Lessons from Adaptive Control: Towards Real-time Machine Learning

Anuradha Annaswamy* Active-Adaptive Control Laboratory Massachusetts Institute of Technology

* In collaboration with Mike Bolender, Yingnan Cui, Peter Fisher, Joey Gaudio, Anubhav Guha, Eugene Lavretsky, Daniel Maldonado, Jose Moreu, Arnab Sarker, Sunbochen Tang

Active Adaptive Control Laboratory (MIT)

Evolution of Systems

Every 10⁹ miles current transportation systems have:

System Analysis

łr

Subsystem Analysis

Active Adaptive Control Laboratory (MIT)

Traditional

Approaches to

Safety Guarantees

Every 10⁹ miles autonomous transportation systems require:

Outline

- Learning in Adaptive Systems
 - Adaptive Estimation and Adaptive Control
 - Error Models & Learning rules
 - Stability framework Imperfect Learning
 - Persistent Excitation Learning with guarantees
- Machine Learning
 - Neural Networks
 - Reinforcement Learning
- New Solutions
 - High-order Tuners towards accelerated performance
 - Sub-Gaussian spectral lines towards robust learning
 - Integration of RL and Adaptive Control towards real-time machine learning
 - Safety and Stability Adaptation with Calibrated CBF

Learning in Adaptive Systems

Problem Statement – Adaptive Control

Plenary Talk, ICINCO 2023

Error Models – Two types of errors

A Simple Error Model

Dynamic Error Models

- e' cannot be measured, but only after some latencies as e.
- Performance and Learning are conflicting objectives
- With persistent excitation, $\tilde{\theta}(t) \rightarrow 0 \Rightarrow \text{Learning}!$
- With imperfect learning, guaranteed performance can be ensured: $e(t) \rightarrow 0 \Rightarrow$ Control Performance
- Use a stability (Lyapunov) framework

Goal: Find *learning rules* for adjusting $\tilde{\theta}$ so that $\dot{V} \leq 0$

Adaptive Control: Milestones*

$$\dot{x} = f(x, \theta, u)$$
$$y = g(x, \theta, u)$$

- 1. *f*, *g*: linear. Stability established in 1980.
- 2. Robustness to disturbances and unmodeled dynamics in the '90s.
- 3. *f*, *g*: nonlinear. Stability and robustness established in 1990-2000.

$$\begin{split} u &= C_1(\omega, \theta_c(t), e) \\ \dot{\theta}_c &= C_2(\omega, \theta_c(t), e) \end{split}$$

* A.M. Annaswamy and A.L. Fradkov, A historical perspective of adaptive control and learning, Annual Reviews in Control, 2021.

Adaptive Controller Structure

- $\exists \theta_1, \theta_2, \lambda, \theta_4$ s.t. Plant + Controller = Reference model
- Adaptive law: $\dot{\theta}(t) = -\Gamma e(t)\omega(t)$ $(n^* = 1)$; SPR model; Kalman-Yakubovich lemma
- For $n^* \ge 2$: augmented error, high-order tuner, back-stepping

Guarantees with Imperfect Learning

Every 10⁹ miles current transportation systems have:

		Ģ			
7 Deaths		0.4 Dea	aths	0.08 Deaths	0.07 Deaths
Traditional Approaches to Safety Guarantees	S Hazard Class Catastrophic Hazardous Major	/stem Ana SW Level A B C	YSIS Failure/Flight Hr 10 ⁻⁹ 10 ⁻⁷ 10 ⁻⁵	Subsystem Analysis	Adaptive Control Model-based On-line control Integration with cyber
	Minor No Effect	DE		12 3 4 5 6 7 8	 Integration with human decision- making

Adaptive Control with Learning: Applications

Improved performance and reliability

Courtesy Boeing Company

Plenary Talk, ICINCO 2023

Machine Learning

Machine Learning

The ability of a computer to learn using on-line data

Significant success in image & speech recognition, games

Motivation:

- Complex environment
- Hard to sense
- Difficult to model
- Big-data & Computational complexity

Typical approaches for learning:

- 1. Approximation of a Nonlinear Mapping
 - Neural Networks
- 2. Optimization of a Cost Function
 - Reinforcement Learning

A bit of history

- Proposed in 1944 by McCullough and Pitts
- Controversy in the '70s: Multilayered Perceptrons, Minsky and Papert
- Resurgence in the 1980s
- A re-resurgence in the 21st century fast processing power of graphics

