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Evolution of Systems

Traditional
Systems

Smart
Systems

Autonomous
Adaptable

Evolutionary
System of Systems

Data
Fine, heterogeneous, 

distributedCoarse

Requires real-time 
distributed decision and 

control

Control
Linear, SISO, 

Centralized
Nonlinear, adaptive, 

distributed

Autonomy

Semi Fully AutomatedPartial
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Safety-Critical Systems: Needs and Tools

7 Deaths 0.08 Deaths 0.07 Deaths

Every 109 miles current transportation systems have:

0.4 Deaths

Traditional
Approaches to 
Safety Guarantees

Subsystem Analysis Component AnalysisSystem Analysis

Hazard Class SW Level Failure/Flight Hr
Catastrophic A 10-9

Hazardous B 10-7

Major C 10-5

Minor D -------
No Effect E -------
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<<7 Deaths <<0.4 Deaths <<0.08 Deaths <<0.07 Deaths

Every 109 miles autonomous transportation systems require:

Safety-Critical Systems: Needs and Tools

Vox.comAPnews.com taipeitimes..com

• Being “just as safe” as humans, will not cut it
• Public sentiment and regulations will require autonomous 

transportation to be much safer than the current systems

Adaptive 
Control
Toolset

Machine 
Learning
Toolset

Towards Real-time Machine Learning

This Talk
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Outline

• Learning in Adaptive Systems
• Adaptive Estimation and Adaptive Control
• Error Models & Learning rules
• Stability framework – Imperfect Learning
• Persistent Excitation – Learning with guarantees

• Machine Learning
• Neural Networks
• Reinforcement Learning

• New Solutions
• High-order Tuners – towards accelerated performance  
• Sub-Gaussian spectral lines – towards robust learning
• Integration of RL and Adaptive Control – towards real-time machine learning 
• Safety and Stability – Adaptation with Calibrated CBF
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Learning in Adaptive Systems
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Problem Statement – Adaptive Control

θ : parameter, unknown

𝑥𝑥,𝑦𝑦,𝑢𝑢: state, output, input

𝜔𝜔: real-time data

Goal: Find 𝑢𝑢,𝐶𝐶1,𝐶𝐶2 so that regulation and tracking occur

𝑒𝑒: tracking error

θc: control parameter estimate 

Adaptive 
Control Parameter estimate

Model Structure

On-line information

Control input

Plant
(Dynamic System)

𝑢𝑢

𝜃𝜃𝑐𝑐

𝑥𝑥

𝑦𝑦
+

𝑒𝑒

𝑦𝑦𝑑𝑑

−

𝑥̇𝑥 = 𝑓𝑓 𝑥𝑥,𝜃𝜃,𝑢𝑢
𝑦𝑦 = 𝑔𝑔 𝑥𝑥,𝜃𝜃,𝑢𝑢

𝑢𝑢 = 𝐶𝐶1 𝜔𝜔,𝜃𝜃𝑐𝑐(𝑡𝑡), 𝑒𝑒
𝜃̇𝜃𝑐𝑐 = 𝐶𝐶2 𝜔𝜔,𝜃𝜃𝑐𝑐(𝑡𝑡), 𝑒𝑒
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Error Models – Two types of errors

• 𝑒𝑒: Performance error    (ex. �𝑥𝑥 − 𝑥𝑥; 𝑥𝑥 − 𝑥𝑥𝑚𝑚)
o can be measured, needs to be reduced

• �𝜃𝜃: Parameter error        (ex. 𝜃̂𝜃 − 𝜃𝜃)
o Unknown, can be adjusted    – Learning Rule

Goal: Determine error models and learning rules 

𝑊𝑊(𝑠𝑠)

Error Model
Performance error

�𝜃𝜃
𝑒𝑒

Real-time data

Adaptive 
Estimation

Parameter estimate

Model Structure

On-line information

State estimate

Adaptive 
Control

Parameter estimate

Model Structure

On-line information

Control input

Error ModelLearning Rule
(adjusts �𝜃𝜃)

�𝜃𝜃
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A Simple Error Model 

𝑦𝑦 = 𝜙𝜙𝑇𝑇𝜃𝜃

𝑉𝑉 = �𝜃𝜃
2

𝐽𝐽 = 𝑒𝑒2

𝑉̇𝑉 = 2 �𝜃𝜃𝑇𝑇 �̇𝜃𝜃 = −2 𝜂𝜂 �𝜃𝜃𝑇𝑇𝑒𝑒𝜙𝜙 = −2𝜂𝜂𝜂𝜂2 ≤ 0

𝜃𝜃𝑇𝑇
Φ

𝑦𝑦

Build an estimator: �𝑦𝑦 = 𝜙𝜙𝑇𝑇𝜃̂𝜃

�𝜃𝜃𝑇𝑇
𝜙𝜙

𝑒𝑒

�𝜃𝜃 = 𝜃̂𝜃 − 𝜃𝜃Parameter error:

