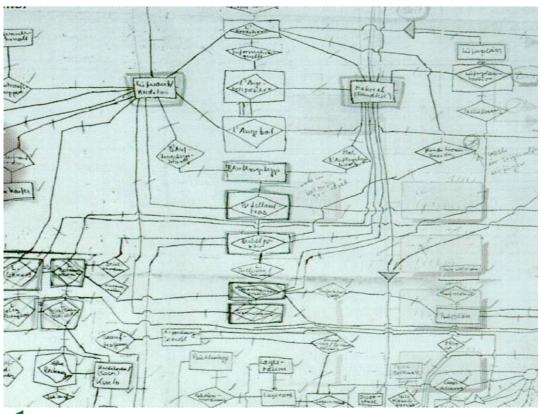


Enterprise-level IS Research – Challenges and Potentials of Looking Beyond Enterprise Solutions

25th International Conference on Enterprise Information Systems Prague, 24 April 2023

Enterprise-level IS Research


- 1. Enterprise Information Systems Where it all Started
- 2. Enterprise IS Level vs. Org Level of Analysis
- 3. Unique Themes of Enterprise-level IS Research
 - Integration Management
 - Architectural Coordination
 - Harnessing Complexity
- 4. Exemplary Domains of Enterprise-level IS Research
 - Context Large Enterprise IS
 - Context Digital Platforms
- 5. IS Research Methodology on Enterprise-level

Enterprise systems became widely adopted in the 1980ies...

Enterprise systems research & teaching have been successfully established

Unique and important IS phenomenona such as

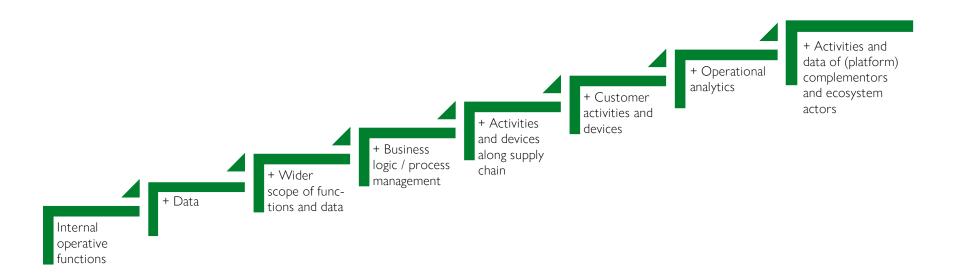
- Cross-functional **integration**, collaboration and coordination
- End-to-end business processes, process modelling support (EPC)
- Large-scale software solutions
- Reference solutions, configuration
- Large-scale technochange

Inspired by (and inspiring) ERP industry as well as user companies

- Meeting important business needs
- Relevant research **and** education contributions

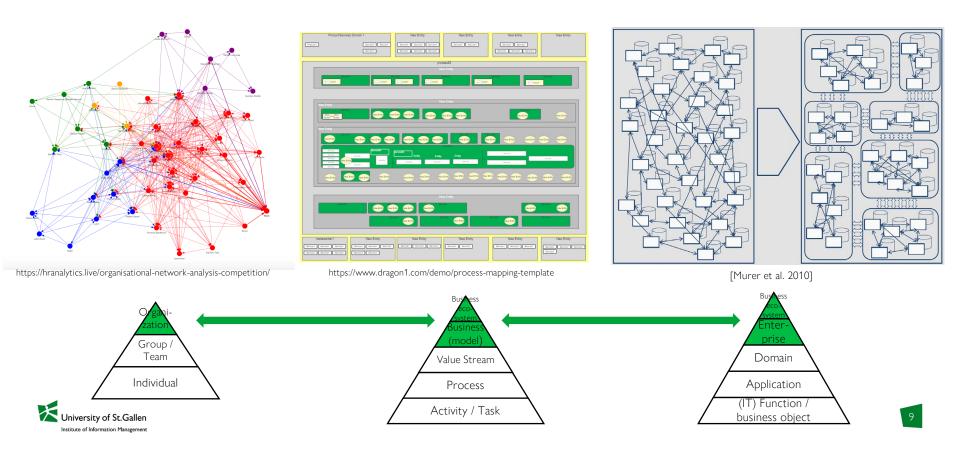
Foundation / application field for quite a few methodological IS research innovations

