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Safety-Critical Systems: Needs and Tools

Every 10° miles current transportation systems have:
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Safety-Critical Systems: Needs and Tools

Every 10° miles transportation systems require:
P = — N
& Towards Real-time Machine Learning
™o

Deaths Deaths

3 crashes, 3 deaths raise questions about Tesla’s A

Boeing 737 crashes raise tough questions on aircraft
automation

TOM KRISHER  Ja y

APnews.com taipeitimes..com

* Being “just a: it
e Public sentimr This Talk re autonomous
transportation to be much sater than the current systems
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* Learning in Adaptive Systems

* Adaptive Estimation and Adaptive Control
 Error Models & Learning rules

e Stability framework — Imperfect Learning
e Persistent Excitation — Learning with guarantees
* Machine Learning

 Neural Networks
 Reinforcement Learning

* New Solutions

* High-order Tuners —towards accelerated performance
e Sub-Gaussian spectral lines —towards robust learning

* Integration of RL and Adaptive Control — towards real-time machine learning
e Safety and Stability — Adaptation with Calibrated CBF
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Learning in Adaptive Systems




Problem Statement — Adaptive Control

Model Structure . Control input X
g Adaptive ——— I g
> .
> ContrOI Parameter estimate (Dynamlc SyStem) y _ e

On-line information
0,

u = Cl(a), Hc(t), e) X = f(x; H,U)

6, = C,(w,0,.(t),e) y=9x,0,u)

0 : parameter, unknown

Yd

e: tracking error X, Y, u: state, output, input

6.: control parameter estimate w: real-time data

Goal: Find u, €y, C, so that regulation and tracking occur
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Error Models — Two types of errors

* e:Performance error (ex.X —Xx; X — Xp,;)

O can be measured, needs to be reduced

~

* 0:Parameter error (ex. 8 — 6)
o Unknown, can be adjusted - Learning Rule

Real-time data
» Learning Rule _ Error Model

Model Structure State estimate
ﬁ S —
Adaptive
. Estimation e s

On-line information

Model Structure Control input
g Adaptive g
E Control e

On-line information

Performance error
_

(adjusts 6)

e

Goal: Determine error models and learning rules

Parameter estimate

Parameter estimate
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A Simple Error Model

System Model:
) a

Build an estimator:

Error Model:

Q@— -
¢ .

Stability Framework:* 0 = —n.VJ

v =6l

V=287 = —21n8Ted = —2ne? < 0

* Narendra and Annaswamy, 1989
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N\
Performance error: ¢ = y—y

Parameter error: é — é — 0

Robbins and Munro, 1951
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Dynamic Error Models

Performance error

_________ lLearningRule !
¢ (adjusts 6) o 2 Error Model ;

e ¢’ cannot be measured, but only after some latencies as e.

Real-time data

 Performance and Learning are conflicting objectives

« With persistent excitation, 8(t) — 0 = Learning!

 With imperfect learning, guaranteed performance can be
ensured: e(t) » 0 = Control Performance

e Use a stability (Lyapunov) framework

Goal: Find learning rules for adjusting 8 so that V < 0
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Adaptive Control: Milestones*

x=f(x,0,u)
y =g(x,0,u)

1. f,g:linear. Stability established in 1980.

2. Robustness to disturbances and unmodeled
dynamics in the "90s.

3. f,g:nonlinear. Stability and robustness
established in 1990-2000.

u = C1(w,0:(t),e)
éc = (, @ 6.(t), e)

* A.M. Annaswamy and A.L. Fradkov, A historical perspective of adaptive control and learning, Annual Reviews in Control, 2021.
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Adaptive Controller Structure

e 3604,0,, 4,0, s.t. Plant + Controller = Reference model

* Adaptive law: Q(t) = —Te(t)w(t) (n® = 1); SPR model; Kalman-

Yakubovich lemma

 Forn®™ = 2: augmented error, high-order tuner, back-stepping
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Guarantees with Imperfect Learning