Performance error: 𝑒𝑒 = �𝑦𝑦 − 𝑦𝑦

Error Model:

�̇𝜃𝜃 = −𝜂𝜂𝜂𝜂𝜂𝜂

Stability Framework:*

System Model:

�̇𝜃𝜃 = −𝜂𝜂𝑡𝑡𝛻𝛻𝐽𝐽

Robbins and Munro, 1951* Narendra and Annaswamy, 1989
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Dynamic Error Models

• cannot be measured, but only after some latencies as 𝑒𝑒.

• Performance and Learning are conflicting objectives

• With persistent excitation, �𝜃𝜃 𝑡𝑡 → 0 ⇒ Learning!

• With imperfect learning, guaranteed performance can be 
ensured: 𝑒𝑒 𝑡𝑡 → 0 ⇒ Control Performance

• Use a stability (Lyapunov) framework
Goal: Find learning rules for adjusting �𝜃𝜃 so that 𝑽̇𝑽 ≤ 𝟎𝟎

Error Model
Performance error

�𝜃𝜃
𝑒𝑒

Real-time data

𝜙𝜙 𝑒𝑒𝑒

𝑒𝑒𝑒

Learning Rule
(adjusts �𝜃𝜃)
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Adaptive Control: Milestones*

𝑥̇𝑥 = 𝑓𝑓 𝑥𝑥, 𝜃𝜃,𝑢𝑢
𝑦𝑦 = 𝑔𝑔 𝑥𝑥, 𝜃𝜃,𝑢𝑢

1. 𝑓𝑓,𝑔𝑔: linear.  Stability established in 1980.

2. Robustness to disturbances and unmodeled 
dynamics in the ’90s.

3. 𝑓𝑓,𝑔𝑔: nonlinear. Stability and robustness 
established in 1990-2000.

𝑢𝑢 = 𝐶𝐶1 𝜔𝜔,𝜃𝜃𝑐𝑐(𝑡𝑡), 𝑒𝑒
𝜃̇𝜃𝑐𝑐 = 𝐶𝐶2 𝜔𝜔,𝜃𝜃𝑐𝑐(𝑡𝑡), 𝑒𝑒

* A.M. Annaswamy and A.L. Fradkov, A historical perspective of adaptive control and learning, Annual Reviews in Control, 2021.
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Adaptive Controller Structure

• ∃𝜃𝜃1,𝜃𝜃2, 𝜆𝜆,𝜃𝜃4 s.t. Plant + Controller = Reference model
• Adaptive law:

• For 𝑛𝑛∗ ≥ 2: augmented error, high-order tuner, back-stepping

𝜃̇𝜃(𝑡𝑡) = −Γ𝑒𝑒(𝑡𝑡)𝜔𝜔(𝑡𝑡) (𝑛𝑛∗ = 1); SPR model; Kalman-
Yakubovich lemma

Σ 𝑘𝑘𝑝𝑝
𝑍𝑍𝑝𝑝
𝑅𝑅𝑝𝑝

𝑘𝑘𝑚𝑚
𝑍𝑍𝑚𝑚
𝑅𝑅𝑚𝑚

Λ, 𝑙𝑙

𝑒𝑒(𝑡𝑡)

Λ, 𝑙𝑙

𝜃𝜃2
𝑇𝑇

+𝑟𝑟(𝑡𝑡)

𝑦𝑦𝑝𝑝(𝑡𝑡)

𝑦𝑦𝑚𝑚(𝑡𝑡)

𝑢𝑢(𝑡𝑡)
𝜃𝜃4(𝑡𝑡)

𝜃𝜃1
𝑇𝑇

𝜔𝜔1
𝜔𝜔2

Plant

Σ

+
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Guarantees with Imperfect Learning

Stable Subspace Unstable Subspace

𝜃𝜃∗ = 𝜃𝜃1

Adaptive Control

𝜃𝜃2

𝜃𝜃1 + Δ

Adaptive, 𝜃𝜃2

With 𝜃𝜃1

Open Loop Unstable 
Short Period Dynamics

ControllerLearning
𝑢𝑢𝜃𝜃data

𝜃𝜃1 + Δ

𝛼𝛼 −
𝑒𝑒

Performance goal: 𝑀𝑀𝑀𝑀𝑀𝑀(𝑒𝑒)

