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Outline

2

Youla-Kučera parameterization refers to
parameterizing all feedback controllers that can stabilize a given plant.

The presentation will cover
o motivation, basic theory, historical notes
o simple applications to optimal control and multitask control
o advanced applications to robust stabilization and response shaping
o low-order stabilizing controllers
o transfer-matrix parametrization formula 
o state-space realization of all stabilizing controllers
o industrial applications
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A typical control problem
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Given a plant 𝕊 , determine a feedback controller ℝ so that 
(1) the closed-loop system is stable, and
(2) meets additional performance specifications.

The generic feedback system:

Stabilizing the system first 
and then addressing the additional specifications one at a time is logical.
To do this, all solutions must be determined before proceeding to the next step;
this is the reason why we need to have all stabilizing controllers available.
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Systems and stability
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We consider linear, time-invariant, differential systems 𝕊 of the form

where u, x, and y are the input, state, and output vectors,
and A, B, C, and D are real matrices of appropriate sizes.
A system 𝕊 gives rise to the transfer function

which is a proper rational matrix.

A system is considered stable if any initial state x(0) goes to zero as t → ∞ .
A system is stable if and only if all eigenvalues of A have a negative real part. 
A controllable and observable system is stable 
if and only if all the poles of the transfer function have a negative real part.

!x(t) = Ax(t)+ Bu(t), y(t) =Cx(t)+ Du(t), t ≥ 0

S(s) =C (sI − A)−1B + D.

http://www.roboprox.eu/
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Feedback system
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The feedback system with inputs d, r and outputs y, u
is controllable and observable whenever 
the constituent systems 𝕊 and ℝ are so.

The transfer function, H, that relates d, r and y, u is assumed to be well defined; 
it is given by

where S and R are the transfer functions of the systems 𝕊 and ℝ.

The controllable and observable feedback system is stable
if and only if H is a proper and stable rational matrix
(all poles within the open left half-plane).

H = S 0
0 R

⎡

⎣
⎢

⎤

⎦
⎥
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Single-input, single-output systems
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Write S = BA–1 and R = QP –1

as coprime, proper and stable fractions.
Coprime means having no unstable and infinite common zeros.

Define sensitivity function HS : r → e

and complementary sensitivity HC : r → y

In a stable closed-loop system, X and Y are proper and stable rational functions.
However, X and Y cannot be arbitrary since HS + HC = 1.
Therefore,

HC = SR
1+ SR

= B Q
AP + BQ

:= BY

HS =
1

1+ SR
= A P

AP + BQ
:= AX

AX + BY = 1.

r ye
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Youla-Kučera parameterization
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Let S = BA–1 be a coprime, proper and stable rational fraction for the plant. 
Let X, Y be a proper and stable rational solution pair of the Bézout equation

Then, all controllers that stabilize the closed-loop system are given by

where W is a proper and stable rational parameter 
such that (X + BW)–1 exists and is proper (so that R is proper).

Indeed, define P := X + BW, Q := Y – AW so that R = P –1Q. 
Then, the closed-loop system transfer function H has the denominator

AP + BQ = AX + BY + (AB – BA)W = 1. 
Hence, H is proper and stable rational.

AX + BY = 1.

R = (X + BW )−1(Y − AW )

http://www.roboprox.eu/
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Example 1

8

Consider a pure integrator plant with the transfer function S = 1/s.
In terms of proper and stable rational fractions, we have S = BA–1, where

for an arbitrary but fixed real number 𝛼 > 0. 
The Bézout equation AX + BY = 1 admits the solution X = 1, Y = 𝛼, 

and the set of stabilizing controllers having a proper rational transfer function 
is given by

for any proper and stable rational W.

A = s
s+α

, B = 1
s+α

,

R = 1+ 1
s+α

W
⎛
⎝⎜

⎞
⎠⎟

−1

α − s
s+α

W
⎛
⎝⎜

⎞
⎠⎟
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Technical notes
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The Youla-Kučera parameterization is a fundamental result of control theory.

There is a one-to-one correspondence 
between the set of parameters W and the set of stabilizing controllers R.

For any given plant S, the set of stabilizing controllers is infinite,
of the same cardinality as the set of proper and stable rational functions. 