Effect of Different Adaptive Parameters

Stable Subspace Unstable Subspace

.0*=91

N
w

Angle of Attack, o (deg)
o m

Ol

D

N
o K
o Q-

Open Loop Unstable Adaptive, 6,

Short Period Dynamics Performance goal: Min(e)

data u
Learning Controller _ = ‘ > e
= a
e — Imperfect learning,

yet improved performance

Adaptive Controller

Ad
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Safety-Critical Systems: Needs and Tools

Every 10° miles current transportation systems have:

o a

7 Deaths 0.4 Deaths 0.08 Deaths 0.07 Deaths

System Analysis Subsystem Analysis Adaptive Control

e Model-based

Traditional )
Catastrophic * On-line control
Approaches to ) .
Hazardous * Integration with
Safety Guarantees Major

cyber

* Integration with
human decision-
making

Minor
No Effect
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Adaptive Control with Learning: Applications

Improved performance and reliability

Unmanned Flight Control Applications

+~Scan Eagle 2

162019

LI U 1

- Flight Test :
Courtesy Boeing Company
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Machine Learning
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Machine Learning

The ability of a computer to learn using on-line data
* Significant success in image & speech recognition, games

Motivation:

* Complex environment
 Hard to sense

e Difficult to model

* Big-data & Computational complexity

Typical approaches for learning:

1. Approximation of a Nonlinear Mapping
o Neural Networks

2. Optimization of a Cost Function
o Reinforcement Learning
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1. Neural Networks: A popular learning methodology

A bit of history

* Proposed in 1944 by McCullough and Pitts

\‘/ \’/ \’/ \’/ \’/ \‘/

% Ay \

* Controversy in the ‘70s: Multilayered \<\<\<\<\<
yin s ¢ N NG
Perceptrons, Minsky and Papert A S8 SEVAS\VAR\VER

e Resurgence in the 1980s \‘><‘><‘><‘><‘><‘/

e Are-resurgence in the 215 century — fast (from MIT News)
processing power of graphics
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Fundamental of Neural Networks

The Universal Approximation

U N iVe I'Sa | A p p rOXi nel | on Th eorem Therem for Neural Networks

£ (x) Ya

(From YouTube, Why do Nnets work?)

N
X Neural y>y=2w qb(w x+b)

NetWO rk =l ¢ (.): activation function
(One hidden layer) :

Fore > 0,3aN,w" s.t. lyv, =yl <e VxeX | Estimate weights w; using back-propagation |
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RL and Q-learning

 Model/Environment: Markov Decision Process

 Maximize a Value function v(x;) = E[X2,v'R(X,)|X, = x;]; y: Discount factor

environment gm

action a state X

—

R(X;): Reward associated with X;

* Control/Agent: Policy m;

* Choose m; such that I/'(x;) is optimized —<—
Ty

* Express using a Q-function Q*(x;, u) = R(x;, u) + ¥ X jepn a7V " (%))

[n]: future instants
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—

environment g

 Model/Environment: Markov Decision Process

action a state X

* Maximize Q(x;, u); Optimal policy: 7*(x;) = argmax,cqy Q*(x;, u)

* Approximate Q(x;,u) by Qg (x;, u):

o Linear regression: Qg (x;,u) = 0Ty (x;, u)

o Neural networks: Qg = le.\;l 9;?91)(9;?36 + 6{,u + bi)

Estimate the unknown parameters through an iterative algorithm: 84,1 = 0y — YV Ly (64)
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RL and Nonlinear Optimal Control

e Unknown nonlinear system: x = f(x,u)
* Minimize infinite-horizon cost: J(u; xg) = fooor(x, w)dt
* Optimal cost-to-go: V*(xy) = inf](u; x)

u

* Hamilton-Jacobi-Bellman Equation: 0 = igf{axv*(x)f(x, a) +r(x,a)}

e Optimal control policy: u(x) = arginf{o,.V*(x)f(x,a) + r(x,a)}

* Reinforcement Learning: Policy/Value Iteration
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Approximate Policy Iteration for Optimal Control*