𝛼𝛼𝑑𝑑

𝛼𝛼𝑑𝑑

Adaptive Controller

Imperfect learning, 
yet improved performance
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Safety-Critical Systems: Needs and Tools

7 Deaths 0.08 Deaths 0.07 Deaths

Every 109 miles current transportation systems have:

0.4 Deaths

Traditional
Approaches to 
Safety Guarantees

Subsystem AnalysisSystem Analysis

Hazard Class SW Level Failure/Flight Hr
Catastrophic A 10-9

Hazardous B 10-7

Major C 10-5

Minor D -------
No Effect E -------

Adaptive Control

• Model-based
• On-line control
• Integration with 

cyber
• Integration with 

human decision-
making
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Adaptive Control with Learning: Applications

Unmanned Flight Control Applications

Improved performance and reliability

Courtesy Boeing Company

2018
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Machine Learning
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Machine Learning

The ability of a computer to learn using on-line data
• Significant success in image & speech recognition, games

Typical approaches for learning:
1. Approximation of a Nonlinear Mapping

o Neural Networks
2. Optimization of a Cost Function

o Reinforcement Learning

Motivation:
• Complex environment
• Hard to sense
• Difficult to model
• Big-data & Computational complexity
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1. Neural Networks: A popular learning methodology

A bit of history

• Proposed in 1944 by McCullough and Pitts

• Controversy in the ‘70s: Multilayered 
Perceptrons, Minsky and Papert

• Resurgence in the 1980s

• A re-resurgence in the 21st century – fast 
processing power of graphics

(from MIT News)
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Fundamental of Neural Networks

Universal Approximation Theorem

𝑓𝑓(𝑥𝑥) 𝑦𝑦𝑎𝑎

Neural 
Network

𝑥𝑥 𝑦𝑦

𝑥𝑥

𝑦𝑦 = �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤2𝑖𝑖∗𝑇𝑇𝜙𝜙 𝑤𝑤1𝑖𝑖∗𝑇𝑇𝑥𝑥 + 𝑏𝑏𝑖𝑖
(One hidden layer)

𝜙𝜙 . : activation function

(From YouTube, Why do Nnets work?)

For 𝜖𝜖 > 0,∃𝑁𝑁,𝑤𝑤∗ 𝑠𝑠. 𝑡𝑡. 𝑦𝑦𝑎𝑎 − 𝑦𝑦 ≤ 𝜖𝜖 ∀𝑥𝑥 ∈ 𝑋𝑋 Estimate weights 𝑤𝑤𝑗𝑗 using back-propagation 

𝜃̇𝜃 = −Γ𝛻𝛻𝜃𝜃𝐿𝐿𝑡𝑡(𝜃𝜃)
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RL and Q-learning

• Model/Environment: Markov Decision Process

• Maximize a Value function 𝑉𝑉 𝑥𝑥𝑖𝑖 = 𝔼𝔼 ∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑅𝑅 𝑋𝑋𝑡𝑡 |𝑋𝑋0 = 𝑥𝑥𝑖𝑖 ; 𝛾𝛾: Discount factor

• 𝑅𝑅(𝑋𝑋𝑖𝑖): Reward associated with 𝑋𝑋𝑖𝑖

• Control/Agent:  Policy 𝜋𝜋𝑡𝑡

• Choose 𝜋𝜋𝑡𝑡 such that 𝑉𝑉(𝑥𝑥𝑖𝑖) is optimized

• Express using a 𝑄𝑄-function 𝑄𝑄∗ 𝑥𝑥𝑖𝑖 ,𝑢𝑢 ≔ 𝑅𝑅 𝑥𝑥𝑖𝑖 ,𝑢𝑢 + 𝛾𝛾 ∑𝑗𝑗∈[𝑛𝑛]𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 𝑉𝑉∗(𝑥𝑥𝑗𝑗)

state 𝑋𝑋action 𝑎𝑎

environment

agent
𝜋𝜋𝑡𝑡

𝑛𝑛 : future instants
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Q-learning

• Model/Environment: Markov Decision Process

• Maximize 𝑄𝑄(𝑥𝑥𝑖𝑖 ,𝑢𝑢); Optimal policy: 𝜋𝜋∗ 𝑥𝑥𝑖𝑖 = argmax𝑢𝑢∈𝒰𝒰 𝑄𝑄∗(𝑥𝑥𝑖𝑖 ,𝑢𝑢)

