

Institute of Information Management

Enterprise-level IS Research – Challenges and Potentials of Looking Beyond Enterprise Solutions

25th International Conference on Enterprise Information Systems Prague, 24 April 2023

From insight to impact

Enterprise-level IS Research

- 1. Enterprise Information Systems Where it all Started
- 2. Enterprise IS Level vs. Org Level of Analysis
- 3. Unique Themes of Enterprise-level IS Research
 - Integration Management
 - Architectural Coordination
 - Harnessing Complexity
- 4. Exemplary Domains of Enterprise-level IS Research
 - Context Large Enterprise IS
 - Context Digital Platforms
- 5. IS Research Methodology on Enterprise-level

Enterprise Information Systems – Where it all Started

Enterprise systems became widely adopted in the 1980ies...

WEGGHO USEND / DISOWING involid continuiting UDID: 1 Involution PF00 Userid 0015041 30/01/05 PF00 Userid 0015041 30/01/05 PF00 USERIA / DISOWING INVOLUTION Pf00 USERIA / DISOWING INVOLUTI

University of St.Gallen

Enterprise systems research & teaching have been successfully established

Unique and important IS phenomenona such as

- Cross-functional **integration**, collaboration and coordination
- End-to-end business **processes**, process modelling support (EPC)
- Large-scale software solutions
- Reference solutions, configuration
- Large-scale **technochange**

Inspired by (and inspiring) ERP industry as well as user companies

- Meeting important **business needs**
- Relevant research **and** education contributions

Foundation / application field for quite a few methodological IS research innovations

- Reference modelling
- Enterprise modelling
- Process modelling and mining
- IT enabled transformation management

However...the field became broader - and more diverse

From a **focus on ERP** functionalities, introduction and adoption, to...

- Extended enterprise, managing supply chains and customer relations
- Integration with supplier- and customer-side processes/devices
- Enterprise- (and even network- or industry-) wide data management
- Business analysis, business modelling
- Enterprise architecture and its management
- Business ecosystems and digital platforms
- Organizational routines, managing operational change and transformation
- Transforming from on-prem to cloud-based
- Technology-enabled business (model) innovation

"To enterprise and beyond" - The integration journey

7

Enterprise Level vs. Org Level of Analysis

People vs. Organization vs. Business Technology

https://hranalytics.live/organisational-network-analysis-competition/

https://www.dragon1.com/demo/process-mapping-template

Strategic vs. operational vs. technical (fundamental) change cadences

In complex, dynamic systems, alignment models are essential

[Aier & Winter, 2009]

Enterprise-level characteristics in IS

Unique Themes of Enterprise-level IS Research

What **themes** are **unique** to the IS enterprise-level?

Coordination need for reaching enterprise-

level objectives (flexibility, efficiency, ...)

Business-to-IT: **Relevance for boundary**

Coordination need for (re-)alignment

Managed evolution: **Relevance for**

managing dependencies and side

Coordination need for managing

innovation and change projects on

(1) Integration management

□ System of systems: **Relevance for "global"** □ Leveraging synergies and alleviating redundancies

> $\mathbf{\nabla}$ Integration always covers all layers

Complex projects, 🗹 \checkmark long lifecycle, intended to reduce dependencies and side effects

(2) Architectural coordination

- Avoiding overcomplexity, preserving flexibility
 - Providing stable foundation for decoupling

Architectural principles, roadmaps, project coordination

(3) Harnessing complexity (housekeeping)

- Actively reducing overcomplexity, creating flexibility potentials
- \checkmark Business and IT complexity interrelated
- Cleaning up damage created by "local" thinking

effects

portfolio level

perspective

spanning

Exemplary Domains of Enterprise-level IS Research

Domain = Theme X Context

(1) Integration management

1.

Integration

and scoping

patterns

(2) Architectural coordination

- 2. Complementing formal with informal coordination interventions
- 3. Business/IT alignment models
- Designing platform governance for ambidexterity (generativity & control)

(3) Harnessing complexity (housekeeping)

- 4. Transformation management ("Managed evolution")
- 5. IS-related Orglevel maturity models
- 7. Understanding complexity effects on platform performance

- Large enterprise context

- Structural and dynamic complexity
- Technical debt
- Decentral decision making
- Heterogeneity of outputs, channels, processes, platforms, ...

- **Digital platform** context

- Orchestration of complementary resources
- Transaction or innovation focus
- Limited guidance due to novelty of model

University of St.Gallen

Example 1: Integration patterns and scoping

Example 2: Complementing formal with informal coordination interventions

Example 2: Complementing formal with informal coordination interventions

in: 40th International Conference on Information Systems (ICIS 2019). Munich, Germany.