* Use neural networks to approximate Hy, V/;, and u;,

e Hwp,w,u) = He(x,u), V(cy,x) = Vi(x), [(O x) = up(x)
* The iterative procedure of the resulting approximate policy iteration:

* For a sampling period [t, tx+1], collect data (x,u) and cost r(x, u)

* Policy evaluation: Given 8, solve for w;, and ¢, from HIJB equation

tk+1

tk+1
0= f H (wy, x, i(6, x))dt, V(ck, x) = f (H (W, x,u) — r(x,u)) dt
¢

k Lk

* Policy improvement: Update 6., = irelfﬁ(wk, x, (6, x))
* Special case: Single layer network reduces the problem to weight estimation

e Estimation accuracy depends on persistent excitation condition
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Safety-Critical Systems: Needs and Tools

Every 10° miles current transportation systems have:

o &

7 Deaths 0.4 Deaths 0.08 Deaths 0.07 Deaths

System Analysis Subsystem Analysis Component Analysis

Traditional Catastrophic
Hazardous

Approaches to Major

Safety Guarantees Minor

No Effect
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Safety-Critical Systems: Needs and Tools

Every 10° miles transportation systems require:

o & 2=

Deaths Deaths Deaths Deaths

Over 14 million photos
with 21000 categories,
best classification rate
to date: 85.8%*

Approaches to
Safety Guarantees

*L. Wei, “Circumventing Outliers of AutoAugment
with Knowledge Distillation”, arXiv, 2020.
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Every 10° miles

o

Deaths

Approaches to
Safety Guarantees
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Safety-Critical Systems: Needs and Tools

transportation systems require:

Deaths

Over 14 million photos
with 21000 categories,
best classification rate

. S
[EECELEVS

Deaths Deaths

/

to date: 85.8%*

*L. Wei, “Circumventing Outliers of AutoAugment

with Knowledge Distillation”, arXiv, 2020.
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Safety-Critical Systems: Needs and Tools

Every 10° miles transportation systems require:

o & 2=

Deaths Deaths Deaths Deaths

Rest of this talk

rzz*-'!ﬁffw e Iy _1‘ . \
Approaches to

Over 14 million photos
with 21000 categories,
best classification rate

to date: 85.8%
*L. Wei, “Circumventing Outliers of AutoAugment
with Knowledge Distillation”, arXiv, 2020.
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NEW SOLUTIONS:

ACCELERATED PERFORMANCE

e High-order tuner

ROBUST LEARNING

e Sub-Gaussian spectral lines

REAL-TIME MACHINE LEARNING

* Integration with reinforcement learning

STABIITY AND SAFETY

* Adaptation and Calibrated Control Barrier Functions
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NEW SOLUTIONS:

ACCELERATED PERFORMANCE

e High-order tuner
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Linear Regression Models

Plant: y = ¢l 0*
Estimator: g =¢l0
Loss: ]
L:(0) = §||¢T9 —y|I5 (any convex function of 0)
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Linear Regression Models

(Gradient Descent)

0 = —vYVoL(0)
Plant: y = ¢l 9*
Estimator: j = o0
Loss: i
L:(0) = =||lo"0 — y||3 (any convex function of 0)

Active Adaptive Control Laboratory (MIT)



Linear Regression Models

Y

[0 Loss, L,
=
0

(Gradient Descent)
0=-vVoLi(0) L First-order Tuners

VLtI @I GD,

Algorithm

Plant: y = ¢l 9*
Estimator: j = o0
Loss: 1
L:(0) = =||lo*0 — y||3 (any convex function of #)

2
Gradient Descent, Normalized (GD,,):

- I
0(t) = ——=VoL(0) [ : learning rate > 0; N; =1+ |¢|l5 : Normalization

t
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Accelerated Performance with a High-order Tuner*

* A. S. Morse. High-order parameter tuners for the adaptive control of linear and nonlinear systems, 1993.
** ).E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “A Class of High Order Tuners for Adaptive Systems,” IEEE Control Systems Letters, 2021.
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Accelerated Performance with a High-order Tuner*

High-Order Tuner (HT)!:
I(t) = — Ni =1+ ||¢:l?