For any given plant S, finding stabilizing controllers 
of arbitrarily high order is possible.

The most important bonus is that all the transfer functions 
of a stable closed-loop system are affine in W while they are nonlinear in R,
which makes it easier to determine controllers through the parameter.

http://www.roboprox.eu/
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Historical notes
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D.C. Youla (1925-2021) from the Polytechnic Institute of New York University
and V. Kučera discovered the parameterization independently in the mid-1970s. 
V. Kučera published the parameterization formula, while D.C. Youla showed 
how to utilize the parameter in the design of quadratic optimal controllers.

M. Vidyasagar provided a comprehensive account of the result ten years later.
B.D.O. Anderson coined the term “Youla-Kučera parameterization” in his
plenary lecture “A homage to Youla and Kucera“ at the 1996 IFAC Congress.
A. Quadrat generalized the results to a class of infinite-dimensional systems.
I. Mahtout et al. collected the latest developments and industrial applications.

The Youla-Kučera parameterization has a dedicated Wikipedia article, 
and thousands of Google results are related to it.

http://www.roboprox.eu/
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Dual parameterization
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The role of the two systems, 𝕊 and ℝ , can be reversed.
So, there is a dual parameterization, 
which describes all linear systems stabilized by a given linear controller. 

The parameter can then describe plant variations. 
This is useful for solving the problem of closed-loop plant identification. 
Open-loop identification is more straightforward, 
but it is often prohibitive to disconnect the plant. 

Identifying the dual parameter instead of the plant itself
is then a linear problem like open-loop identification, see Hansen et al. (1989).

We shall focus on the original Youla-Kučera parameterization.

http://www.roboprox.eu/
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Plant  S = BA–1, where A, B are coprime, proper and stable rational functions.
The task is to find a stabilizing controller 
such that a designated closed-loop transfer function, 
say, HC = SR(1 + SR)–1 =  B(Y – AW)
has the least H2 norm, defined by

We suppose that both A and B have no zeros on the imaginary axis.
The norm is minimized using inner-outer factorization of U := AB,
then stable-unstable partial fraction decomposition of 
and completing the squares to obtain the unique optimal parameter

The consequent minimum value of the norm equals 

H2 optimal control

V :=Ui
−1BY ,

W =Ui
−1Vs .

HC 2
= Vu 2

.

HC 2

2
:= 1
2π

HC (iω )−∞

∞
∫

2
dω .
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H∞ optimal control
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Plant  S = BA–1, where A, B are coprime, proper and stable rational functions.
The task is to find a stabilizing controller 
such that a designated closed-loop transfer function, 
say, HC = SR(1 + SR)–1 =  B(Y – AW)
has the least H∞ norm, defined by

We suppose that both A and B have no zeros on the imaginary axis.
If, in addition, AB has only one unstable zero, say at s = s0, 
then the unique optimal parameter is 
and
In general, the optimal parameter W is obtained 
by solving a Nevanlinna-Pick interpolation problem.

HC ∞
= BY (s0 ) .

HC ∞
:= supω HC (iω .

W =
BY − BY (s0 )

AB

http://www.roboprox.eu/
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Asymptotic properties
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Reference tracking:
The output y follows a reference signal r (error e goes to zero) asymptotically.                              
Expressed in terms of the Laplace transform, 

is to be a proper and stable rational function.

Disturbance attenuation:
The effect of a disturbance d on the output y decreases asymptotically.
Expressed in terms of the Laplace transform, 

is to be a proper and stable rational function.

This is to be achieved by selecting a parameter W.

L(e) := e ,
e = HSr

y = SHSd

http://www.roboprox.eu/
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Example 2

15

Plant S = (s + 1)/s = BA−1, where A = s/(s + 1) and B = 1.
The set of stabilizing controllers is

for any proper and stable rational W such that W–1 exists and is proper.
The achievable sensitivity transfer functions are

To track step references, k real number, we have       
which imposes no further constraint on W. 
To attenuate sinusoidal disturbances,                                          a, b real numbers,
we must further constrain the parameter as W = W1(s2 + ω2)/(s + 1)2

for any proper and stable rational W1 such that W1
–1 is proper. 

This demonstrates the internal model principle.

