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Geospatial Machine Learning

Model assessment
• Best predictive performance  reduced

environmental impact, greatest societal
benefit, …

• E.g. hazard assessment, regionalization of
pollutants, mapping essential climate
variables

Model interpretation
• Explainable, fair, reproducible decisions

based on plausible models
• E.g. consistency with process understanding;

accountability for AI-based decisions
Image source: thatsoftwaredude.com
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Is This What you Want?

Image source: thatsoftwaredude.com
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This Is What you Want!

Image source: thatsoftwaredude.com
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RMSE =
0.1573

1. Interpret models in lower dimensions

2. Assess & interpret models spatially
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ML Model Assessment & Interpretation Challenges
in Geospatial Machine Learning

Spatial prediction
• Spatial dependence?
• Interpolation versus extrapolation skill?
Brenning (2012 in IGARSS Proc., 2023 in IJGIS)

High dimensionality
• Model visualization?
• Correlated features?
 Brenning (2023) in Machine Learning

Image source: thatsoftwaredude.com

Model-agnostic approaches
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ML Model Assessment & Interpretation
Case Studies: Pollutants in the Environment

Textbook example
• Top-soil zinc concentration
• Maas floodplain, Netherlands
• N = 155 with 2 predictors

Real-world example
• Groundwater nitrate concentration

(Umweltbundesamt)
• 150 km x 150 km pilot study, N = 471 with

multiple predictors
• Countrywide analysis (N > 9000)
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ML Model Assessment in Geospatial Machine Learning

• Design-based estimation
• Test-set estimation
• Cross-validation
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ML Model Assessment in Geospatial Machine Learning

• Design-based estimation
• Test-set estimation
• Cross-validation
• Spatial cross-validation

Brenning (2012) in IGARSS Proc.
Schratz et al. (2021) in arxiv, in press in J. Stat. Software
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Spatial Model Assessment: A Distance-Based Approach

Distance-based LOO-CV
Sample application: Meuse data – log(Zn)

Brenning (2023) in Int. J. Geogr. Inf. Sci.
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Spatial Model Assessment: Spatial Prediction Error Profiles
log(zinc) on the Maas Floodplain

Brenning (2023) in IJGIS

MLR: Multiple linear regression

RF: Random forest

KED: Kriging with external drift
OK: Ordinary kriging

OK-RF: Blended OK-RF
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Regionalization of Nitrate in Groundwater
Deterministic and Geostatistical Interpolation Techniques

Brenning (2024) in TEXTE; data: Umweltbundesamt, 150 km × 150 km pilot region, N = 471
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From Regionalization to Exceedence Mapping
Kriging w. External Drift & Conditional Geostat. Simulation

Brenning (2024) in TEXTE; data: Umweltbundesamt, 150 km × 150 km pilot region, N = 471

Predicted nitrate concentr. [mg/l]
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Spatial Model Assessment: Spatial Prediction Error Profiles
Groundwater Nitrate Concentration in German Pilot Study

Brenning (2024) in TEXTE; data: Umweltbundesamt, countrywide analysis, N > 9000
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ML Model Interpretation in Geospatial Machine Learning

• Model-specific  vs.  model-agnostic
• Train-and-predict  vs.  post-hoc

Image source: thatsoftwaredude.com
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ML Model Interpretation in Geospatial Machine Learning

Feature summary statistics
• Permutation feature importance
• Shapley additive explanations (SHAP) feature

importance

Local (i.e. instance-level) explanations
• Shapley values

Marginal effect plots
• Partial dependence
• Accumulated local effects (ALE)
• SHAP dependence

Image source: thatsoftwaredude.com
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ML Model Interpretation in Geospatial Machine Learning
log(zinc), Maas Floodplain: Permutation Feature Importance

Image source: thatsoftwaredude.com
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…using random 
cross-validation

…using spatial 
cross-validation



ML Model Interpretation: Spatial Variable Importance Profiles
log(zinc) on the Maas Floodplain

Brenning (2023) in IJGIS

KED

OK

RF

OK-RF

MLR MLR: Multiple linear regression

RF: Random forest

KED: Kriging with external drift
OK: Ordinary kriging

OK-RF: Blended OK-RF
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High-Dimensional Feature Space:
Interpretation in Transformed Space