• Approximate 𝑄𝑄(𝑥𝑥𝑖𝑖 ,𝑢𝑢) by 𝑄𝑄𝜃𝜃(𝑥𝑥𝑖𝑖 ,𝑢𝑢):

o Linear regression: 𝑄𝑄𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑢𝑢 = 𝜽𝜽⊤𝝍𝝍(𝑥𝑥𝑖𝑖 ,𝑢𝑢)

o Neural networks: 𝑄𝑄𝜃𝜃 = �𝑖𝑖=1
𝑁𝑁 𝜃𝜃2𝑖𝑖∗𝑇𝑇𝜙𝜙 𝜃𝜃1𝑖𝑖∗𝑇𝑇𝑥𝑥 + 𝜃𝜃1𝑢𝑢𝑇𝑇 𝑢𝑢 + 𝑏𝑏𝑖𝑖

state Xaction 𝑎𝑎

environment

agent

Estimate the unknown parameters through an iterative algorithm: 𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝛾𝛾𝑘𝑘𝛻𝛻𝐿𝐿𝑘𝑘(𝜃𝜃𝑘𝑘)
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RL and Nonlinear Optimal Control

• Unknown nonlinear system:  𝑥̇𝑥 = 𝑓𝑓 𝑥𝑥,𝑢𝑢

• Minimize infinite-horizon cost:  𝐽𝐽 𝑢𝑢; 𝑥𝑥0 = ∫0
∞ 𝑟𝑟 𝑥𝑥,𝑢𝑢 𝑑𝑑𝑑𝑑

• Optimal cost-to-go: 𝑉𝑉∗ 𝑥𝑥0 = inf
𝑢𝑢
𝐽𝐽(𝑢𝑢; 𝑥𝑥0)

• Hamilton-Jacobi-Bellman Equation: 0 = inf
𝑎𝑎

{𝜕𝜕𝑥𝑥𝑉𝑉∗ 𝑥𝑥 𝑓𝑓 𝑥𝑥,𝑎𝑎 + 𝑟𝑟(𝑥𝑥,𝑎𝑎)}

• Optimal control policy: 𝜇𝜇∗ 𝑥𝑥 = arginf
𝑎𝑎

{𝜕𝜕𝑥𝑥𝑉𝑉∗ 𝑥𝑥 𝑓𝑓 𝑥𝑥,𝑎𝑎 + 𝑟𝑟(𝑥𝑥,𝑎𝑎)}

• Reinforcement Learning:                    Policy/Value Iteration
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Approximate Policy Iteration for Optimal Control*

• Use neural networks to approximate 𝐻𝐻𝑘𝑘 ,𝑉𝑉𝑘𝑘 and 𝜇𝜇𝑘𝑘
• �𝐻𝐻 𝑤𝑤𝑘𝑘 ,𝑤𝑤,𝑢𝑢 ≈ 𝐻𝐻𝑘𝑘 𝑥𝑥,𝑢𝑢 , �𝑉𝑉 𝑐𝑐𝑘𝑘 , 𝑥𝑥 ≈ 𝑉𝑉𝑘𝑘 𝑥𝑥 , 𝜇̂𝜇(𝜃𝜃𝑘𝑘, 𝑥𝑥) ≈ 𝜇𝜇𝑘𝑘(𝑥𝑥)

• The iterative procedure of the resulting approximate policy iteration:
• For a sampling period [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1], collect data (𝑥𝑥,𝑢𝑢) and cost 𝑟𝑟 𝑥𝑥,𝑢𝑢
• Policy evaluation: Given 𝜃𝜃𝑘𝑘, solve for 𝑤𝑤𝑘𝑘 and 𝑐𝑐𝑘𝑘 from HJB equation 

0 = �
𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘+1
�𝐻𝐻 𝑤𝑤𝑘𝑘 , 𝑥𝑥, �𝜇𝜇 𝜃𝜃𝑘𝑘 , 𝑥𝑥 𝑑𝑑𝑑𝑑, �𝑉𝑉 𝑐𝑐𝑘𝑘 , 𝑥𝑥 = �

𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘+1
(�𝐻𝐻 𝑤𝑤𝑘𝑘 , 𝑥𝑥,𝑢𝑢 − 𝑟𝑟(𝑥𝑥,𝑢𝑢)) 𝑑𝑑𝑑𝑑