(from MIT News)

Fundamental of Neural Networks

- Model/Environment: Markov Decision Process
- Maximize a Value function $V(x_i) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(X_t) | X_0 = x_i]; \gamma$: Discount factor
- $R(X_i)$: Reward associated with X_i
- Control/Agent: Policy π_t
- Choose π_t such that $V(x_i)$ is optimized
- Express using a Q-function $Q^*(x_i, u) \coloneqq R(x_i, u) + \gamma \sum_{j \in [n]} a_{ij}^u V^*(x_j)$

[n]: future instants

Q-learning

- Model/Environment: Markov Decision Process
- Maximize $Q(x_i, u)$; Optimal policy: $\pi^*(x_i) = \operatorname{argmax}_{u \in \mathcal{U}} Q^*(x_i, u)$
- Approximate $Q(x_i, u)$ by $Q_{\theta}(x_i, u)$:
 - Linear regression: $Q_{\theta}(x_i, u) = \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\psi}(x_i, u)$

• Neural networks:
$$Q_{\theta} = \sum_{i=1}^{N} \theta_{2i}^{*T} \phi \left(\theta_{1i}^{*T} x + \theta_{1u}^{T} u + b_i \right)$$

Estimate the unknown parameters through an iterative algorithm: $\theta_{k+1} = \theta_k - \gamma_k \nabla L_k(\theta_k)$

- Unknown nonlinear system:
- Minimize infinite-horizon cost:

$$\dot{x} = f(x, u)$$

$$J(u;x_0) = \int_0^\infty r(x,u)dt$$

- Optimal cost-to-go: $V^*(x_0) = \inf_u J(u; x_0)$
- Hamilton-Jacobi-Bellman Equation: $0 = \inf_{a} \{\partial_{x}V^{*}(x)f(x,a) + r(x,a)\}$
- Optimal control policy:
- Reinforcement Learning:

 $\mu^{*}(x) = \arg \inf_{a} \{\partial_{x} V^{*}(x) f(x, a) + r(x, a)\}$ Policy/Value Iteration

- Use neural networks to approximate H_k , V_k and μ_k
 - $\widehat{H}(w_k, w, u) \approx H_k(x, u), \quad \widehat{V}(c_k, x) \approx V_k(x), \quad \widehat{\mu}(\theta_k, x) \approx \mu_k(x)$
- The iterative procedure of the resulting approximate policy iteration:
 - For a sampling period $[t_k, t_{k+1}]$, collect data (x, u) and cost r(x, u)
 - Policy evaluation: Given θ_k , solve for w_k and c_k from HJB equation

$$0 = \int_{t_k}^{t_{k+1}} \widehat{H}(w_k, x, \widehat{\mu}(\theta_k, x)) dt, \qquad \widehat{V}(c_k, x) = \int_{t_k}^{t_{k+1}} (\widehat{H}(w_k, x, u) - r(x, u)) dt$$

- Policy improvement: Update $\theta_{k+1} = \inf_{\theta} \widehat{H}(w_k, x, \hat{\mu}(\theta, x))$
- Special case: Single layer network reduces the problem to weight estimation
- Estimation accuracy depends on persistent excitation condition

Plenary Talk, ICINCO 2023

Every 10⁹ miles current transportation systems have:

7 Deaths	0.4 Deaths	0.08 Deaths	0.07 Deaths
	<u>System Analysis</u>	<u>Subsystem Analysis</u>	<u>Component Analysis</u>
		Subsystem A	

Traditional Approaches to Safety Guarantees

Hazard Class	SW Level	Failure/Flight Hr
Catastrophic	А	10 ⁻⁹
Hazardous	В	10 ⁻⁷
Major	С	10 ⁻⁵
Minor	D	
No Effect	E	······

Every 10⁹ miles autonomous transportation systems require:

<<0.07 Deaths

N

Approaches to Safety Guarantees

Machine Learning

Over 14 million photos with 21000 categories, best classification rate to date: 85.8%*

*L. Wei, "Circumventing Outliers of AutoAugment with Knowledge Distillation", arXiv, 2020.

