
24th International Conference on Enterprise Information Systems
26 April 2022

Crowdsourcing Software Development:
Silver Bullet or Lead Balloon

Brian Fitzgerald
Lero

The basic promise of crowdsourcing
software development is that high quality
software can be produced quickly and at
low cost by a large pool of self-selecting
experts

2

Overview

Introducing CSD In-Depth Case
Study of CSD
(from customer
perspective)

1 2

Theoretical
Model of CSD
tested with
large-scale
sample data

3

Conclusions

4

Introducing CSD

1

No matter who you are, most of the
smartest people work for someone else.

—Bill Joy

Crowdsourcing:
Leveraging Wisdom of the Crowd
§ Longitude Problem (1714)

§ Vox Populi (Galton 1907)

§ Amazon Mechanical Turk

§ InnoCentive

5

Positioning Crowdsourcing vs.
Outsourcing vs. Opensourcing*

Dimension Outsourcing Opensourcing Crowdsourcing

Locus of
Control

• Company
• IP protected

• Community
• IP open

• Company
• IP protected

Nature of
Workforce

• Known
• Narrow & deep

knowledge

• Unknown
• Broad & deep

knowledge

• Unknown
• Broad & deep

knowledge

Crowd
Motivation

• Extrinsic • Intrinsic • Extrinsic

Company
Motivation

• Resource saving • Innovation
• Market growth
• Commodification

• Resource saving
• Innovation

6
* Agerfalk P, Fitzgerald B, Stol K (2015) Software Outsourcing in the
Age of Open: Leveraging the Unknown Workforce. Springer

Expected Benefits from Crowdsourcing

Cost Reduction
§ Lower labour costs in different regions
§ Eliminates recruiting overhead

Faster Time-to-Market
§ ‘Follow-the-sun’ 24/7
§ Parallel decomposition of tasks

High Quality
§ Self-selecting experts with broad and deep knowledge
§ Linus’ Law: Given enough eyeballs, every bug is shallow

Creativity and Open Innovation
§ Go beyond internal fixed mindset

7

Case
study*

2

* Stol KJ & Fitzgerald B (2014) Two’s Company, Three’s a Crowd: A Case Study of Crowdsourcing
Software Development, Proceedings of 36th International Conference on Software Engineering
(ICSE Technical Track), Hyderabad, May 2014

Case: “Tech Platform Inc. (TPI)”

TPI: global player in cloud solutions
400 sales offices in 75 countries
50K employees

Crowdsourced project: “Titan”
Task: Porting a migration utility used by field
engineers from a stand-alone tool to a web
application (128 panels)

9

Testing the Wisdom of this Crowd

10

https://goo.gl/IKpgYi

https://goo.gl/IKpgYi

TopCoder.com
>1 million members from < 50K in 2004

but < 0.5% active developers

11

TopCoder.com
>1 million members from < 50K in 2004

but < 0.5% active developers

12

TopCoder.com
TopCoder Roles

Platform Specialist, Co-Pilot,
Crowd Contestants

TopCoder mantra
TopCoder does heavy lifting/process management
Customer is “conductor of world-wide talent pool”

“Software development cost reduction of 62%“
(TopCoder, Tech Crunch 2013)

13

TopCoder Contest Interface

Contest info

Contest Name

Prizes/Cost Detailed
description 14

Coordination: Task Decomposition
What software parts to crowdsource?
§ Least domain knowledge required

§ Self-contained

§ Scarce internal resources

The TC software development methodology comprises a number
of different competition types, organized in a number of
categories, as illustrated in Figure 1.