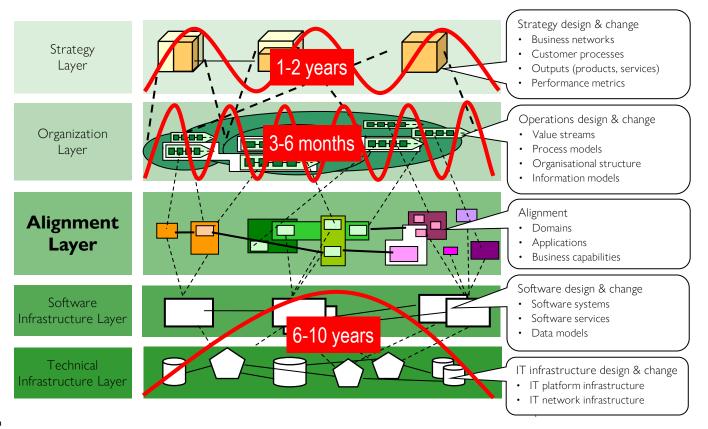
- Reference modelling
- Enterprise modelling
- Process modelling and mining
- IT enabled transformation management


However...the field became broader - and more diverse

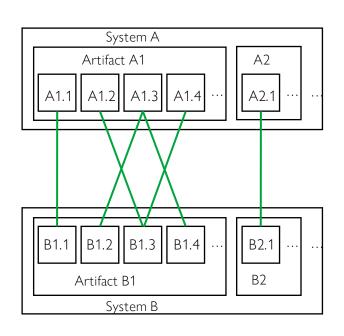
From a **focus on ERP** functionalities, introduction and adoption, to...

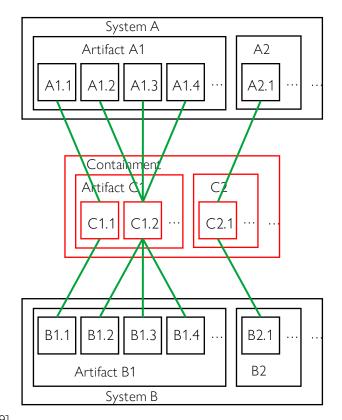
- Extended enterprise, managing supply chains and customer relations
- Integration with supplier- and customer-side processes/devices
- Enterprise- (and even network- or industry-) wide data management
- Business analysis, business modelling
- Enterprise architecture and its management
- Business ecosystems and digital platforms
- Organizational routines, managing operational change and transformation
- Transforming from on-prem to cloud-based
- Technology-enabled business (model) innovation

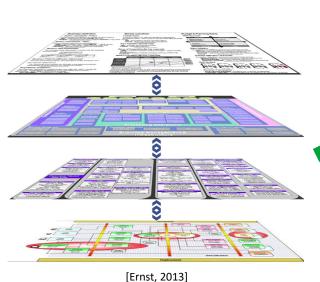

"To enterprise and beyond" - The integration journey

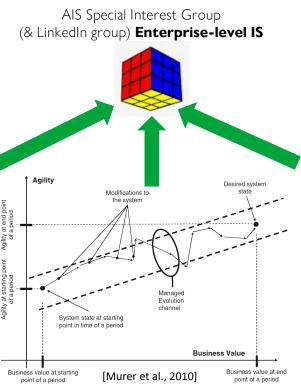


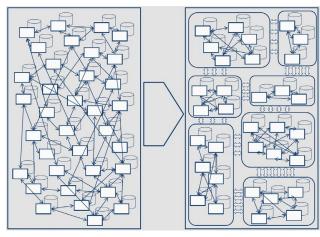
People vs. Organization vs. Business Technology




Strategic vs. operational vs. technical (fundamental) change cadences


In complex, dynamic systems, alignment models are essential




Enterprise-level characteristics in IS

All relevant **layers** (Business-to-IT)

All relevant **evolution stages** (managed evolution)

[Murer et al., 2010]

All relevant **components** (system of systems)

What **themes** are **unique** to the IS enterprise-level?

