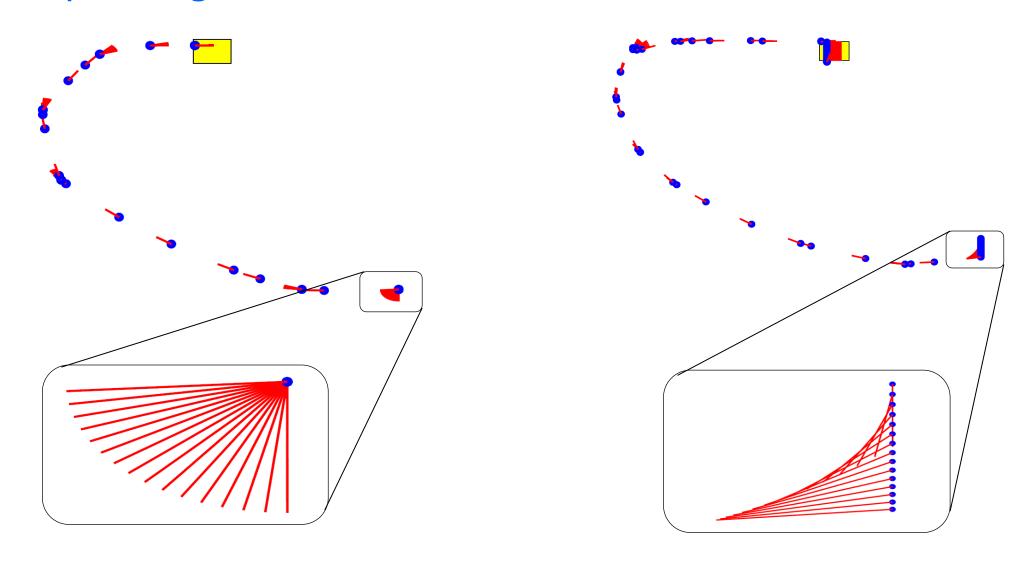
Example: mobile robot



Mechanistic model:

$$\dot{x}_{pos} = v_f \cos(\phi)$$
$$\dot{y}_{pos} = v_f \sin(\phi)$$
$$\dot{\phi} = v_a$$

Motion planning: mechanistic model vs data-driven model



Include prior knowledge in learning

Generate synthetic data samples representing physical constraints, use multi-objective optimization.

Examples of constraints:

Equilibrium under zero input

$$x_0 = f(x_0, 0)$$

Non-holonomic constraint (robot cannot move sideways)

$$y_{pos} = f_y([x_{pos}, y_{pos}, \phi]^T, [v_f, 0])$$

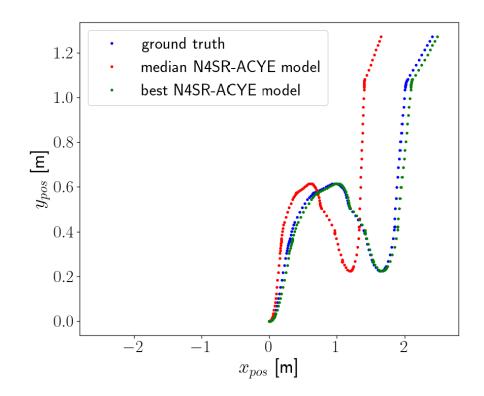
Mobile robot: neural network SR approach

Model structure assumed:

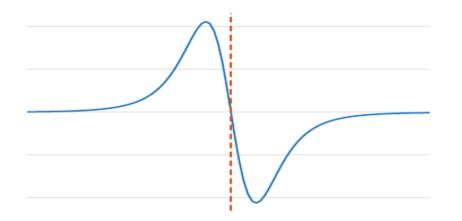
$$\hat{x}_{pos,k+1} = f^{x_{pos}}(\hat{x}_{pos,k}, y_{pos,k}, \phi_k, v_{f,k}, v_{a,k})$$

Best model:

$$x_{pos,k+1} = 0.1693 v_{f,k} \sin(0.9838 \phi_k + 1.5337) + 0.999986 x_{pos,k}.$$