R = 1− s
s+1

W
⎛
⎝⎜

⎞
⎠⎟
W −1

HS =
s
s+1

W .

r = k / s, e ==Wk / (s +1),

d = (as +  b) / (s2 +ω 2 ),

http://www.roboprox.eu/
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Multitask control
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The merit of the Youla-Kučera parameterization is the possibility 
of switching among several controllers to meet different, often conflicting,
requirements while retaining stability.

The Youla-Kučera controller 
structure is as follows,

where the scalar factor                
facilitates a bumpless switching.

γ ∈[0,1] W

–

r

u y
S

B 

–

–
X–1Y

A

γ
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Industrial application – autonomous vehicle
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Mahtout et al. (2018) presented a lateral controller for an autonomous vehicle.
The vehicle lateral dynamics model has
o four states: lateral position, lateral velocity, yaw angle, and yaw rate;
o one output: lateral position;
o one input: steering angle in the front tire
plus steering actuator dynamics.
Two controllers are designed based on the target point method:
o lane changing controller ℝ 1 – must be smooth to avoid overshoots 

and uncomfortable sensation in the vehicle, the target point is set to 30m;
o lane tracking controller ℝ 2 – must be fast, the closer is the target point, 

the smaller is the tracking error, the look-ahead distance is fixed to 15m.

http://www.roboprox.eu/
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Industrial application – autonomous vehicle

18

The parameter    is in charge of the controller’s switching 
based on the vehicle lateral error with respect to the trajectory as follows:
o When the lateral error  > 3m , the adequate controller is ℝ 1 so
o When the lateral error  < 0.2m , the adequate controller is ℝ 2 so 
o Between the two limits changes gradually depending on the lateral error.

The proposed approach was tested on an electric Renault Zoe 
that had been modified for allowing steering computed control.
Experimental results have proven that the proposed control structure 
enhances the performance of only using a single controller for both cases. 
Errors are significantly reduced and the operation is smooth. 

γ

γ = 0.
γ = 1.

γ
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Robust stabilization

19

Robust stabilization is a technique that involves using a fixed controller 
to stabilize plants that are subject to modeling errors 
when the actual plant may differ from the nominal one.

The objective is to stabilize the actual plant. 
Since the actual plant is unknown, however, 
the best approach is to stabilize a large enough set of plants, 
which is meticulously constructed as a neighborhood of the nominal plant. 

The size of the neighborhood is measured by a suitable norm, 
with the most common being the H¥ norm. 

http://www.roboprox.eu/
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Model of uncertainty
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Consider a nominal plant 𝕊 with transfer function S
and its neighborhood 𝕊 D , defined by SD := (1 + 𝛥F)S.
Here, F is a fixed, stable rational function, 
and D is a variable stable rational function such that                 

Note that DF represents the normalized plant perturbation away from 1:

Then, for all frequencies ω, we have

so |F(jω)| provides the uncertainty profile,  
while D accounting for phase uncertainty.

Δ
∞
≤ 1.

SΔ (iω )
S(iω )

−1 ≤ F (iω )

SΔ / S = 1+ ΔF .

http://www.roboprox.eu/
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Robust stability condition
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Suppose that a controller ℝ stabilizes the nominal plant 𝕊 . 
Then, by the Small Gain Theorem, ℝ will stabilize the entire family of plants 𝕊 D

if and only if

When the stabilizing controllers ℝ are expressed in terms of the parameter W,
the robust stability condition reads as follows:

Any proper and stable rational W that satisfies this inequality
defines a controller that robustly stabilizes the nominal plant 𝕊.

SR
1+ SR

F
∞

< 1.

B(Y − AW )
∞
< 1.

http://www.roboprox.eu/
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Example 3
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Consider a nominal plant with the transfer function S = (s + 1)/(s – 1)
We know there is a delay 𝜗 in the system, 
which falls within the interval 0 ≤ 𝜗 ≤ 0.2.
Therefore, we embed the system 
in the system class

The relative 
plant uncertainty              

can be majorized in amplitude by the transfer function F = (3s + 1)/(s + 9).

