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* Algorithm footprints

« Take home messages




Single-Objective vs. Multi-Objective Optimization
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Benchmarking OPTION Algorithm Footprint

. - Benchmarking optimization ontology - Explainable performance
e  Which problems to be - Performance data - Set of easily and challenging
selected? - Problem landscape features solvable problem instances
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Benchmarking
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Statistical comparison
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Which algorithm statistically outperforms the others?



State-Of-The-Art before 2017

e Machine Learning
 Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research, 7(Jan), 1-30.

e Evolutionary Computation
 Derrac, J., Garcia, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and swarm

intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18.

* Garcia, S., Molina, D., Lozano, M., & Herrera, F. (2009). A study on the use of non-parametric tests
for analyzing the evolutionary algorithms’ behavior: a case study on the CEC’2005 special session
on real parameter optimization. Journal of Heuristics, 15(6), 617.



Deep Statistical Comparison

 Two steps:
* A novel ranking scheme based on comparing distribution

« Use an appropriate statistical test

Tome Eftimov
Peter Korosec

Deep Statistical
Comparison

for Meta-heuristic
Stochastic

Optimization
Algorithms

@ Springer



Statistical
comparison of
three algorithms

Friedman ranking

Friedman ranking

DSC ranking

scheme (medians) scheme (averages) scheme
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DSC tutorials

IJCCI 2018 SSCI 2019 PPSN 2022

GECCO 2020 @ Cancun CECCO &¥1 @ L[lle

GECCO 2022 @ Boston

&Q

2021 IEEE IEEE 2023 Congress on Evolutionary Computation
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Metaphor-based metaheuristics, a call for action:
the elephant in the room
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Taking inspiration from natural behaviors to devise new optimization algorithms has
played an important role in the history of the field of metaheuristics (Sorensen et al. 2017).
Unfortunately, in the last two decades we have been witnessing a new trend by which doz-
ens of metaphor-based metaheuristics based on the most diverse possible set of natural,
artificial, social, and sometimes even supernatural phenomena and behaviors are pro-
posed, without a clear motivation beyond the desire of their authors to publish their papers.



Confronting the Elephant in the Room

We often lack a clear understanding of
an Al algorithm strengths and
weaknesses.

Why does an algorithm outperform
others?

Understanding how algorithms and
optimization problems interact could
help identify factors that make
certain problems easier or more
difficult for specific algorithms!!!



Learning for optimization/Meta-learning

Selection of a
problem portfolio
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Learning for optimization/Meta-learning
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Feature representations AUTOML24

e Problem features International Conference on Automated Machine Learning
» static features that describe characteristics of an optimization problem

» Use cases: complementarity between benchmark suite, selection of a representative

learning/benchmarking data

e Algorithm features
» describe the algorithm characteristics

» Use case: selection of complementary algorithm portfolio

 Problem-algorithm trajectory features
» describe the interactions or the optimization process trajectory when an algorithm 1s run on

a specific problem instances

» Use cases: per-run algorithm selection, understanding algorithm behaviour




Problem Features

Problem Instances Sampling and

evaluating candidate

solution from the
entire problem

search space

e
e

Calculating /
Learning features
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Algorithm Features

» Based on source code
» Based on performance (performance2vec)
* Based on Shapley values of performance predictive model

»  Via Knowledge Graph = T T e
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Problem-Algorithm Trajectory Features

Candidate solutions
observed during the
Problem instances algorithm’s run Calculating /

Learning features
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Algorithm Footprint

The term "algorithm instance footprint" refers to the regions (i.e., sets of problem instances)
where an algorithm instance performs well or poorly, with accompanying identification of the
problem landscape properties and their interactions that contribute to this performance
variation.




Algorithm Footprint

Train a supervised ML model to
predict algorithm performance.

Use SHAP to explain each
feature's contribution to the
prediction.

Create meta-representations
embedding landscape properties
and algorithm performance.