3.2 Methods and Analysis
The goal of our study was to investigate crowdsourcing in a soft-
ware development context from a crowdsourcing customer per-
spective, to better understand this process and the challenges as-
sociated with it. To that end, we conducted an in-depth case study
at the case company. Case study research is particularly suited to
study real-world phenomena that cannot be studied separately
from their context [87]. Case study research has become increas-
ingly popular as a method in software engineering research [68],
as it provides rich insights into contemporary phenomena (e.g.,
distributed development [36], open source software development
[61]). For this study we conducted a number of face-to-face, semi-
structured interviews with key informants who were involved with
the TC crowdsourcing initiative. These included the Divisional
CTO at the visited location, a software architect, a software de-
velopment manager, a program manager and a project manager.
Prior to the study, we developed an interview guide that was
based on the crowdsourcing themes discussed in Section 2. The
face-to-face interviews were conducted during three half-day
workshops on the premises of the company. In addition, we
conducted two teleconference interviews each involving two TPI
staff members who played key roles in the crowdsourcing process.
Interview sessions lasted between one and two hours each. During
the research process, we sent several early drafts of this paper to
key participants of the study—a form of member checking [68],
and this also provided opportunities to seek clarifications when
necessary. Data were analyzed using qualitative methods as
described by Seaman [73]. All interviews were transcribed,
resulting in 112 pages of text. The analysis consisted of coding the
transcripts using the six themes identified in Section 2.2 as seed
categories. The transcripts were analyzed in parallel by both
authors and several analytical memos were written. The memos
established an audit trail of the analysis, and facilitated a process
of peer debriefing for the researchers. Besides drawing from the
interview data, we also drew from a number of internal documents
prepared by the company, which facilitated a process of
triangulation among data sources. Other sources included
documentation on the crowdsourcing schedules, project
documentation that TPI stored on an internal wiki, and contest
information drawn from the TopCoder website. Further details of
the design and execution of our study are described in our study
protocol [76].

4. CROWDSOURCING AT TPI
The application which TPI selected for crowdsourcing was Titan,
a web application to be used by TPI field engineers when
migrating from one platform to another as part of a customer
engagement. Within TPI a technical decision was taken that future
development should use HTML5, and this was the technology
chosen for the front end, which was replacing the desktop
application. The back-end services were based on a similar
technology set used by the previous desktop-based solution. Thus,
TPI were keen to leverage HTML5 expertise from the large global
TC community. Figure 2 illustrates the breakdown of the
development work in terms of what was to be done by TPI, and
what was to be done by TopCoder. It should be noted that the
dimensions of the figure do not reflect the actual amount of work.
Given that a lot of TPI domain-specific knowledge is required for
back-end development, this is retained as part of the TPI
development responsibility.

Similarly in the front-end, topics such as migration planning,
importing and the scripting engine were retained for development
by TPI. The two activities that are part of the TC crowdsourced
development are asset modeling and automation testing. Modeling
refers to the arrays and switches that need to be migrated and thus
have to be modeled (i.e. created and configured) in the Titan
application. Automation testing complements unit and integration
testing which is designed by TPI developers, and refers to the
testing designed by QA to test the front-end GUI interaction with
the back-end. As can be seen in Figure 2, this development
activity will be carried out almost entirely by TC. The small
portion that will be developed by TPI involves a “Gold Standard”
which will be made available subsequently as a template for the
TC community to indicate how TPI would like automation testing
to be done. The following sub-sections draw on the framework in
Section 2.2 to discuss the TC crowdsourcing development for the
TPI web application.

Figure 2. Work decomposition between TPI and TC.

4.1 Task Decomposition
The choice as to what parts of the product were appropriate for
crowdsourcing was not entirely trivial for TPI. Code and
executables which were self-contained would be easier to merge
and hence were more suitable for crowdsourcing. However, if
code from TC had to be directly merged with code being
developed in-house, this would be more problematic. The decision
as to what work to crowdsource was primarily based on internal
resources (or lack thereof) and the amount of domain knowledge
required for a certain task. Tasks that required the least amount of
domain knowledge were deemed most suitable.

!"#$%"&'()%)*+",'

-).$/,'
!  "#$%&''
!  (')*+,#$-.&/-0')1
!  23*4&#+*#$3+1
1

-)0)%"#1),&'
!  ('5,')+)#1

%+6+.',5+)#11
!  277+58.91
!  :+7#1"$&#+71

(3';%1

(-#-.'<1
%-#-8-7+1

231-)0)%"#1),&'
!  =>1?3'#'#9,+1
!  @&*41>)#+3)+#1

2,,.&*-0')1A$&.%1
!  (')#+)#1(3+-0')1

45'6'78$,&),8,*)'
!  :+7#1"*+)-3&'71
!  A$<1@-*+1

!  ",+*&B*-0')1
!  ('5,')+)#1%+7&<)1

!  A$<1C$)#1

Figure 1. TopCoder competition types and phases (adapted
from Mao et al. [59] and TopCoder.com).