Magnetic manipulation



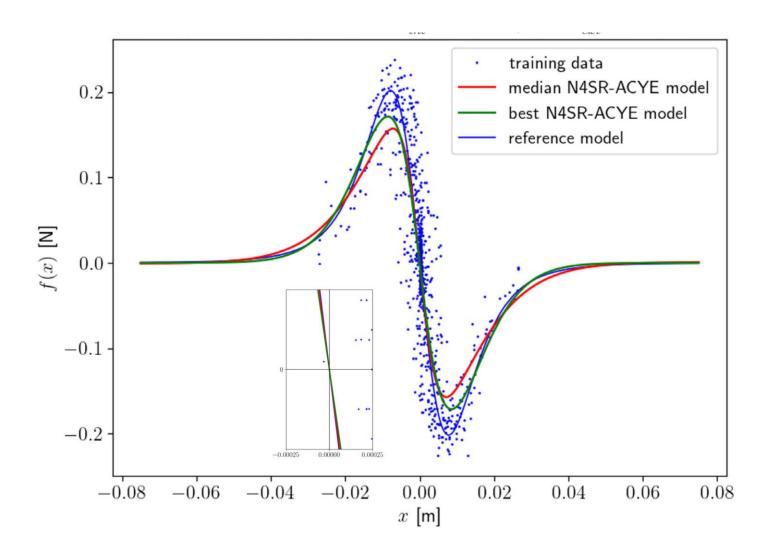
Empirical model:

$$F(x, I) = g(x) I = \frac{-\alpha x}{(x^2 + \beta)^3} I$$

Prior knowledge:

- g(x) = 0 for x = 0
- g(x) is monotonically decreasing around zero
- g(x) goes monotonically to zero for x large

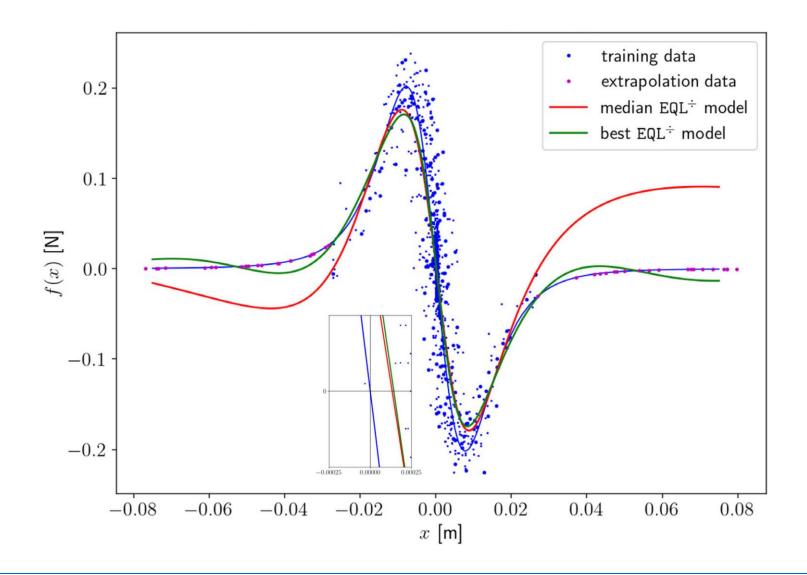
Magnetic manipulation: results with prior knowledge



Best model:

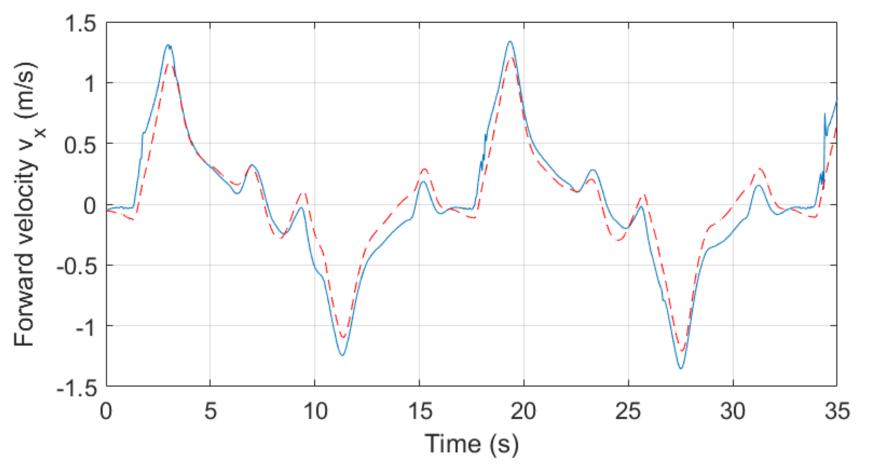
```
f(x) = -0.429 \sin(1.971 \tanh(4.294 x))
+ 5.33 \tanh(8.494 \tanh(4.294 x)))
- 2.027 \tanh(4.701 \tanh(8.494 \tanh(4.294 x)))
+ 1.607 \tanh(8.494 \tanh(4.294 x))
+ 0.873 \tanh(4.294 x)
```