Mag
nitud
e 
(dB)

Frequency (rad/s)

Bode Plots

SΔ :=
s+1
s−1

e−ϑ s | 0 ≤ϑ ≤ 0.2
⎧
⎨
⎩

⎫
⎬
⎭
.

| e− iωϑ −1 |

SΔ
S

−1 = e− iωϑ −1
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Example 3
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The controllers responsible 
for stabilizing the nominal plant,

with

are determined by solving the Bézout equation AX + BY = 1. 
Explicitly, X = 0, Y = 1 and

where W is a proper and stable rational parameter 
such that W–1 exists and is proper.

http://www.roboprox.eu/
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Example 3

24

The robust stability condition is

where

We calculate                                                       which is less than 1. 
The minimizing parameter

corresponds to the robust stabilizing controller

Since the norm is not only less than one but also minimal, 
then ℝ is considered the best robust stabilizing controller.

B(Y − AW )F
∞
:= N −MW

∞
< 1.

N = BYF = 3s+1
s+ 9

, M = BAF = s−1
s+1

3s+1
s+ 9

.

minW N −MW
∞
= N (1) = 0.4,

W = N − N (1)
M

= 2.6 s+1
3s+1

R = 4
26
s+ 9
s+1

.

http://www.roboprox.eu/
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Pole placement

25

A stable system has poles anywhere in the stability region;
a selection of the parameter W can achieve specific locations.

The control system performance is specified by a pole polynomial, 
which is the characteristic polynomial 
whenever the closed-loop system is controllable and observable.

Given a plant  S = BA–1, we write S = b/a as a coprime polynomial fraction.
Let x, y be a polynomial solution of the equation ax + by = 1.
Then, the set of stabilizing controllers can equivalently be expressed as

R = (y – aW) / (x + bW)

where W is a stable rational parameter such that R is proper.

http://www.roboprox.eu/
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Pole placement

26

Let the desired pole locations be specified by a stable pole polynomial d.
Write W = w/d for a polynomial w. Then,

R = (dy – aw) / (dx + bw) := q/p
and the pole polynomial is

ap + bq = (ax + by)d + (ab – ba)w = d.

Thus, the denominator of the parameter W determines the closed-loop poles.

The polynomial d specifies the locations of the closed-loop poles, 
while the polynomial w represents the remaining degrees of freedom.
Selecting W, we can achieve any polynomial d
having a sufficiently high degree (at least 2 deg a – 1). 

http://www.roboprox.eu/
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Example 4
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Given a plant with transfer function S = 1/(s – 1),
we seek to assign the pole polynomial d = s2 + 2s +1. 
The stabilizing controllers are

Put W = w/d. 
Then, 

The plant has order 1. 
For the closed-loop system to have order 2, the controller must have order 1.
Therefore, we have w = s + ω for any real ω.

R = 1− (s−1)W
W

, W ≠ 0 stable rational.

R = (s
2 + 2s+1)− (s−1)w

w
.

http://www.roboprox.eu/
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Stabilization with fixed order controllers

28

A weak point of the design based on the Youla-Kučera parameterization 
is that each performance specification beyond stability 
may increase the order of the controller.

The degree control in the parameter W = w/d is difficult. 
Fixed-order stabilizing controllers (presumably of low order)
can be found by solving a linear matrix inequality.

Suppose a plant S = b/a is given in terms of a polynomial fraction
and suppose that we have a stabilizing controller R = q/p. 
We seek to find a stabilizing controller R = y/x
of a given order m whenever such a controller exists.

http://www.roboprox.eu/
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Minimal polynomial basis
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The two stabilizing controllers are related as

p = x + bW,   q = y – aW,   where W = w/d.
Then all stabilizing controllers can be determined 
from the the minimal polynomial basis 

as  
R = (𝝀1y1 + 𝝀2y2 ) / (𝝀1x1 + 𝝀2x2)

where λ1 and λ2 are polynomials such that d := λ1d1 + λ2d2 is a stable polynomial.
A stabilizing controller of order m exists if

d 0 − p b
0 d −q −a

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x1 x2
y1 y2
d1 d2
w1 w2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

= 0

deg
x1 x2
y1 y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

λ1
λ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= m.
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Convex inner approximation
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Alas, the set of stable polynomials is not in general convex.
Given a fixed stable “central” polynomial c(s) of degree n, 
the polynomial d(s) of degree n is stable 
if a certain linear matrix inequality is satisfied.