Every 10⁹ miles autonomous transportation systems require:

<<0.07 Deaths

Machine Learning

Over 14 million photos with 21000 categories, best classification rate to date: 85.8%*

*L. Wei, "Circumventing Outliers of AutoAugment with Knowledge Distillation", arXiv, 2020. Not adequate for safety critical systems

New

Approaches to Safety Guarantees

Every 10⁹ miles autonomous transportation systems require:

Plenary Talk, ICINCO 2023

NEW SOLUTIONS:

ACCELERATED PERFORMANCE

- High-order tuner ROBUST LEARNING
- Sub-Gaussian spectral lines <u>REAL-TIME MACHINE LEARNING</u>
- Integration with reinforcement learning STABIITY AND SAFETY
- Adaptation and Calibrated Control Barrier Functions

NEW SOLUTIONS:

ACCELERATED PERFORMANCE

- High-order tuner
- **ROBUST LEARNING**
- Sub-Gaussian spectral lines REAL-TIME MACHINE LEARNING
- Integration with reinforcement learning STABIITY AND SAFETY
- Adaptation and Calibrated Control Barrier Functions

Linear Regression Models

Plant: Estimator: Loss:

$$y = \phi^T \theta^*$$

 $\hat{y} = \phi^T heta$

$$L_t(\theta) = \frac{1}{2} \|\phi^T \theta - y\|_2^2$$

(any convex function of θ)

Linear Regression Models

$$y = \phi^T \theta^*$$
$$\hat{y} = \phi^T \theta$$
$$L_t(\theta) = \frac{1}{2} \|\phi^T \theta - y\|_2^2$$

(any convex function of θ)

Linear Regression Models

Plant: Estimator: Loss:

$$y = \phi^T \theta^*$$

 $\hat{y} = \phi^T \theta$

 $\overline{\mathbf{n}}$

$$\mathcal{L}_t(\theta) = \frac{1}{2} \|\phi^T \theta - y\|_2^2$$

(any convex function of θ)

Gradient Descent, Normalized (GD_n) :

 $\dot{\theta}(t) = -\frac{\Gamma}{\mathcal{N}_t} \nabla_{\theta} L_t(\theta)$

Accelerated Performance with a High-order Tuner*

** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "A Class of High Order Tuners for Adaptive Systems," IEEE Control Systems Letters, 2021.

^{*} A. S. Morse. High-order parameter tuners for the adaptive control of linear and nonlinear systems, 1993.

Accelerated Performance with a High-order Tuner*

High-Order Tuner (HT)^[1]:

$$\dot{\vartheta}(t) = -\frac{\gamma}{\mathcal{N}_t} \nabla L_t(\theta(t)), \qquad \qquad \mathcal{N}_t = 1 + \|\phi_t\|^2$$
$$\dot{\theta}(t) = -\beta(\theta(t) - \vartheta(t)).$$

* A. S. Morse. High-order parameter tuners for the adaptive control of linear and nonlinear systems, 1993.

** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "A Class of High Order Tuners for Adaptive Systems," IEEE Control Systems Letters, 2021.

Accelerated Performance with a High-order Tuner*

High-Order Tuner (HT)^[1]:

$$\dot{\vartheta}(t) = -\frac{\gamma}{\mathcal{N}_t} \nabla L_t(\theta(t)), \qquad \qquad \mathcal{N}_t = 1 + \|\phi_t\|^2$$
$$\dot{\theta}(t) = -\beta(\theta(t) - \vartheta(t)).$$

Theorem: All solutions are globally bounded, with a Lyapunov function

$$V = rac{1}{\gamma} \|artheta - heta^*\|^2 + rac{1}{\gamma} \| heta - artheta\|^2$$

* A. S. Morse. High-order parameter tuners for the adaptive control of linear and nonlinear systems, 1993.

** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "A Class of High Order Tuners for Adaptive Systems," IEEE Control Systems Letters, 2021.

Accelerated Performance (discrete-time)*

* J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "Accelerated Learning with Robustness to Adversarial Regressors," 3rd L4DC Conference, 2021.

Accelerated Performance (discrete-time)*

^{*} J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "Accelerated Learning with Robustness to Adversarial Regressors," 3rd L4DC Conference, 2021.

Non-asymptotic Tools

Adaptive Control tools: Convergence of errors to zero.

 \triangleright Asymptotic Tools: $f(\theta_k) - f(\theta^*) \to 0$ as $k \to \infty$

** Y. Nesterov (2018). Lectures on Convex Optimization. Springer.

Non-asymptotic Tools

Adaptive Control tools: Convergence of errors to zero.