	• •	Integration inagement	• /	Architectural ordination	COI	Harnessing mplexity ousekeeping)
 □ System of systems: Relevance for "global" perspective − Coordination need for reaching enterprise-level objectives (flexibility, efficiency,) 	$\overline{\mathbf{V}}$	Leveraging synergies and alleviating redundancies	✓	Avoiding over- complexity, preserving flexibility	V	Actively reducing overcomplexity, creating flexibility potentials
 □ Business-to-IT: Relevance for boundary spanning − Coordination need for (re-)alignment □ Managed evolution: Relevance for 	$\overline{\checkmark}$	Integration always covers all layers	V	Providing stable foundation for decoupling	V	Business and IT complexity interrelated
 Managed evolution: Relevance for managing dependencies and side effects Coordination need for managing innovation and change projects on portfolio level 	V	Complex projects, long lifecycle, intended to reduce depen- dencies and side effects	V	Architectural principles, road-maps, project coordination	✓	Cleaning up damage created by "local" thinking

Domain = Theme X Context

Large enterprise context Structural and dynamic complexity Technical debt Decentral decision making Heterogeneity of outputs, channels, processes, platforms, ... **Digital platform** context Orchestration of complementary resources Transaction or innovation focus Limited guidance due to novelty of

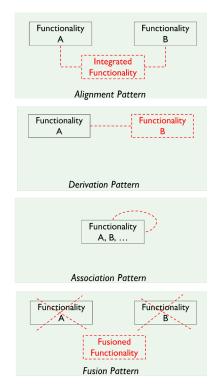
(1) Integration management

- Integration patterns and scoping
- Complementing formal with informal coordination interventions

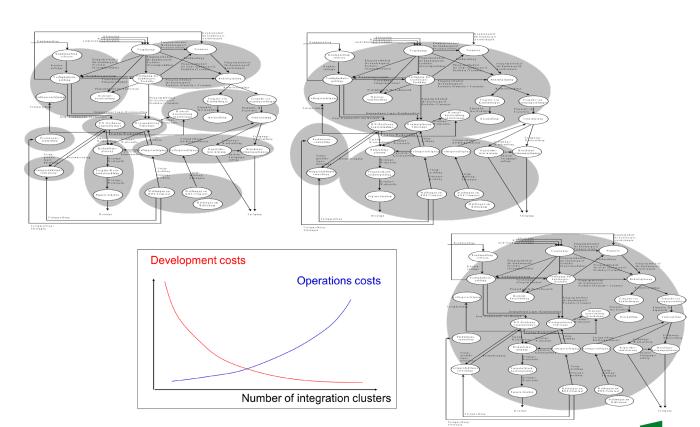
(2) Architectural

coordination

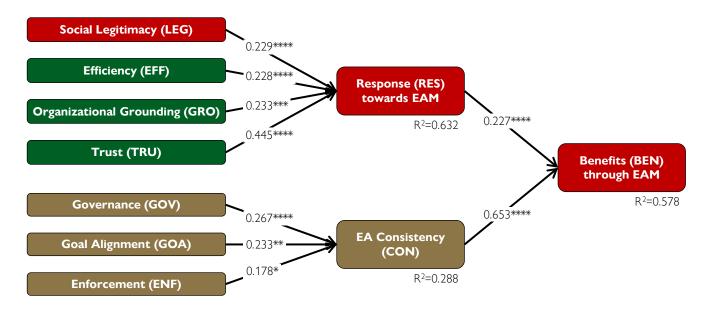
- 3. Business/IT alignment models
- 6. Designing platform governance for ambidexterity (generativity & control)


(3) Harnessing complexity (housekeeping)

- Transformation management ("Managed evolution")
- IS-related Orglevel maturity models
- 7. Understanding complexity effects on platform performance


model

Example 1: Integration patterns and scoping

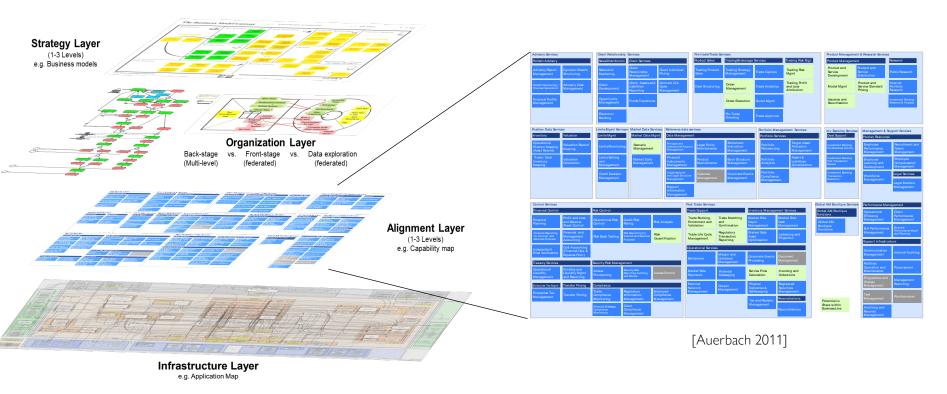


[Aier und Winter, 2010]