Magnetic manipulation: results without prior knowledge

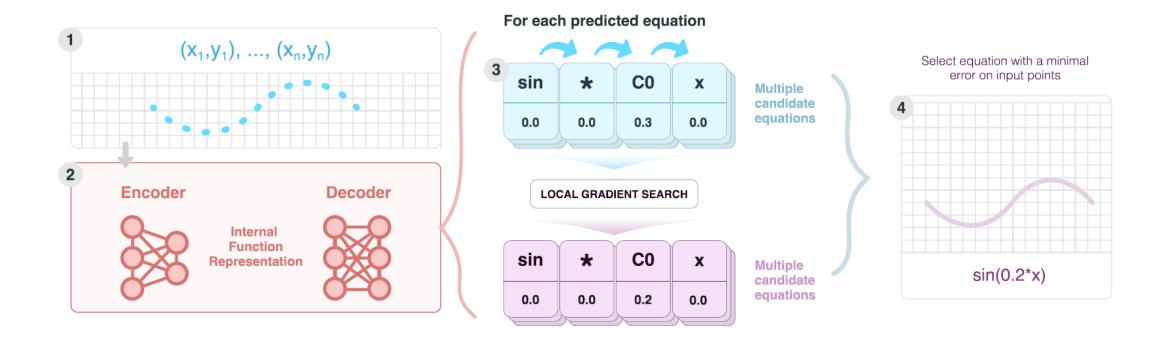


Quadcopter forward velocity model

Typical result: $v_x(k + 1) = 0.985 v_x(k) + 0.473 \theta(k)$



Transformer-based symbolic regression

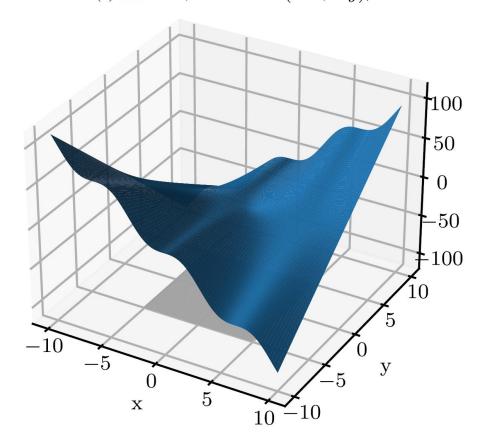


Trained on 130 million univariate functions and 100 million bivariate functions (33 hours on A100 GPUs).

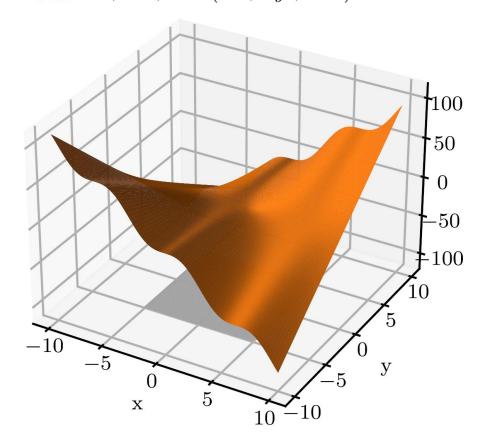
Vastl et al. SymFormer: End-to-end symbolic regression using transformer-based architecture. IEEE, 2024.

Examples of functions

(a) GT:
$$5x + x^2 - x\cos(x^2 + xy)$$
,



Pred:
$$5x + x^2 + x\cos(x^2 + xy + 3.14)$$



Pro's and con's of transformer-based symbolic regression

- + Shifts computational burden to transformer training (hours to days)
- + Actual search for regression model is relatively fast (about a minute)
- + Extensions to learning differential equations (ODE former)
- Does not scale well to larger problems
- Many hyperparameters to tune

Conclusions

Symbolic regression is a promising ML method that can

- construct models from small datasets
- include prior knowledge: expected functions, physical constraints
- low-complexity, transparent models (compared to neural networks)

Challenges

- computationally expensive
- dynamic models as differential equations
- time-varying problems (online learning, adaptation)
- standard tools and codebases

Acknowledgements

Collaborators:

Jiri Kubalik, Erik Derner, Martin Vastl, Jonas Kulhanek, Hai Zhu, Luuk van den Bent, Tomas Coleman, Jens Kober, Bas van der Heijden, Yudha Pane, Erik Schuitema, Pieter Jonker, Martijn Wisse.

Research on symbolic regression received funding from

- European Union, reg. no. CZ.02.01.01/00/22_008/0004590, ROBOPROX,
- European Union, Horizon Europe, grant agreement No. 101070254 CORESENSE,
- European Regional Development Fund, grant no. CZ.02.1.01/0.0/0.0/15_003/0000470, Robotics for Industry 4.0.
- Grant Agency of the Czech Republic, grant no. 15-22731S, Symbolic Regression for Reinforcement Learning in Continuous Spaces.