�!��������
�����

����������

�������� ��������� �������

���������

��������� 	��������

��������
���
����������$���"�

191

15

Coordination: Communication

Multiple interaction layers

TopCoder waterfall process à TPI agile process
Challenge to integrate TC deliverables into Sprints

TPI
• TC Program Manager
• Titan Program Manager
• TC Architect
• Titan Product Architect
• Tactical Scrum Team
• Normal Scrum Teams

TopCoder (TC)

• Account Manager

• Platform Specialist
• Co-Pilot
• Contestants

16

Table 1. Titan development phases and specifications.

Phase Panels Documents Pages
1 Dashboards 40 NA NA
2 Flagship product I 18 15 196
3 Flagship product II 33 19 543
4 Network devices 14 11 161
5 Legacy and third-party 23 17 131

TPI divided the project into five development phases, listed in
Table 1. The first dashboards phase was the front-end which
involved the high-level dashboard interface pages, e.g., for
customer creation, project creation and navigation. The next two
development phases involved configuration of TPI’s flagship
product. Following this, Phase 4 was concerned with the various
network devices which also form part of the migration
configuration. Finally, Phase 5 dealt with the low-end legacy
products and various third party solutions that also need to be
migrated. In order to minimize the modifications that would need
to be made to the TC code after delivery, TPI made the header and
footer browser code available to TC developers. This was to
ensure this standard format would be maintained by all TC
developers. For the Titan application, TPI’s policy was to only use
HTML5 where a feature was supported by all platforms to
increase portability. Initially, there was an expectation that the TC
community would deliver some innovative HTML5 code.
However, the TPI requirement that HTML5 features would have
to be supported by all browser platforms resulted in a very small
proportion of all potential HTML5 features being available for use
by TC developers. The expected innovation from the “crowd” was
thus precluded by the TPI specification.
In order to minimize integration effort later on, the architect had
wanted to let TC developers work against a real back-end core as
opposed to stub services. However, by the time development with
TC started, the core was not ready and stubs were used during
most development contests. Consequently, this integration effort
was pushed back to a later stage in the development process,
which was not ideal.

For traditional in-house development, TPI developers had
internalized a great deal of information in relation to coding
standards and templates, and technical specifications. However,
many of the coding standards and templates were documented
informally and not stored centrally on the internal wiki
installation. This scattering of information and URLs prevented it
from being packaged as a deliverable for TC developers. A great
deal of extra work was necessary to ensure that this information
was made explicit in the requirements specification for the
external TC developers. Most of the effort was related to the
technical specifications. Table 2 lists the number of documents
and the total number of pages of specifications written for each of
the five phases defined by TPI. The architect liaising with TC
described the situation as follows:

“It feels like we’ve produced a million specification documents,
but obviously we haven’t. The way we do specifications for
TopCoder is entirely different to how we do them internally.”

4.2 Coordination and Communication
From the TC perspective, the software development process
consists of a number of interrelated phases (see Figure 1 above).
While the TC process is essentially a waterfall one, an agile
development process, based on Scrum, was in use at TPI.
Synthesizing these different development processes was
problematic. TC development had to be assigned to a Scrum team

within TPI, and TC contributions needed to be subsequently
injected into the appropriate sprints. The architect summarized the
central problem as follows:

“We are an agile shop and we are used to changing our minds.
This can be a problem with TC when we tell them one thing in one
contest, but have changed our mind in the next contest.”

There were also quite a number of layers in the engagement
model between TC and TPI. Firstly at the TC end, a co-pilot
liaised between the TC developer community on the one hand,
and TPI personnel on the other hand. Furthermore, a platform
specialist and the TPI account manager were involved, effectively
overseeing the co-pilot and recommending changes at that level.
In this case, following some problems, a new co-pilot was
selected with a tendency to be more proactive than his prede-
cessor.