Example 2: Complementing formal with informal coordination interventions

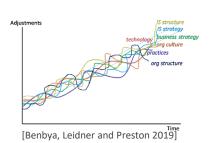
****: a<0.001

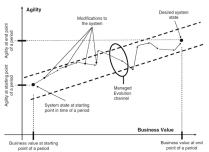
***: a<0.01

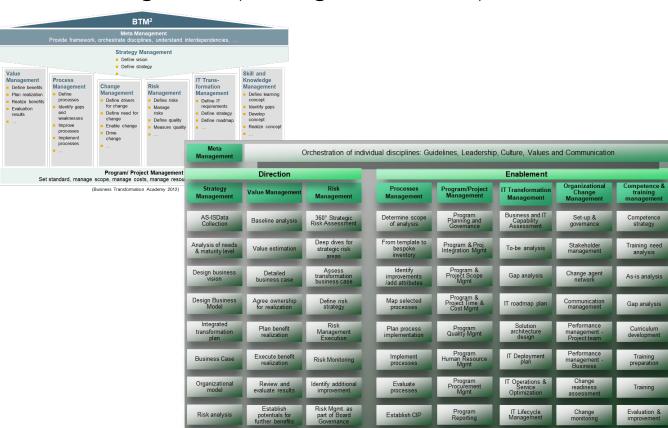

**: a<0.05

*: a<0.1

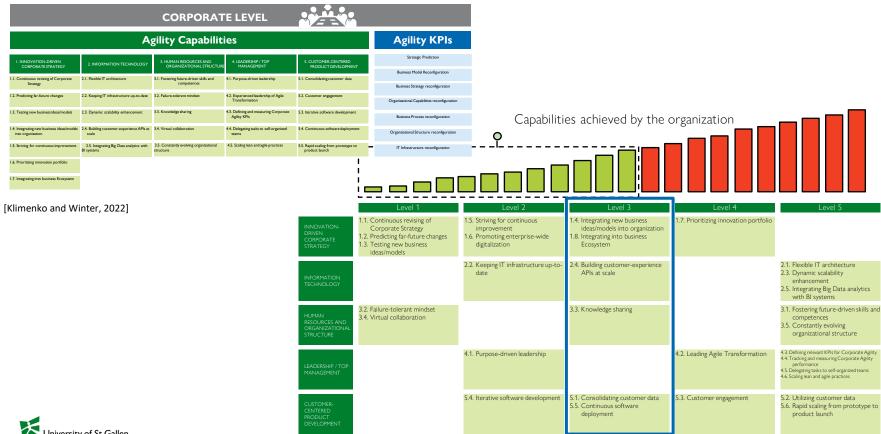
Example 2: Complementing formal with informal coordination interventions




Example 3: Business/IT alignment models

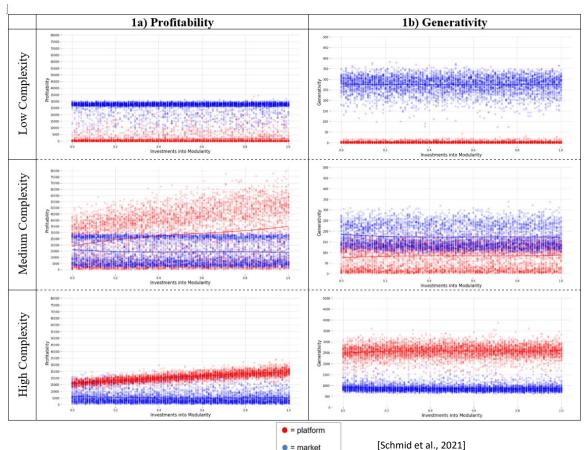


Example 4: Transformation management ("Managed evolution")



[Murer et al., 2010]

Example 5: IS-related Org-level maturity models


Example 6:

Designing platform governance for ambidexterity (generativity & control)