The solution set of this inequality is a convex inner approximation 
of the stability domain in the space of polynomial coefficients
around the central stable polynomial.

Optimizing over polynomials λ1 and λ2 

we can enforce low degrees of x and y (linear algebraic constraint)
as well as the stability of d (linear matrix inequality constraint).

http://www.roboprox.eu/
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Example 5
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Consider a plant of order 3,

A stabilizing controller of order 2 can be found by 
placing the closed-loop poles at arbitrary locations. 
For example, the controller

places all five closed-loop poles at  –1. 

We seek to find a lower-order stabilizing controller.

S = 1
s(s2 + s+10)

.

R = −26s2 + 45s+1
s2 + 4s− 4

http://www.roboprox.eu/
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Example 5

32

A minimal polynomial basis for the polynomial matrix 
relating the given and the target controllers is

All the stabilizing controllers can be recovered from the polynomials λ1 and λ2

such that the pole polynomial 

d = – λ1 + λ2(s3 + s2 + 10s – 26) 
is stable. 

0 1
−1 −26
−1 s3 + s2 +10s− 26

s2 + 4s− 4 149s−103

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Example 5

33

From the first two rows of the basis 
a controller of order 0 can be obtained 
by restricting the parameters λ1 and λ2

to be constant. 

Hurwitz stability criterion then reveals
that d is stable if and only if λ1 Î (– 36, – 26) and λ2 = 1.

For example, with λ1 = – 30 we obtain the controller R = 4 
and the closed-loop pole polynomial d = s3 + s2 + 10s + 4.

In this example, we were able to obtain an exact solution. 
In general, the linear matrix inequality provides a conservative solution.

0 1
−1 −26
−1 s3 + s2 +10s− 26

s2 + 4s− 4 149s−103

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Input and output shaping

34

Given a plant S = b/a, we seek a stabilizing controller R = q/p
such that the output y asymptotically follows a reference r
while the time-domain constraints umin £ u(t) £ umax and  ymin £ y(t) £ ymax

are satisfied for all t ³ 0. 

Can handle input constraints and also output overshooting or undershooting.

The approach is to assign negative integer poles multiples of, say 𝜎, and 
express time signals as polynomials in the exponential modes 𝜆 := exp(–𝜎t).
When time t increases from 0 to ¥, indeterminate λ decreases from 1 to 0, 
and the time constraints become a polynomial nonnegativity constraints. 
The satisfaction of these constraints is equivalent 
to solving a linear matrix inequality.

http://www.roboprox.eu/
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Example 6

35

Given the plant

The stabilizing controller

assigns the closed-loop 
poles at – 1, – 2, – 3, – 4, – 5 
while ensuring asymptotic 
step reference tracking. 
Despite the poles being negative real, 
the step response has an unacceptable overshoot of 140 % due to system zeros.

S = s+ 0.5
s(s− 2)

.

R = 384s+ 240
s3 +17s2 +119s+ 79

http://www.roboprox.eu/
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Example 6

36

The set of all proper rational controllers that assign the above poles is given by

where w = w0 + w1s is a free polynomial of degree at most 1.
The closed-loop responses to a step input are affine in w,

and correspond to a sum of decaying exponential modes in the time domain.

The coefficients are linear functions of w0 and w1.

R = 384s+ 240− s(s− 2)w
s3 +17s2 +119s+ 79+ (s+ 0.5)w

y = 384s
2 + 423s+120− (s3 −1.5s2 − s)w
(s+1)(s+ 2)(s+ 3)(s+ 4)(s+ 5)

y

http://www.roboprox.eu/
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Example 6

37

Suppose the desired maximum overshoot is 20%

y(t) £ 1.2 y0

equivalent to the polynomial 
non-negativity constraint

p(𝝀) = 1.2y0 – y(𝝀) = 0.2y0 – y1𝝀 – y2𝝀2– y3𝝀3

and in turn, equivalent 
to a linear matrix inequality in w0 and w1.
The linear matrix inequality returns 

w(s) = – 100.36 – 12.27s

keeping the controller of order 3. 

http://www.roboprox.eu/
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Introducing new control components

38

When new sensor or actuator hardware becomes available in a control system,
it is possible to improve control performance through a redesign. 
Rather than completely revamping the entire control system 
and introducing new equipment, 
it is often preferable to gradually replace the existing parts 
while retaining the current control system in place.