Within TPI, the choice of personnel to interact with the TC co-
pilot was a difficult decision. While TC would prefer a single
point of contact within the customer organization, there were
significant management and technical issues involved, thus
requiring senior people from TPI on both the management and
technical end. A senior TC program manager was appointed
specifically for all programs being developed with TC. This
manager ensured that management were aware of any scheduling
issues that could arise, for example, and also ensured that training
was provided. However, there was also a specific Titan program
manager, and thus there was inevitably some overlap between
both roles. On the technical side, a senior architect was allocated
to coordinate the TC development for the Titan project. This role
of TC liaison which had daily contact with the TC community
was considered to be problematic within TPI, given the
considerable pressure to answer questions which was also very
time consuming. There was some concern within TPI about
allocating such a senior resource to this liaison role given the
significant cost. The Software Development Manager described
the situation from a resource allocation perspective:

“To have a single point of contact for the project on our side, the
contact needs to have both technical skills and project
management skills to be able to manage the requirements,
competitions and questions from TopCoder technical community
members. It used a very valuable resource and in this project they
had to use up some time from other developers to address all the
questions coming back from TopCoder.”

At the initial stage, this liaison role involved answering questions
on the TC Forums. There was significant time pressure involved
since a time penalty applied if forum questions were not answered
in a timely fashion by TPI, which would mean that the original
committed delivery date for TC development would be pushed
out. Also, the architect estimated the time answering questions on
the TC Forums to be at least twice as long as would be the case
with internal development:

“There are a lot more questions than with internal development.
However, there is no informal communication mechanism. You
cannot yell at the person in the next cubicle and get the answer
very quickly.”

In contrast to distributed development which typically involves
other developers from the same organization, the only relationship
which tended to build over time was that with the TC co-pilot.
There was no real opportunity to build up a relationship with any
of the TC developers, as interaction was filtered through a number
of layers. Another structural coordination issue arose in that TPI
allocate architects to products, and the desire to get the TC project

192

128 62 1031

It feels like we’ve produced a million specification
documents, but obviously we haven’t. The way we
do specifications for TopCoder is entirely different
to how we do them internally. –TPI Architect

17

Coordination: Communication

Coordination: Lack of
Response/Potential IP Loss
Contest failure due to lack of submissions

53 contests but just 84 submissions

Two’s company, 1.6 is a crowd…

Table 3. Raised, Resolved, Outstanding and Awaiting Issues.

Issue status Number
Raised 506
- Resolved - 367
- Outstanding - 139

QA issues towards the back-end of the development process, after
coding has been completed. As the Development Manager
expressed it:

“Crowdsourcing focuses on requirements and relaxes the quality
process at the onset of the project, so now all the emphasis on
managing the quality comes at the QA cycles later in the project,
and that tends to be more expensive

The number of defects identified was quite significant. Table 3
shows the number of issues raised, resolved and outstanding at the
time of our study. While many issues were of a cosmetic nature,
and therefore fairly trivial, the sheer volume of issues required
considerable time and attention from developers within TPI.
Furthermore, as more contests were finished and software
delivered back to TPI, the rate of new issues was increasing as
well. Figure 4 shows this trend over time, and suggests a growing
pressure on TPI developers to address these issues.

There was also a problem with lack of continuity. TC developers
do not remain idle at the end of competitions, and may thus not be
free to continue with TPI development in subsequent tasks. In
fact, TPI experienced problems with bugs which had previously
been identified being re-introduced to code after it went back for
further development with TC. Partly this was due to how TC
developers used the source code control tool. This added to the
critical perception expressed by the Divisional CTO, when he
contrasted it with the investment one would be prepared to make
when using remote development teams for development, in
describing crowdsourcing as being “a fleeting relationship.”