—p(0(t) = 0(2)).

I

|
t~

~
VS
()
VS
~
N——r
N—"

0(t)

* A. S. Morse. High-order parameter tuners for the adaptive control of linear and nonlinear systems, 1993.
** ).E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “A Class of High Order Tuners for Adaptive Systems,” IEEE Control Systems Letters, 2021.
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Accelerated Performance with a High-order Tuner*

High-Order Tuner (HT)!:

I(t) = —- L VL(0()), Ni =1+ ||l¢el?

0(t) = —B(0(t) — I(2))-

Theorem: All solutions are globally bounded, with a Lyapunov function

1 ) 1
V= =l0—0"" + =0 — 9|
Y v

* A. S. Morse. High-order parameter tuners for the adaptive control of linear and nonlinear systems, 1993.
** ).E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “A Class of High Order Tuners for Adaptive Systems,” IEEE Control Systems Letters, 2021.
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Accelerated Performance (discrete-time)*

Loss, Ly

A 4

* ).E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3 L4DC Conference, 2021.
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Accelerated Performance (discrete-time)*

Current Nnet algorithms:
Or+1 = Ok — ViV L(Ok)

Discrete and continuous High-Order Tuner (HT):

b Vi
Proposed Discrete HT Proposed Continuous HT
_ VL(6 a1
R AL G A P b=~ LViL0),
N . ¢
(gk—i—l :ék_6<ék_79k)a 9:_6(9_29)
VLi(0ki1)
Y = U —
k+1 5 Y Nk

Theorem: All solutions are globally bounded, with a Lyapunov function

| 1
Vi = = |9k — 0*||* + = |0k — F&]?
Y Y

* ).E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3 L4DC Conference, 2021.
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Non-asymptotic Tools

Adaptive Control tools: Convergence of errors to zero.

> Asymptotic Tools: f(0x) — f(6*) — 0 as k — oo

**Y. Nesterov (2018). Lectures on Convex Optimization. Springer.
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Non-asymptotic Tools

Adaptive Control tools: Convergence of errors to zero.

> Asymptotic Tools: f(0x) — f(0*) — 0 as k — oo

> Non-asymptotic tools:
> GD: f(xx) — f(z*) <eif k> O(1/¢)
> Nesterov *: f(xzx) — f(z*) < eif k> O(1//¢€)

Theorem 5: HT guarantees that ~

Li(0r) — Li(0*) < e for k > O(1//€ - log(1/e))

fo=1L (—k —I—Qk) (g9 small; ensures strong convexity)

* ).E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3 L4ADC Conference, 2021.
** Y. Nesterov (2018). Lectures on Convex Optimization. Springer.
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Non-asymptotic Tools
Adaptive Control tools: Convergence of errors to zero.

> Asym ptOtIC TOOIS: f(ek:) _ f(g*) — 0 as k 3 00 No. of itaeratri(c::is;nnai.ieodnegiolzc_rlieve an
> Non-asymptotic tools:

> GD: f(x) — f(z*) < € if k > O(1/e)
> Nesterov " f(zg) — f(z*) < eif k> O(1/+/¢)

W
c
5]
2
]
_
7]
=
“
5]
—
@
o
£
=]
=

Theorem 6: HT guarantees that ~

2000 4000 _ 6000 8000
L

— L (6%) < efor k> O(1/+/e-log(1/e))

L: Smoothness parameter.

fo=1L (— —I—Qk) (g9 small; ensures strong convexity)

* ).E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3 L4ADC Conference, 2021.
** Y. Nesterov (2018). Lectures on Convex Optimization. Springer.
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Non-asymptotic Properties: Example 1"