The Youla-Kučera controller
allows for a smooth transition to the new controller 
and provides the option to revert to the old controller if necessary.
This is a strong argument favoring the method from a practical perspective.

http://www.roboprox.eu/
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Industrial application – livestock stable climate control

39

Trangbaek and Bendtsen (2009) presented a livestock-stable climate control,
for a stable located in Northern Jutland, Denmark. 

A simple proportional-integral controller maintains a fixed temperature,
but there is an undesirable air leakage into the stable.

The draft does not show on the temperature sensor
but the livestock avoids that area.

Youla-Kučera controller is an elegant solution of how to integrate a new sensor, 
which detects the air leakage temperature into the existing control system
while ensuring the stability of the transition. 

http://www.roboprox.eu/
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Multi-input, multi-output systems

40

Now, the transfer functions S and R are proper rational matrices.
Write them in the form of proper and stable rational matrix fractions, 

where AR , BR are right coprime, proper and stable rational matrices, 
and AL , BL are left coprime, proper and stable rational matrices.
For example,

S = BRAR
−1 = AL

−1BL

S =
1
s+1

1
s

0 s+1
s

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

1
s+1

1
s+1

0 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0
0 s

s+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= BRAR
−1

=
1 − 1

s+1

0 s
s+1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1
1
s+1 0

0 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= AL

−1BL .
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Parameterization of all stabilizing controllers

41

Let

be right / left coprime, proper and stable rational matrix fractions.
Let XR , YR and XL , YL be proper and stable rational matrices such that
the Bézout identity holds:

Then, all controllers that stabilize the closed-loop system are given by

R = (XR + WBL)–1 (YR – WAL) = (YL – ARW) (XL + BRW)–1 

where W is a proper stable rational matrix parameter
such that the indicated inverses exist and are proper.

S = BRAR
−1 = AL

−1BL

XR YR
−BL AL

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

AR −YL
BR XL

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= I 0

0 I
⎡

⎣
⎢

⎤

⎦
⎥ .

http://www.roboprox.eu/


www.roboprox.eu

State space representation of stabilizing controllers

42

Let 

be a controllable and observable realization 
of the system transfer function 

This special notation helps to visualize 
the connection between the transfer function and its state space realization.

We shall see that coprime, proper and stable matrix fractions for S and R
can be obtained directly from the matrices A, B, C, and D,
without solving the Bézout equations.

!x(t) = Ax(t)+ Bu(t)
y(t) =Cx(t)+ Du(t)

S =C (sI − A)−1B + D := A B
C D

⎡

⎣
⎢

⎤

⎦
⎥ .
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Right matrix fraction for S
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Consider a stabilizing state feedback u = Fx + 𝜌

around the system

Define

Then, in terms of the Laplace transform,

so that

AR :=
A+ BF B
F I

⎡

⎣
⎢

⎤

⎦
⎥ , BR :=

A+ BF B
C + DF D

⎡

⎣
⎢

⎤

⎦
⎥ .

y = BRρ, u = ARρ

y = BRAR
−1u = Su.

!x = (A+ BF )x + Bρ
u = Fx + ρ
y = (C + DF )x + Dρ.
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Left matrix fraction for S

44

Consider a state observer for the system ẋ = Ax + Bu, y = Cx + Du
based on a stabilizing output injection K𝜀

Define

Then, in terms of the Laplace transform,

so that 

AL :=
A− KC K
−C I

⎡

⎣
⎢

⎤

⎦
⎥ , BL :=

A− KC B − KD
C D

⎡

⎣
⎢

⎤

⎦
⎥ .

ε = AL y − BLu = (ALBR − BLAR )ρ = 0

AL
−1BL = BRAR

−1 = S.

!ξ = (A− KC )ξ + (B − KD)u+ Ky
ε = y −Cξ − Du.
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Right matrix fraction for R

45

Consider a stabilizing state feedback u = Fx (𝜌 = 0)
around the observer with output y

Define

Then, in terms of the Laplace transform,

so that

!ξ = (A+ BF )ξ + Kε
u = Fξ
y = (C + DF )ξ + ε .