Given that the combination of technical and specific domain
expertise was considered by TPI to be quite rare (based on
experience in recruiting developers), TPI took some initiatives to
improve the quality of crowdsourced contributions. For example,
a virtual machine with a sample core application was made
available as an image that could easily be downloaded and run.
This was used by the TC development community both in
development and as a final test or demonstrator for code they
developed. Prior to this, TC code testing was done with stubbed-
out service calls to the back-end, but there was a concern within
TPI that TC code would not necessarily run smoothly when
connected fully to the back-end. When the code for the initial
HTML5 high-level panel applications was produced by TC, there
were some quality issues, for instance, the same header was
repeated in every file. TPI took this code and further developed it

to a “Gold Standard,” at the level required by TPI. This was
delivered back to the TC community as a template for future
development. This tactic was extended to prepare sample code for
a web application that could act as a template for the TC
community. This included a parent project object model (build
script), source code compliant with all TPI code standards, unit
and integration tests, automation tests, and instructions for
deployment and setup.

4.5 Knowledge and Intellectual Property
The “fleeting relationship” mentioned earlier also has
consequences for knowledge management and IP. According to
the architect involved in the project, the lack of depth in the
relationship with contestants meant that:

“there is a limited amount of carry-over knowledge. We will get a
few contestants that will participate in multiple contests, but they
won’t build up domain knowledge in the way that an internal
person would.”

Also, given that there is no single supplier as would be the case in
a traditional outsourcing scenario, any intellectual property
relating to specifications and product knowledge is more widely
exposed simply by virtue of its being viewed by the ‘crowd’ of
potential developers. Table 4 shows the total number of
registrants, and the total number of submissions per contest type
(see Figure 1). The table shows that there were considerable
numbers of potential participants (each of whom would have
access to the contest specifications), but that the number of
submissions was significantly lower – almost 90% of those
registered for a contest did not actually submit anything to that
contest. In other words, making detailed product and specification
information available, which is necessary to achieve the benefit of
tapping into the crowd’s wisdom and creativity, seems (in this
case) not to be as fruitful as one would hope given the limited
numbers of submissions.
TPI chose a pseudonym to disguise their participation on the TC
platform. This was to obfuscate the fact that the work was for the
TPI platform as it was felt that developers from competing
organizations might be working for TC in their spare time. TPI
took advantage of the standard Competition Confidentiality
Agreement (CCA) which TC use with their development
community. TPI will not do business with certain countries, for
example, and this can be policed through the CCA which
identifies the home location of TC developers. TPI were still
concerned about the extent to which proprietary information may
be exposed in TC competitions. To address this, TPI plan to
identify the “Secret Sauce” which should not be shared without
very careful consideration. This would include the source code for
the flagship and legacy applications, libraries and binaries from
other TPI business units, performance calculation formulae,
hardware specifications and business rules (e.g., Drools).

Table 4. Total number of registrants and submissions per
contest type.

Type Registrants Submissions %Sub/Reg
Copilot 13 6 46%
Studio 34 7 21%
Architecture 90 12 13%
Assembly 476 36 8%
Test Suite 8 1 13%
UI Prototype 99 22 22%
Total 720 84 12%

0"

10"

20"

30"

40"

50"

60"

70"

1" 2" 3" 4" 5" 6" 7" 8" 9"

Figure 4. Trend of new issues raised (last 9 weeks).

194

18

IP Loss: Unknown workforce - 720 registrants
saw specifications

Quality Assurance

§ TC Waterfall approach pushes error
identification later in life-cycle

§ “Fleeting relationship”

§ Lack of developer continuity across contests –
recurrence of same bugs

§ No domain knowledge built up by developers

19

TopCoder warranty periods unsuitable

5 days to accept/reject deliverable
But cannot accept/reject part of deliverable

Tendency to accept to not deter contestants

Additional 30-day warranty period
But fast changing code base – not useful to integrate new
fixes after 30 days

20

Planning & Scheduling

Counting
the Cost!