Modified Smooth-Hard Problem, with time-varying regressors * Lok

L (0x) =95 0xI* + By 0&

(quadratic, non-homogeneous, convex) Algorithm

Algorithms

Gradient Descent
Normalized Gradient Descent

o~
D
=
-~

I
—_
2
D
St
x
-~

Nesterov Acceleration T.V. Bx

Nesterov Acceleration Constant f3
Higher Order Tuner

200 400 600 800 250 500 750 1000 1250 1500
Iteration Number, k Iteration Number, k

) (b)

Figure:  (a) At iteration k = 500, step change in L from 2 to 8000. (b) At iteration k = 500, step change in L, from 2 to 8.

* Yurii Nesterov. Lectures on Convex Optimization. Springer, 2018 (p. 69).

* ).E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3 L4DC Conference, 2021.
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Image Deblurring Example 2”

Blurring can be caused by many factors:

Movement during the image capture process, by the camera or, when long
exposure times are used, by the subject

Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a short
exposure time, which reduces the number of photons captured

Scattered light distortion in confocal microscopy

Model for blur*:

y=¢l0*+n

* https://www.mathworks.com/help/images/image-deblurring.html
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https://www.mathworks.com/help/images/image-deblurring.html

De-Blurring an Image with a Time-Varying Blur™,™”

* Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1), 183-202.
** J E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3" L4DC Conference, 2021.
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High-order Tuner for Convex and Dynamic Loss Functions®

—— Gradient Descent
-== Nesterov Smooth
—— High-order Tuner

High-order Tuner

%ﬁrongly Convex

—

—_————————

k)

et e e e e e i

-
~

—— -
=

>
>

——— —

—_—— e

—— —(—— ———— — =,
. s s st s s P

1 I
10 1000 1500 2000 2500 3000
Iteration number, & lteration number, &

15
Ilteration number, k

Step change in by, from 7 to 14 at k = 25 Step change in by, from 7 to 14 at k = 1500 No change in by,

Loss: L, (0) = log(a,e? ® + a,e~bx9) Loss: Ly () = log(axe’ ® + ae=x%) + % 16 — 6,1l

* Moreu, José M., and Anuradha M. Annaswamy. "A Stable High-order Tuner for General Convex Functions." |[EEE L-CSS, 2021.

** ] E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3" L4DC Conference, 2021.
*** Gaudio, Joseph E., et al. "A Class of High Order Tuners for Adaptive Systems." IEEE L-CSS, 2020.
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Summary of High-order Tuners

> A new algorithm that utilizes a High-order Tuner (HT) has been proposed

> Leads to stability.

> Has no Hamiltonian; Lagrangian has similarities to that in Wibisono et al. PNAS, 2015.
> Has very nice accelerated learning properties.

Algorithm Constant Regressor # lterations Time-Varying Regressor
Gradient Descent Normalized O(1/e) Stable
Gradient Descent Fixed O(1/e) Unstable
Nesterov Acceleration Varying O(1//¢) Unstable
Nesterov Acceleration Fixed O(1/+/€ - log(1/e)) Unstable

HT O(1/+/€ -log(1/e)) Stable

Active Adaptive Control Laboratory (MIT)

Plenary Talk, ICINCO 2023 November 2023 45



NEW SOLUTIONS:

ROBUST LEARNING
e Sub-Gaussian spectral lines
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Robust Learning™

Consider a standard LQR problem in the presence of unmodeled
dynamics:
X1 = Auxy + Boug + wi, + 15, Wi = g(xg, Wo, ooy Wie—1, Ug, v, Ug)
Wi : unmodeled dynamics; n;.: measurement noise

Unknown A, and B, - > Plant Model R
5 — Xk

Goal:

* Learn A* and B* o Unmodeled Dynamics <

* Determine an LQR controller: min J: Y. (xi Qx; + us. Ruy)
u

* Develop a non-asymptotic approach

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, “Parameter Estimation Bounds Based on the Theory of Spectral Lines.” J. Artificial Intelligence, vol. 316, March 2023.
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Sub-Gaussian Spectral Lines*

A stochastic sequence {uy }xr>x, is said to have a sub-Gaussian spectral line from i to ¢ + S at a

frequency wg of amplitude and radius R if
| S |
G O uke o — a(wo) ~ subG(R?/(S +1)).
k=i
The definition above admits a natural decoupling by which we can use to apply tools from

adaptive control, and the variance proxy of the sub-Gaussian noise to make claims with high probability.

