Novel Approaches to Model Assessment and Interpretation in Geospatial Machine Learning:

Addressing Spatial Dependence and High Dimensionality

Alexander Brenning

FRIEDRICH-SCHILLER-

JFN/

Friedrich Schiller University Jena Department of Geography ELLIS Unit Jena

Geospatial Machine Learning

Model assessment

- Best predictive performance → reduced environmental impact, greatest societal benefit, ...
- E.g. hazard assessment, regionalization of pollutants, mapping essential climate variables

Model interpretation

- Explainable, fair, reproducible decisions based on plausible models
- E.g. consistency with process understanding; accountability for AI-based decisions

Image source: thatsoftwaredude.com

Image source: thatsoftwaredude.com

FRIEDRICH-SCHILLER-UNIVERSITAT

JENA

This Is What you Want! 1. Interpret models in lower dimensions

INPUTS

2. Assess & interpret models spatially

Image source: thatsoftwaredude.com

FRIEDRICH-SCHILLER-UNIVERSITAT

JENA

ML Model Assessment & Interpretation Challenges in Geospatial Machine Learning

INPUTS

Spatial prediction

- Spatial dependence?
- Interpolation versus extrapolation skill? Brenning (2012 in IGARSS Proc., 2023 in *IJGIS*)

High dimensionality

- Model visualization?
- Correlated features?
- → Brenning (2023) in Machine Learning

Model-agnostic approaches

Image source: thatsoftwaredude.com

ML Model Assessment & Interpretation Case Studies: Pollutants in the Environment

FRIEDRICH-SCHILLER-

JEN/

Textbook example

- Top-soil zinc concentration
- Maas floodplain, Netherlands
- *N* = 155 with 2 predictors

Real-world example

- Groundwater nitrate concentration (Umweltbundesamt)
- 150 km x 150 km pilot study, *N* = 471 with multiple predictors
- Countrywide analysis (N > 9000)

ML Model Assessment in Geospatial Machine Learning

FRIEDRICH-SCHILLER-

JENA

- Design-based estimation
- Test-set estimation
- Cross-validation

ML Model Assessment in Geospatial Machine Learning

- Design-based estimation
- Test-set estimation
- Cross-validation
- Spatial cross-validation

Brenning (2012) in *IGARSS Proc.* Schratz et al. (2021) in *arxiv*, in press in *J. Stat. Software*

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

e l l i s European Laboracoy for Learning and intelligent Systems

Spatial Model Assessment: A Distance-Based Approach

Distance-based LOO-CV

FRIEDRICH-SCHILLER-UNIVERSITAT

JENA

Sample application: Meuse data – log(Zn)

Spatial Model Assessment: *Spatial Prediction Error Profiles* log(zinc) on the Maas Floodplain

MLR: Multiple linear regression KED: Kriging with external drift OK: Ordinary kriging RF: Random forest OK-RF: Blended OK-RF

Regionalization of Nitrate in Groundwater Deterministic and Geostatistical Interpolation Techniques

Brenning (2024) in TEXTE; data: Umweltbundesamt, 150 km × 150 km pilot region, N = 471

From Regionalization to Exceedence Mapping Kriging w. External Drift & Conditional Geostat. Simulation

Predicted nitrate co

KED

Area designation is *NOT* an interpolation task! → Model and estimate **exceedance regions**!

Conditional geostatistical simulation → 20.1% exceedance area

Brenning (2024) in TEXTE; data: Umweltbundesamt, 150 km × 150 km pilot region, N = 471

Spatial Model Assessment: *Spatial Prediction Error Profiles* Groundwater Nitrate Concentration in German Pilot Study

Brenning (2024) in TEXTE; data: Umweltbundesamt, countrywide analysis, N > 9000

ML Model Interpretation in Geospatial Machine Learning

INPUTS

- Model-specific vs. model-agnostic
- Train-and-predict vs. post-hoc

Image source: thatsoftwaredude.com

FRIEDRICH-SCHILLER-UNIVERSITAT

JEN/

ML Model Interpretation in Geospatial Machine Learning

INPUTS

Feature summary statistics

- Permutation feature importance
- Shapley additive explanations (SHAP) feature importance

Local (i.e. instance-level) explanations

Shapley values

Marginal effect plots

- Partial dependence
- Accumulated local effects (ALE)
- SHAP dependence

Image source: thatsoftwaredude.com

FRIEDRICH-SCHILLER-UNIVFRSITÄT

ML Model Interpretation in Geospatial Machine Learning log(zinc), Maas Floodplain: Permutation Feature Importance