- \triangleright Asymptotic Tools: $f(\theta_k) f(\theta^*) \to 0$ as $k \to \infty$
- ▷ Non-asymptotic tools:
 - $\triangleright \text{ GD: } f(x_k) f(x^*) \leq \epsilon \text{ if } k \geq \mathcal{O}(1/\epsilon)$
 - \triangleright Nesterov **: $f(x_k) f(x^*) \leq \epsilon$ if $k \geq \mathcal{O}(1/\sqrt{\epsilon})$

Theorem 5: HT guarantees that

$$L_k(\theta_k) - L_k(\theta^*) \le \epsilon \text{ for } k \ge \mathcal{O}(1/\sqrt{\epsilon} \cdot \log(1/\epsilon))$$

$$f_k = \bar{L}\left(rac{L_k}{N_k} + g_k
ight)$$
 (g_k small; ensures strong convexity)

^{*} J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "Accelerated Learning with Robustness to Adversarial Regressors," 3rd L4DC Conference, 2021. ** Y. Nesterov (2018). *Lectures on Convex Optimization*. Springer.

Non-asymptotic Tools

Adaptive Control tools: Convergence of errors to zero.

- \triangleright Asymptotic Tools: $f(\theta_k) f(\theta^*) \to 0$ as $k \to \infty$
- ▷ Non-asymptotic tools:
 - $\triangleright \text{ GD: } f(x_k) f(x^*) \leq \epsilon \text{ if } k \geq \mathcal{O}(1/\epsilon)$
 - \triangleright Nesterov **: $f(x_k) f(x^*) \leq \epsilon$ if $k \geq \mathcal{O}(1/\sqrt{\epsilon})$

Theorem 6: HT guarantees that

$$L_k(\theta_k) - L_k(\theta^*) \le \epsilon \text{ for } k \ge \mathcal{O}(1/\sqrt{\epsilon} \cdot \log(1/\epsilon))$$

 $[\]overline{L}$: Smoothness parameter.

$$f_k = ar{L}\left(rac{L_k}{N_k} + g_k
ight)$$
 (g_k small; ensures strong convexity)

Plenary Talk, ICINCO 2023

^{*} J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "Accelerated Learning with Robustness to Adversarial Regressors," 3rd L4DC Conference, 2021. ** Y. Nesterov (2018). *Lectures on Convex Optimization*. Springer.

Non-asymptotic Properties: Example 1*

Figure: (a) At iteration k=500, step change in \bar{L} from 2 to 8000. (b) At iteration k=500, step change in \bar{L} , from 2 to 8.

* Yurii Nesterov. Lectures on Convex Optimization. Springer, 2018 (p. 69).

* J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "Accelerated Learning with Robustness to Adversarial Regressors," 3rd L4DC Conference, 2021.

Active Adaptive Control Laboratory (MIT)

Plenary Talk, ICINCO 2023

Image Deblurring Example 2*

Blurring can be caused by many factors:

- Movement during the image capture process, by the camera or, when long exposure times are used, by the subject
- Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a short exposure time, which reduces the number of photons captured
- Scattered light distortion in confocal microscopy
- Model for blur*:

$$y = \phi^T \theta^* + n$$

* https://www.mathworks.com/help/images/image-deblurring.html

De-Blurring an Image with a Time-Varying Blur^{*},^{**}

* Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM journal on imaging sciences*, 2(1), 183-202. ** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "Accelerated Learning with Robustness to Adversarial Regressors," 3rd L4DC Conference, 2021.

Plenary Talk, ICINCO 2023

eing Review, April 2021

High-order Tuner for Convex and Dynamic Loss Functions *

* Moreu, José M., and Anuradha M. Annaswamy. "A Stable High-order Tuner for General Convex Functions." IEEE L-CSS, 2021.

** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, "Accelerated Learning with Robustness to Adversarial Regressors," 3rd L4DC Conference, 2021. *** Gaudio, Joseph E., et al. "A Class of High Order Tuners for Adaptive Systems." *IEEE L-CSS, 2020.*

Plenary Talk, ICINCO 2023

Summary of High-order Tuners

- \triangleright A new algorithm that utilizes a High-order Tuner (HT) has been proposed
- \triangleright Leads to stability.
- ▷ Has no Hamiltonian; Lagrangian has similarities to that in Wibisono et al. PNAS, 2015.
- ▷ Has very nice accelerated learning properties.