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, “Parameter Estimation Bounds Based on the Theory of Spectral Lines.” arXiv preprint arXiv:2006.12687.
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A Spectral Lines-Based Algorithm™

Algorithm 2 Fxample of LOR Control with Sub-Gaussian Spectral Lines

PY O u r a p p roa C h : Iea rn fro m a 1: Require: Frequency Constraint Set F, Stabilizing Controller K, failure

probability & € (0, 1), Amplitude Constraint M, Cost Matrices (@, I?

deterministic input with chosen yfori 012
frequency content Set Epoch Time T, — C(As, Ba, Q, R, §) x %, where C(A., B., @, R, 5) is

a constant fonetion of underlying system parameters,

Amplitude Constraind = MTH!

2

* |dea: choose frequency content to & Choose Disint 1) () 7
keep wy, small AL R

such that s M < MV < M
for k— %, Tr +1 S o Te+ T do

~ | 2 (i) i i)
Define u, .. },l. M cos(2n iV E);

1)
¥

Bode Diagram

Assign up — Koy + Tgpor k-
Receive vy — Aorg + DBoug + g +

end for

iy
=
)
kel
3
=
c
5-
o]
=

Estimate

Yao Tet T
(4, 1) argmin E k1 — Axp — Bug|5
.‘1 R'H :':TJ.J'; 'R!I.:': m —: .
€ = k=¥ 5 Titl

Phase (deg)

K@)~ _(R+ 5TPB) BT PA

for P which satisfies

107

Frequency (rad/s) j"_i .‘iTﬁ.}! - .:"J!TI:'EER T ﬂTﬁﬁ]_lﬁ_ f'.-q-.h+ (‘}

12: end for

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, “Parameter Estimation Bounds Based on the Theory of Spectral Lines.” J. Artificial Intelligence, vol. 316, March 20
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Simulation Results

3"d-order LTI system simulated with two noise-to-signal ratios (o)

Unmodeled dynamics g(-) were given by a 15--order nonlinear high-pass filter

e System was modeled with and without unmodeled dynamics

° R f n I . h Regret for o=0.01 without Unmodeled Dynamics Regret for o=0.1 without Unmodeled Dynamics
e g rets O go r It I I I S —— Discrete Algebraic Riccati Solution on True System Dynamics . —— Discrete Algebraic Riccati Solution on True Syste f 1
0 Certa valel Control with ¢ se Exploration Cert ival Centrol with Gau s

_—

1 a n d 2 a re :I Certainty Equi'.-'alv;nca Centrol with Dete istic Sinu'SGi-:iafI Exploration =
comparable without 4
unmodeled dynamics:

50 75 100 125 75 200 2 50 75 100 125
Iteration Iteration

. Regret for g=0.01 with Unmodeled Dynamics: a=0.1, §=0.9, c=2 Regret for o=0.1 with Unmodeled Dynamics: a=0.1, §=0.9, c=2
* With unmodeled
5 isCl ic ati Solution on Tr m Dynamics cati Solution on True e ynamics
Certa valel Control with ¢ se Exploration Certainty va Control with Gau ise Exploration

dyn a m iCS, Alg O rith m . Certainty caloncs Co eterministic Sinusoidal Exploration 0 Certainty Equivalence Co terministic Sinusoidal Exploration
2 outperforms '
Algorithm 1:

100 125
|teration

:2006.12687.
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NEW SOLUTIONS:

REAL-TIME MACHINE LEARNING
* Integration with reinforcement learning
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RL & Adaptive Control