JFN/

ML Model Interpretation: *Spatial Variable Importance Profiles* log(zinc) on the Maas Floodplain

FRIEDRICH-SCHILLER-UNIVERSITÄT

JENA

MLR: Multiple linear regression KED: Kriging with external drift OK: Ordinary kriging RF: Random forest OK-RF: Blended OK-RF

High-Dimensional Feature Space: Interpretation in Transformed Space

INPUTS

Proposal

- Use an invertible mapping $T: X \mapsto W$ onto an interpretation space W
- E.g. PCA or nonlinear embedding
- Now interpret $\hat{g} \coloneqq \hat{f} \circ T^{-1}$ in interpretation space W
- Does not modify the model \hat{f} !
- R package wiml → iml, DALEX

Image source: thatsoftwaredude.com

FRIEDRICH-SCHILLER-

Brenning (2023) in Machine Learning

IKONOS satellite image

FRIEDRICH-SCHILLER-UNIVERSITÄT

JENA

Small portion Rock glacier in the Andes.... of study area!

...and in the Alps

Flow patterns

Brenning et al. (2012) in Remote Sens. Env.

Gabor texture feature (example)

Small portion Rock glacier in the Andes.... of study area!

...and in the Alps

Brenning et al. (2012) in Remote Sens. Env.

Soft classification

FRIEDRICH-SCHILLER-UNIVERSITAT

JENA

Small portion Rock glacier in the Andes.... of study area!

...and in the Alps

Brenning et al. (2012) in Remote Sens. Env.

FRIEDRICH-SCHILLER-UNIVERSITÄT

JENA

Rock glacier in the Andes....

...and in the Alps

1.0

0.5

0.0

-0.5

-1.0

High-Dimensional Feature Space: Interpretation in Untransformed Space Random Forest Model

Permutation importance

ALE plots

Rock glacier in the Andes

Visualizing Marginal Effects in ML Partial Dependence vs. Accumulated Local Effects (ALE)

$${{\hat f}\left|_{{x_S}}}({x_S}) = rac{1}{n}\sum\limits_{i = 1}^n {{\hat f}\left({{x_S},x_C^{(i)}}
ight)}$$

How do \hat{f} 's predictions vary with (arbitrary values of) x_s ?

 x_s : selected variable, and x_c : all other predictors

→ Extrapolation in feature space!

Molnar (2023)

PCA of Gabor Features

Brenning (2023) in *Machine Learning*

High-Dimensional Feature Space: Interpretation in Transformed Space

/ERSITÄT

JENA

High-Dimensional Feature Space: Interpretation Using Synthetic Features

TWI = log(catchment_area / tan(slope))

FRIEDRICH-SCHILLER-UNIVERSITAT

JENA

Lessons Learned

- Prediction error and feature importances depend on prediction distance.
- Suitable performance measures are needed.
- Correlated features can (and should?) be interpreted in lowerdimensional projected space.

FRIEDRICH-SCHILLER-

JEN/

Spatial prediction error & feature importance profiles

Model interpretation in transformed space

Lessons Learned

FRIEDRICH-SCHILLER-

- Black-box model interpretation has serious limitations. (Flaws?)
- Use globally interpretable models: Additive models
 - Generalized additive models (Hastie & Tibshirani, 1990)
 - Model-based boosting (Hothorn *et al.*, 2010 in *JMLR*)
 - Explainable boosting machine (Nori *et al.*, 2019 in *arxiv*)

Cynthia Rudin

Lessons Learned

FRIEDRICH-SCHILLER-

- Black-box model interpretation has serious limitations. (Flaws?)
- Use globally interpretable models: Additive models
 - Generalized additive models (Hastie & Tibshirani, 1990)
 - Model-based boosting (Hothorn *et al.*, 2010 in *JMLR*)
 - Explainable boosting machine (Nori et al., 2019 in arxiv)

All models are wrong, but some are useful

George E. P. Box (1919-2013) Image credit: David M.C. Eddy via Wikipedia

Spatial prediction error & feature importance profiles

Thank you for your attention!

Brenning (2023) in *IJGIS* Brenning (2023) in Machine Learning Brenning (2024) in TEXTE

Blog: geods.netlify.app

- **X** @geobrenning

FRIEDRICH-SCHILLER-UNIVERSITÄT

JFN/

@alexander.brenning

Acknowledgements: P. Fieguth, S. Long, T. Suesse, M. Fink, Umweltbundesamt

Model interpretation in transformed space

Alexander Brenning

Geospatial ML Assessment & Interpretation