Algorithm	Constant Regressor # Iterations	Time-Varying Regressor
Gradient Descent Normalized	$\mathcal{O}(1/\epsilon)$	Stable
Gradient Descent Fixed	$\mathcal{O}(1/\epsilon)$	Unstable
Nesterov Acceleration Varying	$\mathcal{O}(1/\sqrt{\epsilon})$	Unstable
Nesterov Acceleration Fixed	$\mathcal{O}(1/\sqrt{\epsilon} \cdot \log(1/\epsilon))$	Unstable
HT	$\mathcal{O}(1/\sqrt{\epsilon} \cdot \log(1/\epsilon))$	Stable

NEW SOLUTIONS:

ACCELERATED PERFORMANCE

- High-order tuner
- ROBUST LEARNING
- Sub-Gaussian spectral lines
- REAL-TIME MACHINE LEARNING
- Integration with reinforcement learning STABIITY AND SAFETY
- Adaptation and Calibrated Control Barrier Functions

Consider a standard LQR problem in the presence of unmodeled dynamics:

 $x_{k+1} = A_* x_k + B_* u_k + w_k + \eta_k, \quad w_k = g(x_0, w_0, \dots, w_{k-1}, u_0, \dots, u_k)$ $w_k: \text{unmodeled dynamics; } \eta_k: \text{ measurement noise}$

- Determine an LQR controller: $\min_{u} J: \sum_{k} (x_{k}^{T}Qx_{k} + u_{k}^{T}Ru_{k})$
- Develop a non-asymptotic approach

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, "Parameter Estimation Bounds Based on the Theory of Spectral Lines." J. Artificial Intelligence, vol. 316, March 2023.

Sub-Gaussian Spectral Lines*

Definition 1 (Sub-Gaussian Spectral Line).

A stochastic sequence $\{u_k\}_{k \ge k_0}$ is said to have a sub-Gaussian spectral line from i to i + S at a frequency ω_0 of amplitude $\overline{u}(\omega_0)$ and radius R if

$$\frac{1}{S+1} \sum_{k=i}^{i+S} u_k e^{-j\omega_0 k} - \bar{u}(\omega_0) \sim \text{subG}(R^2/(S+1)).$$

The definition above admits a natural decoupling by which we can use $\bar{u}(\omega_0)$ to apply tools from adaptive control, and the variance proxy of the sub-Gaussian noise to make claims with high probability.

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, "Parameter Estimation Bounds Based on the Theory of Spectral Lines." arXiv preprint arXiv:2006.12687.

- Our approach: learn from a deterministic input with chosen frequency content
- Idea: choose frequency content to keep w_k small

A Spectral Lines-Based Algorithm*

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, "Parameter Estimation Bounds Based on the Theory of Spectral Lines." J. Artificial Intelligence, vol. 316, March 2023.

Simulation Results

- 3rd-order LTI system simulated with two noise-to-signal ratios (σ)
- Unmodeled dynamics $g(\cdot)$ were given by a 1st-order nonlinear high-pass filter
- System was modeled with and without unmodeled dynamics
- Regrets of Algorithms 1 and 2 are comparable without unmodeled dynamics:

 With unmodeled dynamics, Algorithm 2 outperforms Algorithm 1:

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, "Parameter Estimation Bounds Based on the Theory of Spectral Lines." arXiv preprint arXiv:2006.12687.

Plenary Talk, ICINCO 2023

NEW SOLUTIONS:

ACCELERATED PERFORMANCE

- High-order tuner ROBUST LEARNING
- Sub-Gaussian spectral lines
- **REAL-TIME MACHINE LEARNING**
- Integration with reinforcement learning
- STABIITY AND SAFETY
- Adaptation and Calibrated Control Barrier Functions

RL & Adaptive Control

• Reinforcement Learning

- Training in Simulation
- Approximate solutions to difficult optimal control problems

Adaptive control

- Online learning
- Solves constrained class of problems
- Real time
- Applicable in continuous and discrete-time

RL /

An online policy: AC-RL

• Idea: Modify the trained policy output $u_r \rightarrow u$ so that the true model tracks the reference model

$$\dot{x}_r = f_r(x_r, u_r); \quad (u_r = \pi(x_r))$$
$$\dot{x} = f(x, u)$$

AC-RL:

$$u = u_{r} + g(e, \widehat{\Theta}) \qquad e = x - x_{r}$$
$$\dot{\widehat{\Theta}} = \Gamma_{\zeta} \nabla L(e, \dot{e})$$

- Globally stable for a class of $f(x, u)^*$
- Leads to $\lim_{t \to \infty} ||e(t)|| = 0$

• Elements of $g(e, \widehat{\Theta})$ come from the offline policy and the plant model f(x, u)

Annaswamy et al. "Integration of adaptive control and reinforcement learning for real-time control and learning." IEEE Transactions on Automatic Control (2023).