Cluster meta-representations to
identify performance regions.

Analyze cluster properties to
identify factors affecting algorithm
performance.

1. Learning a supervised ML model

Problem o AN
instances
©.0 Calculate
: features

2. Calculating algorithm behavior
meta-representation

Landscape Test data
== . | . 4
@ Model Explaining Clustering the Post-hoc
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ML results

Problem Instances Landscape Features 04
« The BBOB benchmark suite, of 120 noise- * The problem instances are described

o
w

I random_forest
[ svm

L2

free, single-objective optimization using 64 features derived by
problem instances; Exploratory Landscape  Analysis
* in 10 dimensions; (ELA);
* 5instances per problem. « feature selection.

mae_test

o
[N

Algorithm Performance ML Algorithms 15 30

features
¢ The performance of 3 randomly selected * Random Forest (RF), Support Vector (a) MAE
Differential Evolution (DE) configurations Machine (SVM), and K-Nearest
is predicted; Neighbours (KNN) are used as
e 30 runs; predictive models;
« solution precision after a fixed budget of « 5-fold cross-validation;
function evaluations; * report Mean Absolute Error (MAE) on BEE random_forest
* log10 transformation on the target. the test set. ¢ B svm
I knn
0.6
¢
ML model performance: = ~ i
features
e 5-fold cross-validation (b) R2score

e Mean Absolute Error (MAE) and the R2 score

Figure: Performance of the algorithm performance models when
predicting the performance of DE1, over the test portion of the 5
folds: (a) MAE, (b) R2 score, for different feature portfolios.



DE Footprint

Four deterministic clusters:

poor or good i) algorithm performance
and ii) prediction error.

The clustering 1s done based on apriori set
thresholds:

t = the median algorithm performance

In the (*, good) scenario the ML model successfully detects
the algorithm behavior.

In the case of (* poor) the ML model cannot predict the

algorithm performance (good) or (poor), within the specified
error.

There is a distinction between good vs. poor algorithm
instance performance (i.e., placing (good, good) to (good,

poor) problem instances together vs. (poor, good) to (poor,
poor ) together.

The second dimension, which is the ML model
performance, only guarantees confidence in providing
further explanations for problem instances that are
predicted in the tolerance error.
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DE footprint

model fold number (good, good) (good, poor) (poor, good) (poor, poor)
RF 1 16, 19, 20, 21, 22 1, 2,5, 14, 17, 18, 23 3,4,6,7,8,9,10, 11, 12, 15, 24 13
KNN 1 2, 16, 18, 19, 20, 21, 23 1,5, 14, 17, 22 4,6,7,8,9,10, 11, 12, 15, 24 313
SVM 1 16, 19, 20, 21, 22 1, 2,5, 14, 17, 18, 23 3,4,6,7,8,9,10, 11, 12, 24 13, 15
RF 2 19,.20, 21 1,2,5,14; 17,22, 23 3,4,6,7,8,9,10, 11, 12, 13, 15, 16,24 18
KNN 2 5,17, 19, 20, 23 1, 2, 14, 21, 22 3,4,6,7,8,9,10, 11, 12, 16, 24 13, 15,18
SVM 2 19, 21 1,2,5,14, 17, 20, 22,23 6, 8,9, 12, 15, 16, 18, 24 3.4,7,10,11; 13
RF 3 19, 20, 21, 22 1, 2,5, 14, 16, 17, 18, 23 3,4,6,8,9,12, 13, 15, 24 7,10, 11
KNN 3 1, 16, 18, 19, 20, 21, 22,23 2,5, 14, 17 6, 8,9, 10, 12, 13, 24 3,47, 11,15
SVM 3 6, 22 1,2,5,14,17,18,19,20,21,23 9,12,13, 24 3,4,6,7,8,10,11, 15
RF 4 5, 16, 18, 19, 20, 21, 22 1,2,7,14, 17, 23 3,4,6,8,9,10, 12, 13, 15, 24 11
KNN 4 1,7,16;19, 20; 21, 22,23 2,5,14,17, 18 4,6,8,9,10,12, 24 3,131,13,15
SVM 4 16, 20, 21 1,2,5,7,14,17, 18,19, 22, 23 6, 9,11, 13, 24 3,4.8,10,12, 15
RF 5 19, 20, 21 1,2,5,7,14,16,.17, 22,23 6, 8,9, 11, 12, 13, 15, 24 3,4,10,18
KNN 5 1, 14, 16, 19, 20, 21, 22,23 2,5,7,17 4,6,8,9,11,12, 15, 24 3,10, 13, 18
SVM 5 5::16,:19,:21,°22 1, 2,7, 14, 17, 20, 23 3,8,9,10, 11, 12, 18, 24 4, 6,13, 15