• Policy improvement: Update 𝜃𝜃𝑘𝑘+1 = inf
𝜃𝜃
�𝐻𝐻 𝑤𝑤𝑘𝑘, 𝑥𝑥, �𝜇𝜇 𝜃𝜃, 𝑥𝑥

• Special case: Single layer network reduces the problem to weight estimation

• Estimation accuracy depends on persistent excitation condition 
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Every 109 miles current transportation systems have:

7 Deaths 0.08 Deaths 0.07 Deaths0.4 Deaths

Safety-Critical Systems: Needs and Tools

Component Analysis

Traditional
Approaches to 
Safety Guarantees

System Analysis

Hazard Class SW Level Failure/Flight Hr
Catastrophic A 10-9

Hazardous B 10-7

Major C 10-5

Minor D -------
No Effect E -------

Subsystem Analysis



Presentation to Ford, August 6, 2020Active Adaptive Control Laboratory (MIT) Plenary Talk, ICINCO 2023 November 2023     25

Machine Learning

<<7 Deaths <<0.4 Deaths <<0.08 Deaths <<0.07 Deaths

Every 109 miles autonomous transportation systems require:

Safety-Critical Systems: Needs and Tools

New
Approaches to 
Safety Guarantees

gluon.ai

Over 14 million photos 
with 21000 categories, 
best classification rate 
to date: 85.8%*

*L. Wei, “Circumventing Outliers of AutoAugment
with Knowledge Distillation”, arXiv, 2020. 
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Machine Learning

<<7 Deaths <<0.4 Deaths <<0.08 Deaths <<0.07 Deaths

Every 109 miles autonomous transportation systems require:

Safety-Critical Systems: Needs and Tools

New
Approaches to 
Safety Guarantees

gluon.ai

Over 14 million photos 
with 21000 categories, 
best classification rate 
to date: 85.8%*

*L. Wei, “Circumventing Outliers of AutoAugment
with Knowledge Distillation”, arXiv, 2020. 

Not adequate for 
safety critical systems
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Machine Learning

<<7 Deaths <<0.4 Deaths <<0.08 Deaths <<0.07 Deaths

Every 109 miles autonomous transportation systems require:

Safety-Critical Systems: Needs and Tools

New
Approaches to 
Safety Guarantees

gluon.ai

Over 14 million photos 
with 21000 categories, 
best classification rate 
to date: 85.8%*

*L. Wei, “Circumventing Outliers of AutoAugment
with Knowledge Distillation”, arXiv, 2020. 

Adaptive 
Control
Toolset

Machine 
Learning
Toolset

Rest of this talk
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NEW SOLUTIONS:
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Accelerated Performance (Discrete)
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GD𝑛𝑛

First-order Tuners
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Accelerated Performance with a High-order Tuner*

* A. S. Morse. High-order parameter tuners for the adaptive control of linear and nonlinear systems, 1993.
** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “A Class of High Order Tuners for Adaptive Systems,” IEEE Control Systems Letters, 2021.
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Accelerated Performance with a High-order Tuner*

*   J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “A Class of High Order Tuners for Adaptive Systems,” IEEE Control Systems Letters, 2021.
* A. S. Morse. High-order parameter tuners for the adaptive control of linear and nonlinear systems, 1993.
** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “A Class of High Order Tuners for Adaptive Systems,” IEEE Control Systems Letters, 2021.
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Accelerated Performance with a High-order Tuner*

*   J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “A Class of High Order Tuners for Adaptive Systems,” IEEE Control Systems Letters, 2021.
* A. S. Morse. High-order parameter tuners for the adaptive control of linear and nonlinear systems, 1993.
** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “A Class of High Order Tuners for Adaptive Systems,” IEEE Control Systems Letters, 2021.
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Accelerated Performance (discrete-time)*

* J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.
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Accelerated Performance (discrete-time)*

𝛻𝛻𝐿𝐿𝑘𝑘𝜙𝜙𝑘𝑘

Current Nnet algorithms:
𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝛾𝛾𝑘𝑘𝛻𝛻𝜃𝜃𝐿𝐿 𝜃𝜃𝑘𝑘

Proposed Discrete HT Proposed Continuous HT

(HT):

* J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.
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** Y. Nesterov (2018). Lectures on Convex Optimization. Springer.
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* J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.
** Y. Nesterov (2018). Lectures on Convex Optimization. Springer.

**:

*
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**:

* J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.
** Y. Nesterov (2018). Lectures on Convex Optimization. Springer.