Quadrotor: Hover Using Adaptive Control*

* Dydek, Zachary T., Anuradha M. Annaswamy, and Eugene Lavretsky. "Adaptive control of quadrotor UAVs: A design trade study with flight evaluations." *IEEE Trans. CST*, vol. 21 (2012)

Quadrotor Task

- Autonomous landing of quadrotor on a moving platform
- Parameter uncertainties (25%)
- Loss of Effectiveness (50-75%)
- Success:
 - $|\Delta z| \leq 5cm$ and
 - $|\Delta xy| \le 25cm$ and
 - $|\phi|, |\theta| \leq 10^\circ$ and
 - $|v_{xy}| \leq 50 cm/s$ and
 - $|v_z| \leq 10 cm/s$
- Failure:
 - $\Delta z \leq 0$ or
 - Timeout
- Goal: Succeed ASAP
- Assumptions:
 - Full state feedback
 - Landing pos + vel measurable

Annaswamy et al. "Integration of adaptive control and reinforcement learning for real-time control and learning." IEEE Transactions on Automatic Control (2023).

Quadrotor: Land on a moving platform

With 50% Loss of Effectiveness mid-flight

Quadrotor: Land on a moving platform

With parametric uncertainties mid-flight, comparison with additionaltraining in RL through Domain Randomization (DR-RL)

Why is AC-RL successful?

RL

94% 71% 28% 4% 0%

Success Rate

AC-RL

Success Rate

95%

17%

11%

LOE

 $0\% \\ 10\%$

50%

Active Adaptive Control Laboratory (MIT)

Plenary Talk, ICINCO 2023

November 2023 58

NEW SOLUTIONS:

ACCELERATED PERFORMANCE

- High-order tuner ROBUST LEARNING
- Sub-Gaussian spectral lines REAL-TIME MACHINE LEARNING
- Integration with reinforcement learning

STABIITY AND SAFETY

• Adaptation and Calibrated Control Barrier Functions

Performance and Safety in Adaptive Systems

Active Adaptive Control Laboratory (MIT)

A new adaptive algorithm*

- Adaptive controller accommodates uncertainties and magnitude limits.
- Constraints are met using a calibrated control barrier function (CCBF) for a reference model and an error-based relaxation (EBR).

* J. Autenrieb and A.M. Annaswamy, "Safe and stable adaptive control with learning for a class of dynamic systems," CDC 2023.

Boeing Review, April 2023

61

A new adaptive algorithm

Example case 1: Obstacle avoidance Constraint violation

EBR: Error-based Relaxation

62

Example 2: A double integrator (using Simulink Desktop Real-time Emulator)

Stability

Safety and Stability

Active Adaptive Control Laboratory (MIT)

Example 2: A double integrator (using Simulink Desktop Real-time Emulator)

Example 3: A 6-DOF Quadrotor

Example 3: A 6-DOF Quadrotor

Active Adaptive Control Laboratory (MIT)

Plenary Talk, ICINCO 2023

- Learning in Adaptive Systems
 - Adaptive Estimation and Adaptive Control
 - Error Models & Learning rules
 - Stability framework Imperfect Learning
 - Persistent Excitation Learning with guarantees
- Machine Learning
 - Neural Networks
 - Reinforcement Learning
- New Solutions
 - High-order Tuners towards accelerated performance
 - Sub-Gaussian spectral lines towards robust learning
 - Integration of RL and Adaptive Control towards real-time machine learning
 - Safety and Stability Adaptation with Calibrated CBF

• Learning

• Occurs at multiple time-scales

Safety-critical Systems

- Adapt first requires a stability+adaptive control framework
- Guarantees with imperfect learning are essential
- Learning comes with hindsight
- Towards fully autonomous systems
 - Real-time decision making tools with guarantees
 - Combination of adaptive control and ML needed
- "Control for Learning" needs to be addressed
 - For decision-making under fast time-scales

Thank you!

aanna@mit.edu

Plenary Talk, ICINCO 2023