* Reinforcement Learning
* Training in Simulation
e Approximate solutions to difficult optimal control problems

» Adaptive control L g
learning
* Solves constrained class of problems _»_
* Real time
* Applicable in continuous and discrete-time Action Reward/\ Observation

/
<_
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An online policy: AC-RL

* [dea: Modify the trained policy output u,, = u so that the true model
traCkS the reference mOdel subjected to parametric changes

xT‘ — ﬂ(xr’ u?"); (uT — n(xr)) .- True Model .
x = f(x,u) ” x
AC-RL:

(a) Standard Reinforcement Learning

.
AN

0 =TI, VL(e,é)

Adaptive True Model
* Globally stable for a class of f (x,u)*

* Leads tolim [|e(t)|| = 0 1) Rac
t— o0

AUCNCE I

* Elements of g(e, @) come from the offline policy and the plant model

f(x u)

Annaswamy et al. "Integration of adaptive control and reinforcement learning for real-time control and learning." IEEE Transactions on Automatic Control (2023).
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Quadrotor: Hover Using Adaptive Control*

* Dydek, Zachary T., Anuradha M. Annaswamy, and Eugene Lavretsky. "Adaptive control of quadrotor UAVs: A design trade study with flight evaluations." IEEE Trans. CST, vol. 21 (2012)
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Quadrotor Task

* Autonomous landing of quadrotor on a moving platform
* Parameter uncertainties (25%)
* Loss of Effectiveness (50-75%)

* Success:

|Az| < 5¢cm and
|Axy| < 25c¢m and
|#|, 6] < 10° and
|vxy| < 50cm/s and
lv,| < 10cm/s

e Failure:
e Az<O0or
* Timeout

e Goal: Succeed ASAP

* Assumptions:
e Full state feedback
* Landing pos + vel measurable

Annaswamy et al. "Integration of adaptive control and reinforcement learning for real-time control and learning." IEEE Transactions on Automatic Control (2023).
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Quadrotor: Land on a moving platform

RL AC-RL LOE
Success Rate | Success Rate

With 50% Loss of Effectiveness mid-flight
Significant

. . improvement with

Pure RL AC-RL AC-RL over pure RL

Quadrotor crashes

Active Adaptive Control Laboratory (MIT) Plenary Talk, ICINCO 2023 November 2023 56









Quadrotor: Land on a moving platform

With parametric uncertainties mid-flight, comparison with additional-
training in RL through Domain Randomization (DR-RL)

+25% PARAMETRIC UNCERTAINTY RESULTS
Algorithm Results |
Success Rate  Avg. Success Time

DR-RL AC—RL e Additional improvement with AC-RL
over DR-RL

* Does not require either additional
training or computational effort
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AC-RL
Success Rate | Success Rate

94% —— 0%

LOE

> - =—=  Whyis AC-RL successtul?

-== |deal
— RL

— AC-RL

—— Platform Position

Main feature that
gives AC-RL an edge

* Quadrotor crashes
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NEW SOLUTIONS:

STABIITY AND SAFETY
* Adaptation and Calibrated Control Barrier Functions
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Performance and Safety in Adaptive Systems

Safety:

Guarantee that x(t) stays
within a set Cforany t = 0.
Real-time uncertainties, anomalies

Xemd Robust Adaptive u

Controller Control surfaces
and thrust

Performance:

Guarantee that x(t) follows
a command signal x4 (t).
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A new adaptive algorithm*

* Adaptive controller accommodates uncertainties and magnitude limits.

e Constraints are met using a calibrated control barrier function (CCBF)
for a reference model and an error-based relaxation (EBR).

| Calibrated Closed-loop Reference Model

e

CCBF with | |
EBR

IAu

* J. Autenrieb and A.M. Annaswamy, “Safe and stable adaptive control with learning for a class of dynamic systems,” CDC 2023.