*
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Non-asymptotic Properties: Example 1*

* Yurii Nesterov. Lectures on Convex Optimization. Springer, 2018 (p. 69).

*

(quadratic, non-homogeneous, convex)

Modified Smooth-Hard Problem, with time-varying regressors

* J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.
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Image Deblurring Example 2*

Blurring can be caused by many factors:

• Movement during the image capture process, by the camera or, when long 
exposure times are used, by the subject

• Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a short 
exposure time, which reduces the number of photons captured

• Scattered light distortion in confocal microscopy

• Model for blur*:
𝑦𝑦 = 𝜙𝜙𝑇𝑇𝜃𝜃∗ + 𝑛𝑛

* https://www.mathworks.com/help/images/image-deblurring.html

https://www.mathworks.com/help/images/image-deblurring.html
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De-Blurring an Image with a Time-Varying Blur*,**

* Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1), 183-202.
** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.

ISTA: Iterative Shrinkage-Thresholding Algorithm FISTA: Fast Iterative Shrinkage-Thresholding Algorithm
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High-order Tuner for Convex and Dynamic Loss Functions*
Boeing Review, April 202144

Step change in 𝑏𝑏𝑘𝑘 from 7 to 14 at 𝑘𝑘 = 25 Step change in 𝑏𝑏𝑘𝑘 from 7 to 14 at 𝑘𝑘 = 1500 No change in 𝑏𝑏𝑘𝑘

Accelerated 
performance

Stable performance
with dynamics

𝐿𝐿𝑘𝑘(𝜃𝜃∗)

* Moreu, José M., and Anuradha M. Annaswamy. "A Stable High-order Tuner for General Convex Functions." IEEE L-CSS, 2021.
** J.E. Gaudio, A.M. Annaswamy, M.A. Bolender, E. Lavetsky, and T.E. Gibson, “Accelerated Learning with Robustness to Adversarial Regressors,” 3rd L4DC Conference, 2021.
*** Gaudio, Joseph E., et al. "A Class of High Order Tuners for Adaptive Systems." IEEE L-CSS, 2020.

Loss: 𝐿𝐿𝑘𝑘 𝜃𝜃 = log(𝑎𝑎𝑘𝑘𝑒𝑒𝑏𝑏𝑘𝑘𝜃𝜃 + 𝑎𝑎𝑘𝑘𝑒𝑒−𝑏𝑏𝑘𝑘𝜃𝜃) Loss: 𝐿𝐿𝑘𝑘 𝜃𝜃 = log(𝑎𝑎𝑘𝑘𝑒𝑒𝑏𝑏𝑘𝑘𝜃𝜃 + 𝑎𝑎𝑘𝑘𝑒𝑒−𝑏𝑏𝑘𝑘𝜃𝜃) + 𝜇𝜇
2
𝜃𝜃 − 𝜃𝜃0 2
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NEW SOLUTIONS:
ACCELERATED PERFORMANCE
• High-order tuner
ROBUST LEARNING
• Sub-Gaussian spectral lines
REAL-TIME MACHINE LEARNING
• Integration with reinforcement learning
STABIITY AND SAFETY
• Adaptation and Calibrated Control Barrier Functions
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Robust Learning*

Consider a standard LQR problem in the presence of unmodeled 
dynamics:

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴∗𝑥𝑥𝑘𝑘 + 𝐵𝐵∗𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑘𝑘 + 𝜂𝜂𝑘𝑘,   𝑤𝑤𝑘𝑘 = 𝑔𝑔(𝑥𝑥0,𝑤𝑤0, … ,𝑤𝑤𝑘𝑘−1,𝑢𝑢0, … ,𝑢𝑢𝑘𝑘)
𝑤𝑤𝑘𝑘: unmodeled dynamics; 𝜂𝜂𝑘𝑘:  measurement noise

Unknown 𝐴𝐴∗ and 𝐵𝐵∗
Goal: 
• Learn 𝐴𝐴∗ and 𝐵𝐵∗
• Determine an LQR controller: min

u
𝐽𝐽:∑𝑘𝑘(𝑥𝑥𝑘𝑘𝑇𝑇𝑄𝑄𝑥𝑥𝑘𝑘 + 𝑢𝑢𝑘𝑘𝑇𝑇𝑅𝑅𝑢𝑢𝑘𝑘)

• Develop a non-asymptotic approach
* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, “Parameter Estimation Bounds Based on the Theory of Spectral Lines.” J. Artificial Intelligence, vol. 316, March 2023.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑥𝑥𝑘𝑘
𝑢𝑢𝑘𝑘