e DEI1 has stable performance on the 19, 20, and 21 BBOB problem classes. No matter the different transformations (e.g., shifting,

scaling) that are applied the algorithm instance is able to find a solution with the specified target.
e  For the 6th, 8th, 9th, 12th, 15th, and 24th BBOB problem classes, the algorithm instance is not able to solve them within the
specified target.
e  The problem instances of the 7th and the 18th problem classes are distributed across all of the clusters, thus the algorithm instance

does not have stable performance on them.



Post-hoc analysis
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Figure: The distribution of ELA features across the algorithm instance footprintt.



Benchmarking Algorithm Footprint

Use a multi-target regression model for
automated algorithm performance prediction

Use case:

e Three algorithms

» Particle Swarm Optimization (PSO)

 Random Search (RS)

* Estimation of Multivariate Normal
Algorithm (EMNA)

ﬁx
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Algorithm Model MAE R2
EMNA mean 1.338104 -0.000754
PSO 1.096115 -0.000665
RS 0.922459 -0.000302
EMNA random_forest 0.149445 0.973351
PSO 0.123431 0.973023
RS 0.061197 0.980432
EMNA neural network 0.385019 0.912184
PSO 0.263178 0.928873
RS 0.330922 0.844444
EMNA multitask_elastic net  0.432810 0.891677
PSO 0.276216 0.932986
RS 0.346470 0.860945
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b) n_clusters=10

= RandomSearch



Benchmarking Algorithm Footprint
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Post-hoc Analysis
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Visualization of the contribution patterns of the 10 most important features in the algorithm performance prediction,
with subfigures illustrating the results for problem a-c) EMNA, d-f) PSO, and g-i) Random Search for the corresponding problem
as indicated in the subfigure caption.
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Take Home Messages

e Use approaches to_understand what are the strengths and weaknesses of a new
algorithm instead of looking into its average performance!
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AutoLearn-SI
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Selection of representative learning data




Deep Statistical Comparison of three algorithms across different benchmark

suites

e Three algorithms selected from the Nevergrad (Facebook) framework
e Statistical comparison on already established benchmark suites
o BBOB/COCO, CEC 2013, CEC 2014, CEC 2015, CEC 2017
BBOB CEC 2013 CEC 2014 CEC 2015 CEC 2017 All
DE | RSPSO DE | RSPSO DE | RSPSO DE | RSPSO DE | RSPSO DE | RSPSO
RSPSO | 0.00/0 0.95/1 0.29/1 0.02/0 0.00/0 0.00/0
CMA | 0.33/1 | 0.00/0 | 0.47/1 | 0.65/1 | 0.75/1 | 0.07/1 | 0.04/0 | 0.98/1 | 0.97/1 | 0.00/0 | 0.06/1 | 0.00/0

*( - statistically significant difference in performance found
*1 - no statistically significant difference in performance found




Problem features

e [Exploratory Landscape Analysis (ELA)
o 64 features

BBOB/COCO (24 problems x 5 instances),
CEC 2013 (28 problems),
CEC 2014 (30 problems),
CEC 2015 (15 problems),
CEC 2017 (29 problems)
o 10D