1st Prize
-Suggested by Co-Pilot

-Varied from $600 to $2,400

$1,000

Total Cost
1st $1,000

22

Total Cost
1st $1,000
2nd $500

$1,500

2nd Prize
50% of first prize:

$500
23

Total Cost
1st $1,000
2nd $500

R.Bo. $200

$1,700

Reliability
Bonus

Up to 20% of first prize:

$200
24

Total Cost
1st $1,000
2nd $500

R.Bo. $200
DR $450

$2,150

Digital Run
45% of first prize
1 Point = $1.00

$450
25

Total Cost
1st $1,000
2nd $500

R.Bo. $200
DR $450

Spec.R $50

$2,200

Spec.
Review

$50
26

Total Cost
1st $1,000
2nd $500

R.Bo. $200
DR $450

Spec.R $50
Rev.B. $800

$3,000

Review
Board

$800
27

Total Cost
1st $1,000
2nd $500

R.Bo. $200
DR $450

Spec.R $50
Rel.B. $800

CP $600

$3,600

Co-Pilot
Fees:

$600
28

Total Cost
1st $1,000
2nd $500

R.bo. $200
DR $450

Spec.R $50
Rel.B. $800

CP $600

Subtotal $3,600
TC multiplier x 2

Price of 1 contest:

$7,200

TC
Commission

= total of
above

29

Total Cost
1st $1,000

2nd $500
R.bo. $200

DR $450
Spec.R $50

Rev.B. $800
CP $600

Subtotal $3,600
TC multiplier x 2

Price of 1
contest: $7,200

Platform “Cockpit” Fees
for TPI:

$30,000
per month*

* Varies per customer – as low as $3,000
per ‘cockpit seat’

30

Cost, Time & Quality for 128 Panels

Cost: $650,000
Plus extra internal overhead in preparing
specs and coordination effort

Time: 215 calendar days
(695 contest days)

Quality: 506 bug issues

31

Wisdom of Previous Crowds
Prior ‘Academic’ Crowd

Cost (US$) $211,000

Time 145 days

Quality (# bugs) 96

Prior ‘Practitioner’ Crowd

Cost (US$) $378,000

Time 174 days

Quality (# bugs) 158

32

Theoretical Model
for CSD*

3

* Stol, K, Caglayan, B and Fitzgerald, B (2018) Competition-Based Crowdsourcing
Software Development: A Multi-Method Study from a Customer Perspective, IEEE
Transactions on Software Engineering, DOI: 10.1109/TSE.2017.2774297
OPEN ACCESS!

Data Source for Model Construction

34

§ Case study

§ Crowdsourcing literature

§ Topcoder platform API

Model Variables

35

Theoretical Model

H1 Running competitions in parallel is negatively associated with crowd interest

H2 Competition reward is positively associated with increased crowd interest

H3 Competition duration is positively associated with crowd interest

H4 Interest from the crowd is positively associated with participation

H5 ‘Crowd killer’ registration is negatively associated with participation

36

Competition
Duration

Competition
Reward

Competition
Parallelism

Crowd
Interest

Crowd
Participation

Number of
Technologies

Demand for
Workforce

Supply of
Workforce

Crowd
Killer

Registration

H4: +

H3: +

H2: +

H5: -

control variables

H1: -

Data Source for Model Testing

37

§ 13,602 (completed) competitions on the
Topcoder platform (2007-2016)

§ 20,747 Topcoder crowd members
involved

Evaluating Model Fit (SEM)

✗2 Yuan-Bentler corrected 7.688
(p = .104)

RMSEA 0.067

Comparative Fit Index (CFI) 0.993

38

Competition
Duration

Competition
Reward

Competition
Parallelism

Crowd
Interest

Crowd
Participation

Number of
Technologies

Demand for
Workforce

Supply of
Workforce

Crowd
Killer

Registration

H4:
+.94**

H3:
+.016

H2: +
.511

H5: -.068**

Control Variables

H1: -.041**

-.055*
.093**

-.048**-.104**
.133**

Model Fit Indexes

* p < 0.05, ** p < 0.001

Conclusions

4

Conclusions
§ Costly++

§ Quality issues

Waterfall competitions – late detection of errors

No accretion of domain knowledge - fleeting relationship

§ Crowd may be very small

Running too many contests in parallel reduces crowd size

Increasing price or duration makes no difference

Beware of Crowdkillers

§ Crowdsourcing platforms lack transparency and recombination
(Secret Sauce in Open Source)

40

Thank You