Proposal
• Use an invertible mapping 𝑇𝑇:𝑋𝑋 ⟼𝑊𝑊

onto an interpretation space 𝑊𝑊
• E.g. PCA or nonlinear embedding
• Now interpret �𝑔𝑔 ≔ 𝑓𝑓 ∘ 𝑇𝑇−1 in

interpretation space 𝑊𝑊
• Does not modify the model 𝑓𝑓 !
• R package wiml ⟼ iml, DALEX

Image source: thatsoftwaredude.com
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Brenning (2023) in Machine Learning
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High-Dimensional Feature Space:
Mapping Rock Glaciers in the Andes

Rock glacier in the Andes….

…and in the Alps

IKONOS satellite image
Small portion 
of study area!

Brenning et al. (2012) in Remote Sens. Env.
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High-Dimensional Feature Space:
Mapping Rock Glaciers in the Andes

Rock glacier in the Andes….

…and in the Alps

Gabor texture feature (example)
Small portion 
of study area!

Brenning et al. (2012) in Remote Sens. Env.
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High-Dimensional Feature Space:
Mapping Rock Glaciers in the Andes

Rock glacier in the Andes….

…and in the Alps

Soft classification
Small portion 
of study area!

Brenning et al. (2012) in Remote Sens. Env.
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High-Dimensional Feature Space:
Mapping Rock Glaciers in the Andes

Rock glacier in the Andes….

…and in the Alps
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High-Dimensional Feature Space:
Interpretation in Untransformed Space
Random Forest Model

Permutation importance
Rock glacier in the Andes

ALE plots
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How do 𝑓𝑓’s predictions 
vary with (arbitrary values 
of) 𝑥𝑥𝑠𝑠?
𝑥𝑥𝑠𝑠: selected variable, and 
𝑥𝑥𝑐𝑐: all other predictors 
 Extrapolation in feature
space!

Visualizing Marginal Effects in ML
Partial Dependence vs.  Accumulated Local Effects (ALE)
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How do 𝑓𝑓’s 
predictions 
change for small 
changes in 𝑥𝑥𝑠𝑠?

Molnar (2023)



PCA of 
Gabor Features

Brenning (2023) 
in Machine Learning
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High-Dimensional Feature Space:
Interpretation in Transformed Space

Permutation importance ALE plots

Gabor PC1
(overall)

Gabor PC2
(incoherence)

Gabor PC3
(short ampl.)

Slope angle Catchment Ca. slope

SHAP importance

Brenning (2023) in Machine Learning
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High-Dimensional Feature Space:
Interpretation Using Synthetic Features

Brenning (2023) in Machine Learning
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TWI = log(catchment_area / tan(slope))



• Prediction error and
feature importances
depend on prediction
distance.

• Suitable performance
measures are needed.

• Correlated features can
(and should?) be
interpreted in lower-
dimensional projected
space.

Spatial prediction error & 
feature importance profiles

Model interpretation in transformed space

Lessons Learned
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• Black-box model interpretation has 
serious limitations. (Flaws?)

• Use globally interpretable models: 
Additive models

• Generalized additive models 
(Hastie & Tibshirani, 1990)

• Model-based boosting 
(Hothorn et al., 2010 in JMLR)

• Explainable boosting machine 
(Nori et al., 2019 in arxiv)

Lessons Learned
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• Black-box model interpretation has
serious limitations. (Flaws?)

• Use globally interpretable models:
Additive models

• Generalized additive models
(Hastie & Tibshirani, 1990)

• Model-based boosting
(Hothorn et al., 2010 in JMLR)

• Explainable boosting machine
(Nori et al., 2019 in arxiv)

Lessons Learned

George E. P. Box
(1919-2013)

Image credit: David M.C. Eddy via Wikipedia

All models are wrong,
but some are useful
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Thank you for your attention!

Brenning (2023) in IJGIS 
Brenning (2023) in 
       Machine Learning 
Brenning (2024) in TEXTE

Blog: geods.netlify.app

@geobrenning

    @alexander.brenning
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