𝑤𝑤𝑘𝑘
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*

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, “Parameter Estimation Bounds Based on the Theory of Spectral Lines.” arXiv preprint arXiv:2006.12687.
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A Spectral Lines-Based Algorithm*

• Our approach: learn from a 
deterministic input with chosen 
frequency content

• Idea: choose frequency content to 
keep 𝑤𝑤𝑘𝑘 small

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, “Parameter Estimation Bounds Based on the Theory of Spectral Lines.” J. Artificial Intelligence, vol. 316, March 2023.
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Simulation Results
• 3rd-order LTI system simulated with two noise-to-signal ratios (𝜎𝜎)
• Unmodeled dynamics 𝑔𝑔(⋅) were given by a 1st-order nonlinear high-pass filter
• System was modeled with and without unmodeled dynamics
• Regrets of Algorithms 

1 and 2 are 
comparable without 
unmodeled dynamics:

• With unmodeled 
dynamics, Algorithm 
2 outperforms
Algorithm 1:

* A. Sarker, P. Fisher, J.E. Gaudio, and A.M. Annaswamy, “Parameter Estimation Bounds Based on the Theory of Spectral Lines.” arXiv preprint arXiv:2006.12687.
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RL & Adaptive Control

• Reinforcement Learning
• Training in Simulation
• Approximate solutions to difficult optimal control problems

• Adaptive control
• Online learning
• Solves constrained class of problems
• Real time
• Applicable in continuous and discrete-time

Environment /
Plant

Policy /
Controller

Observation /
State

Reward /
Cost

Action /
Control

RL /
Control
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An online policy: AC-RL

• Idea: Modify the trained policy output 𝑢𝑢𝑟𝑟 → 𝑢𝑢 so that the true model 
tracks the reference model

𝑥̇𝑥𝑟𝑟 = 𝑓𝑓𝑟𝑟 𝑥𝑥𝑟𝑟 ,𝑢𝑢𝑟𝑟 ; (𝑢𝑢𝑟𝑟 = 𝜋𝜋 𝑥𝑥𝑟𝑟 )
𝑥̇𝑥 = 𝑓𝑓 𝑥𝑥,𝑢𝑢

AC-RL:
𝑢𝑢 = 𝑢𝑢𝑟𝑟 + 𝑔𝑔 𝑒𝑒, �Θ
�̇Θ = Γ𝜁𝜁𝛻𝛻𝐿𝐿(𝑒𝑒, 𝑒̇𝑒)

• Globally stable for a class of 𝑓𝑓(𝑥𝑥,𝑢𝑢)*
• Leads to lim

𝑡𝑡→∞
𝑒𝑒(𝑡𝑡) = 0

• Elements of 𝑔𝑔 𝑒𝑒, �Θ come from the offline policy and the plant model 
𝑓𝑓(𝑥𝑥,𝑢𝑢)

𝑒𝑒 = 𝑥𝑥 − 𝑥𝑥𝑟𝑟

Annaswamy et al. "Integration of adaptive control and reinforcement learning for real-time control and learning." IEEE Transactions on Automatic Control (2023).

subjected to parametric changes
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Quadrotor: Hover Using Adaptive Control*
Boeing Review, April 202154

* Dydek, Zachary T., Anuradha M. Annaswamy, and Eugene Lavretsky. "Adaptive control of quadrotor UAVs: A design trade study with flight evaluations." IEEE Trans. CST, vol. 21 (2012)
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Quadrotor Task
• Autonomous landing of quadrotor on a moving platform
• Parameter uncertainties (25%)
• Loss of Effectiveness (50-75%)
• Success:

• Δ𝑧𝑧 ≤ 5𝑐𝑐𝑐𝑐 and
• Δ𝑥𝑥𝑥𝑥 ≤ 25𝑐𝑐𝑐𝑐 and
• 𝜙𝜙 , 𝜃𝜃 ≤ 10∘ and
• 𝑣𝑣𝑥𝑥𝑥𝑥 ≤ 50𝑐𝑐𝑐𝑐/𝑠𝑠 and
• 𝑣𝑣𝑧𝑧 ≤ 10𝑐𝑐𝑐𝑐/𝑠𝑠

• Failure:
• Δ𝑧𝑧 ≤ 0 or
• Timeout

• Goal: Succeed ASAP
• Assumptions:

• Full state feedback
• Landing pos + vel measurable

Annaswamy et al. "Integration of adaptive control and reinforcement learning for real-time control and learning." IEEE Transactions on Automatic Control (2023).
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Quadrotor: Land on a moving platform

Pure RL AC-RL

Significant 
improvement with 
AC-RL over pure RL

With 50% Loss of Effectiveness mid-flight

**

Quadrotor crashes
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Quadrotor: Land on a moving platform

DR-RL AC-RL • Additional improvement with AC-RL 
over DR-RL

• Does not require either additional 
training or  computational effort

With parametric uncertainties mid-flight, comparison with additional-
training in RL through Domain Randomization (DR-RL)
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Time (s)

Velocity (m/s) Angular Rate (rad/s)Orientation (rad)Position (m)

Why is AC-RL successful?
58

* Quadrotor crashes

*
*

Main feature that 
gives AC-RL an edge

*
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NEW SOLUTIONS:
ACCELERATED PERFORMANCE
• High-order tuner
ROBUST LEARNING
• Sub-Gaussian spectral lines
REAL-TIME MACHINE LEARNING
• Integration with reinforcement learning
STABIITY AND SAFETY
• Adaptation and Calibrated Control Barrier Functions
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Performance and Safety in Adaptive Systems

Robust Adaptive 
Controller

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 𝑢𝑢
Control surfaces 
and thrust

Performance:
Guarantee that 𝑥𝑥 𝑡𝑡 follows 
a command signal 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 .

Safety:
Guarantee that 𝑥𝑥 𝑡𝑡 stays 
within a set ∁ for any 𝑡𝑡 ≥ 0.

Real-time uncertainties, anomalies
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A new adaptive algorithm*

Boeing Review, April 2023 61

CCBF with 
EBR

𝑟𝑟𝑟𝑟∗ Plant
𝑣𝑣

Calibrated Closed-loop Reference Model

𝑢𝑢𝑝𝑝 𝑒𝑒

𝑥𝑥𝑚𝑚

−

𝜃𝜃𝑥𝑥

𝜃𝜃𝑟𝑟 ++ +
𝑥𝑥𝑝𝑝

∆𝑢𝑢

𝑒𝑒

− +

• Adaptive controller accommodates uncertainties and magnitude limits. 
• Constraints are met using a calibrated control barrier function (CCBF) 

for a reference model and an error-based relaxation (EBR). 

* J. Autenrieb and A.M. Annaswamy, “Safe and stable adaptive control with learning for a class of dynamic systems,” CDC 2023. 
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A new adaptive algorithm

62

Example case 1: Obstacle avoidance Constraint violation

EBR: Error-based Relaxation

Target Target
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Example 2: A double integrator (using Simulink Desktop Real-time Emulator)

Plant
Adapt

CCBF

𝜆𝜆: loss of effectiveness

𝑧𝑧𝑝𝑝

𝑟𝑟

𝛾𝛾: learning gain

𝑧𝑧𝑚𝑚: safe target

𝜆𝜆
𝑠𝑠2

Safety and StabilityStability
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Example 2: A double integrator (using Simulink Desktop Real-time Emulator)

Plant
Adapt

CCBF

𝜆𝜆: loss of effectiveness

𝑧𝑧𝑝𝑝

𝑟𝑟

𝛾𝛾: learning gain

𝑧𝑧𝑚𝑚: safe target

𝜆𝜆
𝑠𝑠2
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Example 3: A 6-DOF Quadrotor

6-DOF Quadrotor
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Example 3: A 6-DOF Quadrotor
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Summary

• Learning in Adaptive Systems
• Adaptive Estimation and Adaptive Control
• Error Models & Learning rules
• Stability framework – Imperfect Learning
• Persistent Excitation – Learning with guarantees

• Machine Learning
• Neural Networks
• Reinforcement Learning

• New Solutions
• High-order Tuners – towards accelerated performance  
• Sub-Gaussian spectral lines – towards robust learning
• Integration of RL and Adaptive Control – towards real-time machine learning 
• Safety and Stability – Adaptation with Calibrated CBF
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Some Takeaways
• Learning

• Occurs at multiple time-scales

• Safety-critical Systems
• Adapt first – requires a stability+adaptive control framework
• Guarantees with imperfect learning are essential
• Learning comes with hindsight

• Towards fully autonomous systems
• Real-time decision making tools – with guarantees
• Combination of adaptive control and ML needed

• “Control for Learning” needs to be addressed
• For decision-making under fast time-scales
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Thank you!

aanna@mit.edu
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