XL :=
A+ BF K
C + DF I

⎡

⎣
⎢

⎤

⎦
⎥ , YL :=

A+ BF K
−F 0

⎡

⎣
⎢

⎤

⎦
⎥ .

u = −YLε , y = XLε

u = −YLXL
−1 = −Ry.
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Left matrix fraction for R

46

Consider stabilizing state feedback
around the observer with output 𝜌

Define

Then, in terms of the Laplace transform,

and

u = Fξ + ρ

!ξ = (A− KC )ξ + (B − KD)u+ Ky
ρ = −Fξ + u.

XR :=
A− KC B − KD
−F I

⎡

⎣
⎢

⎤

⎦
⎥ , YR :=

A− KC K
−F 0

⎡

⎣
⎢

⎤

⎦
⎥ .

ρ =YR y + XRu = (YRXL − XRYL )ε = 0

XR
−1YR =YLXL

−1 = R.
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Coprime fractions

47

Collecting the equations,

the Bézout identity follows
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Stabilizing controllers – transfer function

48

The coprime fractions determine an observer-based controller 
that stabilizes the system.
To determine all the stabilizing controllers, we introduce the parameter. 
Put 
Then

and

Hence
R = (XR + WBL)–1 (YR – WAL) = (YL – ARW) (XL + BRW)–1 .

ρ =W ε .

u
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

AR −YL
BR XL

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
W ε
ε

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−(YL − ARW )ε
(XL + BRW )ε

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 = I −W⎡
⎣

⎤
⎦
r
ε

⎡

⎣
⎢

⎤

⎦
⎥ = (XL +WBL )u + (YR −WAL ) y.
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Stabilizing controllers – state space realization

49

All controllers that stabilize 
a given system are built around 
an observer-based controller:

observer

feedback

parameter

A

𝕎
𝝆 = 0

F
𝛆

K

C

+
_

u y

D

B
𝜉
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Stabilizing controllers – state space realization

50

All controllers that stabilize 
a given system are built around 
an observer-based controller:

observer

feedback

parameter

A

𝕎
𝝆 = 0

F
𝛆

K

C

+
_

u y

D

B
𝜉
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Stabilizing controllers – state space realization

51

All controllers that stabilize 
a given system are built around 
an observer-based controller:

observer

feedback

parameter

A

𝕎
𝝆 = 0

F
𝛆

K

C

+
_

u y

D

B
𝜉
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Stabilizing controllers – state space realization

52

All controllers that stabilize a given system are built around 
an observer-based stabilizing controller by adding the parameter.
The parameter 𝕎 is any stable system having the transfer function W.

There is no need to construct coprime fractions nor to solve Bézout equations.
The observer-based controller is given directly by F and K.
The controller's order equals the plant's order plus the order of 𝕎.

Some stabilizing controllers may not be controllable or observable.
When only the controllable and observable part is retained, 
the stabilizing controller has a lower order, 
but it has no longer a nice observer-based structure.
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Control of complex systems

53

Designing finite-dimensional, linear, time-invariant controllers 
for infinite-dimensional, linear, time-invariant plants 
can successfully be approached via Youla-Kučera parameterization. 

The distributed parameter plant is first replaced 
by a finite dimensional approximant. 
The Youla-Kučera parameterization can then be used 
to parameterize the set of all stabilizing linear, time-invariant controllers, 
and a performance criterion is formulated. 
The resulting finite-dimensional optimization problem, 
possibly subject to time-domain constraints, is then used to obtain the solution.
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Industrial application – irrigation system

54

Irrigation is an increasingly important issue worldwide.
Cifdaloz et al. (2008) use the Saint Venant equations 
(nonlinear hyperbolic partial differential equations) 
to describe the gravity-based fluid flow in canals and rivers. 

The equations are linearized, resulting in time-delay transfer functions 
relating the water level to be controlled and the control flow rates 
at the upstream and downstream gates of the irrigation canal.
Padé approximants are then used to obtain 
a finite-dimensional multivariable plant description. 
The performance measure is a mixed-sensitivity       norm minimization 
subject to constraints on the water discharge at the gates.

H∞
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What has to come first, 
the answer or the question?

Answer: The question