Pillar	Mechanism	Generativity	Control				
Platform boundary resources	Interfaces	Standardize access and connection Facilitate data exchange	Retain fine-grained control over complementor activities Influence community behavior Prevent platform exploitation				
	Programming resources	Lower the threshold for complementor participation Support complementors with the provision of tools and knowledge Help complementors overcome knowledge boundaries	Facilitate tight control over development quality through software tools and regulations Increase complementor focus on selected app functionalities				
Platform rules	Gatekeeping	Facilitate connection of complementors to the platform Increase the diversity in offered apps and functionalities	Restrict access to ensure quality and attractiveness for complementors and users (e.g., levels of access rights) Prevent uncontrolled variance in the platform's innovation output				
	Decision rights	Ensure decision-making autonomy of complementors to increase their innovation output	Define the complementors' amount of freedom (e.g., regarding their goals and task types)				
	Intellectual property sharing	Attract more complementors by expanding their intellectual property rights (particularly important in early stages of platform evolution)	Encourage complementors to not build a superior solution Increase control through agreements with different complementor groups Structure relations to complementors				
	Pricing	Subsidize one side to reach critical mass of complementors and users Enhance platform adoption by complementors and users (particularly in platform markets with fierce competition)	• N/A				
	Revenue sharing	Maintain complementor motivation while extracting an appropriate share of profits	• N/A				
Ecosystem identity	Relational control	Increase complementor motivation and commitment through community building Facilitate clans to enhance complementor performance and minimize errors.	Align platform and complementor strategy Benefit from rather inexpensive, community-driven self-control				

Example 7: Understanding complexity effects on platform performance

Beyond micro, meso, macro

- Specific practical and research challenges and specific insights and designs.
- Relevant perspective in practice and teaching, increasingly found in research.
- Looking at large, complex systems does not necessarily enforce taking a macroscopic perspective – like much of traditional, descriptive IS research does.
- Legitimate approaches other than descriptive include
 - Design Science Research (models, methods, typologies, architectures, ...)
 - Simulation (e.g., agent-based)
 - o and many others...

Enterprise systems focus should be extended to Enterprise-level IS

- Clear positioning on a "system of systems" level of analysis, integrating people, task and technology aspects
- Unique themes include "global" perspective, boundary spanning (business and technology) and managing dependencies / side effects
- Many relevant contexts such as integration management, architectural coordination, transformation and complexity management
- Suitable for methodological diversity (descriptive, design, data-driven)
- Embracing various "related" domains such as EAM, Enterprise Modelling,
 IS management / governance, ...
- Creation of (even more) relevant findings and skills, in particular in the context of platform economy, data sharing/sovereignty, customer self-service, IoT, cloud transformation, digital transformation, etc.

Robert Winter

Director robert.winter@unisg.ch

University of St.Gallen Institute of Information Management Müller-Friedberg-Strasse 8 9000 St.Gallen

References

- Aier, S., & Winter, R. (2009). Virtual Decoupling for IT/Business Alignment Conceptual Foundations, Architecture Design and Implementation Example. Business & Information Systems Engineering, 1(2), 150–163.
- Aier, S., & Winter, R. (2010). Fundamental Patterns for Enterprise Integration Services. International Journal of Service Science, Management, Engineering, and Technology 1(1): 33-49.
- Benbya, H., Leidner, D. & Preston, D. (2019). MISQ Research Curation on Information Systems Alignment. MIS Quarterly.
- Klimenko, R. & Winter, R. (2021). Corporate Agility Navigator: Guiding Organizations Through Their Agile Transformation. Controlling 33(5): 27-35.
- Murer, S., Bonati, B., & Furrer, F. J. (2010). Managed Evolution: A Strategy for Very Large Information Systems. Springer.
- Schilling, R.D., Aier, S., and Winter, R. 2019. Designing an Artifact for Informal Control in Enterprise Architecture Management, in: 40th International Conference on Information Systems (ICIS 2019). Munich, Germany.
- Schmid, M., Haki, K., Tanriverdi, H., Aier, S., & Winter, R. (2021). Platform over Market When is Joining a Platform Beneficial? 29th European Conference on Information Systems (ECIS 2021), A Virtual AIS Conference. https://aisel.aisnet.org/ecis2021_rp/32/
- Weiss, S., Aier, S. & Winter, R. (2013). Institutionalization and the Effectiveness of Enterprise Architecture Management. 34th International Conference on Information Systems (ICIS 2013). Milano, Italy.