SELECTOR - Selection of diverse benchmark problem instances

BBOB 21 BPOB.22_1

BBOB_16_2

BBOB_23 5

BBOB_19_5

BBOB_16_4 BEOB_23_4
CEC2013_9.1

BBOB_23_3
CEC2013_8_1

BBOB_1_3 BBOB_19_4

BBOB_17_2
BBOB_19_1

BBOB_14_2

BBOB_21_2 BBOB_22_3
BBOB_16_5

BBOB_23.1

BBOB_17_5
BBOB_18_5

BBOB_23_2

Cenikj, G., Lang, R. D., Engelbrecht, A. P., Doerr, C., Korosec, P., & Eftimov, T.
(2022, July). Selector: selecting a representative benchmark suite for reproducible
statistical comparison. In Proceedings of The Genetic and Evolutionary
Computation Conference (pp. 620-629).
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Comparison using the new selected benchmark suites via clustering

Results of the Friedman test and the Nemenyi post-
hoc test for the statistical comparison of the three algorithms
using the benchmark suites selected from the 21 and the 26

clusters, respectively.

Results of the Friedman test and the Nemenyi post-
hoc test for the statistical comparison of the three algorithms
using the benchmark suites selected by using different per-
centage of representatives for the larger clusters.

21 clusters

26 clusters

DE | RSPSO DE | RSPSO
RSPSO | 0.24/1 0.28/1
CMA | 0.48/1 | 0.02/0 | 0.51/1 | 0.02/0

12.5% repres. 25% repres.
DE | RSPSO DE | RSPSO
RSPSO | 15.00 15.00
CMA | 14.00 0.00 | 14.00 0.00




Comparison using the new selected benchmark suites via graph theory

Results of the Friedman test and the Nemenyi post-
hoc test for the statistical comparison of the three algorithms
using the benchmark suites selected by the MIS and DS graph
algorithms, for different cosine similarity measures. The
numbers indicate the number of times in which no statis-
tical significance was identified between the performance
of a pair of algorithms, out of 30 independent executions of
the statistical analysis, on 30 different subsets of instances
produced by 30 runs of the algorithms.

DS 0.9 DS 0.95 DS 0.97
DE | RSPSO DE | RSPSO DE | RSPSO
RSPSO | 30.00 30.00 30.00
CMA | 27.00 5.00 | 26.00 3.00 | 22.00 0.00
MIS 0.9 MIS 0.95 MIS 0.97
DE | RSPSO DE | RSPSO DE | RSPSO
RSPSO | 30.00 30.00 30.00
CMA | 27.00 3.00 | 30.00 0.00 | 24.00 0.00




Generalization of the SELECTOR

ALL BBOB CEC2013 CEC2014
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Automated algorithm selection
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Selection of complementary algorithm portfolio

Meta-representation: SHAP Meta-representation: SHAP Meta-representation: SHAP
Threshold: 0.6

Threshold: 0.97

Meta-representation: p2v Meta-representation: p2v Meta-representation: p2v
Threshold: 0.6 Threshold: 0.8 Threshold: 0.97
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Kostovska, A., Cenikj, G., Vermetten, D., Jankovic, A., Nikolikj, A., Skvorc, U., ... & Eftimov, T. (2023, December). PS-AAS: Portfolio Selection for Automated Algorithm Selection in
Black-Box Optimization. In International Conference on Automated Machine Learning (pp. 11-1). PMLR.



Selection of complementary algorithm portfolio

Inner-Portfolio Loss
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. x-axis: the best possible loss of the portfolio = the difference between the portfolio's

VBS and the VBS of the full set of 324 algorithms.

. y-axis: the loss of the AS = the difference in performance between the algorithm it

selects and the VBS of the portfolio it can choose from.