Boeing Review, April 2023 61
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A new adaptive algorithm

Example case 1: Obstacle avoidance

I Obstacle Il Obstacle

— AC-CBF w/o EBR —AC-CBF w/ EBR

B Inital Loc. B |nital Loc
—4Desired Loc. € Desired Loc.

5 5 6

EBR: Error-based Relaxation
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Example 2: A double integrator (using Simulink Desktop Real-time Emulator)

Classical Adaptive Control Adaptive Control with CCBF

g2

Safe Set Adapt ‘ Safe Set

r

Position

A: loss of effectiveness

Position

y: learning gain

Zy safe target

0.8 0.9 1 1.1 1.2
Time: 0.00 s

Time: 0.00 s

Stability Safety and Stability
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Example 2: A double integrator (using Simulink Desktop Real-time Emulator)

State (z) (Real Time) Control Action (u) for mass 5 kg (Real Time)

i
=]

—— Input Signal (r)
Reference Model (zy,)
—— Desired Traj. (za)
(z) for v = 0.1
/ N —(z) fory=1
/ (zp) for v = 10
Safe Set

N
o
T

o
I

N
o
T

| I\

Value of u [units g]

A
o
T

®
S

4 6 4 6 -
Time (s) Time (s) A. IOSS Of Effect|veness

State (%) (Real Time) Parameter 6 (Real Time) . .
i y: learning gain

Reference Model (z,)
(Zp) for v = 0.1
(Zp) for v =1

(Z) for v =10
Zy safe target

—

——(6) for ~
(0) for ~
(6) for ~

4 6
Time (s)

Time (s)
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Adaptive Law

theta hat

Desired Trajectory

Nominal Reference Input for Tracking

\

Example 3: A 6-DOF Quadrotor

Regressor

\

{—

Dl Input

Active Adaptive Control Laboratory (MIT)

Plenary Talk, ICINCO 2023

Reiesande Model

int

& Quadrotor

e Model
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Example 3: A 6-DOF Quadrotor

Control Inputs (Forces from Individual Rotors)

Rotar 1 (50% LOE)
Rotor 2 (50% LOE)
Rotor 3
Rotor 4

Comparison of Trajectories (Top View)
T T T T T T T T
Reference Model without CBF Filter
Reference Model with CBF Filter
Plant with Adaptive Controller
O Start Location

Reference Model (no CBF Filter) | | " Target Location
Reference Model (with CBF Filter)
Plant 1 — — — - Safe Set Boundary
Target Value

— — — -Safe Set Boundary

5 6 7 8 5
Time (s) Time (s)

T
[
[
[
[
[
[
Comparison of y Trajectories Comparison of z Trajectorie |
[
[
[
[
[
[
[

Reference Model (no CBF Filter) ’ Reference Model (no CBF Filter)
Reference Model (with CBF Filter) Reference Model (with CBF Filter)
Plant : Plant
Target Value Target Value

— — — - Safe Set Boundary - — — — - Safe Set Boundary

5 6 7 5 6 7
Time (s) Time (s)
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* Learning in Adaptive Systems

* Adaptive Estimation and Adaptive Control
 Error Models & Learning rules

e Stability framework — Imperfect Learning
e Persistent Excitation — Learning with guarantees
* Machine Learning

 Neural Networks
 Reinforcement Learning

* New Solutions

* High-order Tuners —towards accelerated performance
e Sub-Gaussian spectral lines —towards robust learning

* Integration of RL and Adaptive Control — towards real-time machine learning
e Safety and Stability — Adaptation with Calibrated CBF

Active Adaptive Control Laboratory (MIT)
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Some Takeaways

* Learning
* Occurs at multiple time-scales

 Safety-critical Systems
* Adapt first — requires a stability+adaptive control framework
* Guarantees with imperfect learning are essential
e Learning comes with hindsight

e Towards fully autonomous systems
* Real-time decision making tools — with guarantees
 Combination of adaptive control and ML needed

e “Control for Learning” needs to be addressed
* For decision-making under fast time-scales
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Thank you!

aanna@mit.edu
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