University of St.Gallen

Example 3: Business/IT alignment models

Example 4: Transformation management ("Managed evolution")

Example 5: IS-related Org-level maturity models

Institute of Information Management

[Klimenko and Winter, 2022]

Example 6: Designing platform governance for ambidexterity (generativity & control)

Pillar	Mechanism	Generativity	Control
Platform boundary resources	Interfaces	 Standardize access and connection Facilitate data exchange 	Retain fine-grained control over complementor activities Influence community behavior Prevent platform exploitation
	Programming resources	Lower the threshold for complementor participation Support complementors with the provision of tools and knowledge Help complementors overcome knowledge boundaries	 Facilitate tight control over development quality through software tools and regulations Increase complementor focus or selected app functionalities
Platform rules	Gatekeeping	 Facilitate connection of complementors to the platform Increase the diversity in offered apps and functionalities 	Restrict access to ensure quality and attractiveness for complementors and users (e.g., levels of access rights) Prevent uncontrolled variance in the platform's innovation output
	Decision rights	 Ensure decision-making autonomy of complementors to increase their innovation output 	 Define the complementors' amount of freedom (e.g., regarding their goals and task types)
	Intellectual property sharing	 Attract more complementors by expanding their intellectual property rights (particularly important in early stages of platform evolution) 	Encourage complementors to no build a superior solution Increase control through agreements with different complementor groups Structure relations to complementors
	Pricing	 Subsidize one side to reach critical mass of complementors and users Enhance platform adoption by complementors and users (particularly in platform markets with fierce competition) 	• N/A
	Revenue sharing	 Maintain complementor motivation while extracting an appropriate share of profits 	• N/A
Ecosystem identity	Relational control	Increase complementor motivation and commitment through community building Facilitate clans to enhance complementor performance and minimize errors	Align platform and complemento strategy Benefit from rather inexpensive, community-driven self-control

Example 7: Understanding complexity effects on platform performance

= market

IS Research Methodology on Enterprise-level

Beyond micro, meso, macro

- Specific practical and research challenges and specific insights and designs.
- Relevant perspective in practice and teaching, increasingly found in research.
- Looking at large, complex systems does not necessarily enforce taking a macroscopic perspective – like much of traditional, descriptive IS research does.
- Legitimate approaches other than descriptive include
 - Design Science Research (models, methods, typologies, architectures, ...)
 - Simulation (e.g., agent-based)
 - o and many others...

Conclusions

Enterprise systems focus should be extended to Enterprise-level IS

- Clear positioning on a "system of systems" level of analysis, integrating people, task and technology aspects
- **Unique themes** include "global" perspective, boundary spanning (business and technology) and managing dependencies / side effects
- Many relevant contexts such as integration management, architectural coordination, transformation and complexity management
- Suitable for methodological diversity (descriptive, design, data-driven)
- Embracing various "related" domains such as EAM, Enterprise Modelling, IS management / governance, …
- Creation of (even more) relevant findings and skills, in particular in the context of platform economy, data sharing/sovereignty, customer self-service, IoT, cloud transformation, digital transformation, etc.

Robert Winter

Director robert.winter@unisg.ch

Institute of Information Management

University of St.Gallen Institute of Information Management Müller-Friedberg-Strasse 8 9000 St.Gallen

iwi.unisg.ch

References

- Aier, S., & Winter, R. (2009). Virtual Decoupling for IT/Business Alignment Conceptual Foundations, Architecture Design and Implementation Example.
 Business & Information Systems Engineering, 1(2), 150–163.
- Aier, S., & Winter, R. (2010). Fundamental Patterns for Enterprise Integration Services. International Journal of Service Science, Management, Engineering, and Technology 1(1): 33-49.
- Benbya, H., Leidner, D. & Preston, D. (2019). MISQ Research Curation on Information Systems Alignment. MIS Quarterly.
- Klimenko, R. & Winter, R. (2021). Corporate Agility Navigator: Guiding Organizations Through Their Agile Transformation. Controlling 33(5): 27-35.
- Murer, S., Bonati, B., & Furrer, F. J. (2010). Managed Evolution: A Strategy for Very Large Information Systems. Springer.
- Schilling, R.D., Aier, S., and Winter, R. 2019. Designing an Artifact for Informal Control in Enterprise Architecture Management, in: 40th International Conference on Information Systems (ICIS 2019). Munich, Germany.
- Schmid, M., Haki, K., Tanriverdi, H., Aier, S., & Winter, R. (2021). Platform over Market When is Joining a Platform Beneficial? 29th European Conference on Information Systems (ECIS 2021), A Virtual AIS Conference. <u>https://aisel.aisnet.org/ecis2021_rp/32/</u>
- Weiss, S., Aier, S. & Winter, R. (2013). Institutionalization and the Effectiveness of Enterprise Architecture Management. 34th International Conference on Information Systems (ICIS 2013). Milano, Italy.

