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Inspecting Al Like Engineers

Human-Engineered System: Built of known components Modern Al: Function of components unknown

(THE SHORT STIRLING Four 1,600 h.p. Bristol Hercules motors, H.D. Hydromatic airscrews)

A Gunner's seat and canvas scresn L Alr inlet to Gallay heater. Y. Worm for raising and lowering under- b, Engister's compurtment. (Ao in front
B, Parachute stowage. M. Ol cooler inlets arriage of 5par) Note wing reinsoreing
C. Emergency hatch N (exhaust to Gallay heater).  Z. Trunnion support for worm (Y). k. Armoured Sulkhesd (pioc's compirtmant).
D. Recognition kghts. P. +'s comparement. 5 Two seits oo ladder lesding to midshps  m. Bun
B Saairway Q twrret o Fraling aarial towlead
F.  Dual comtrols. A Water box ch b Flares. p Bomb doors and operating mechanism.
G. o"g.n stowage. 5. Astro hatch 4. Esnn lvatory.
H able. T . loo) . 1 3l wheel retracting gear (electric and
3, War air condult U. Onxygen bottles.
K. Gallay steassair heatar, V. Antiicer fuid tank {for slinger-rings). 1. nu ltlin mass balance H

Fuel oqualiser valve. £ jung door (bulkhesd fee corsarvin

X." Electric motor flap drive. warm cabin 3ir)

Jederarriage doors
Underarriage tie beam
and operating rods for
doors.

Beam buit Into wing o
arry motor

Dosts and racks of wig
bomb calk.

Fuel tank locating spigots.
Fuel ank n leadiog ed
A wing spar (motor

aremome in frost
of oil tank

SPAN: 99t 1in
LENGTH: &7 fc. 3in.
HEIGHT: 22/t % in.
WING AREA: 1,460 5q. fe.
ASPECT RATIO: 672




Does my Al model follow the ABCDE rule ?
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To trust or not to trust
AL that is the question

We need to to understand
the “Black Box” at
component-level




Explainable Al Research

Relevance-Based: Where does Al look at ? Concept-Based: Which concepts / rules does Al use?
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Model-based: What does model represent internally ?
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First Wave of XAl: "Understand Prediction"



First Wave of Explainable Al

: . Ribeiro'16 Bach'15 Zeiler'14
Zntgrat ! LIME LRP Zhou16  Occlusion
GAP
‘ool tobio” A
"pool table"

Black
Box

Zhang'16
Excitation BP

Landecker'13
Contrib Prop

Selvaraju'17
Grad-CAM

Symonian'13
Gradient

Springenberg'14
Guided BP

Sundarajan'17
Int Grad

Kindermanns'17

Fong'17 PatternNet
M Perturb Zeiler'14 T
Deconv
explain:
"heatmap”
— e
s
Lungberg'17
SHAP Shrikumar'17
DeepLIFT

Montavon'17
Deep Taylor



Layer-wise Relevance Propagation (LRP)
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zjk measures how much has j contributed to activation of k

(Bach et al. 2015)



Layer-wise Relevance Propagation (LRP)
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Layer-wise Relevance Propagation (LRP)

'f/

Layer-wise rele

ZiRi —

ConvolutionalNN ey
ages
Name |Formula Usage DTD 9
LRP-0[7] |R; = Z %]{k upper layers | v/ nt & faithful
0,7 27
LRP-¢[7] |R, Z — %k R middle layers| v | ince values for
©+ Lo 951k ents of NN
LRP-y |R, Z = ""+’“f+") lower layers | v
o Zolu s+ 70 ) ower ayers able to non- :
LRP-a 3 [7]| R, Z( aju m) (aJqu)— ) Re| lower layers | x* tiable Ia;_/ers (no :
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‘ first layer
w?-rule [36]|R; = 5 R; dy v L
; Z,- wij (R distribution rule
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2>-rule 3] Z Yo Tiwij — I u - /1,'11':] / (pixels) f heasure Z]k)?
(* DTD mterpretati()u only for the case a = 1,3 = 0.)

(Montavon et al. 2017)



Layer-wise Relevance Propagation (LRP)

LSTM

Layer-wise re

Zz’Ri:~

Legend

feedforward data flow
recurrent data flow

feedforward weights
recurrent weights

branching point

multiplication

sum over all inputs

gate activation function
(usually sigmoid)

input activation function
(usually tanh or sigmoid)

output activation function
(usually tanh or sigmoid)

Iy,

LRP-all
(Arras et al. 2017)

Iy,

N\, cell output =
output . o . recurrent R] Rk
A recurrent R — O
/- 9=
s % R;
"6 (5)—? ’
LSTM cell j Ol LRP-prop
output gate h (Ding et al. 2017)
input Rk
recurrent
< o~ Ry
W ¢ V/
) Cc
w recurrent H =z R
forget gate . v} ,’ (ARREE
input ! +§ B Rg=:: Ry
z > J
input gate h
inbut LRP-half
(Arjona-Medina et al. 2018)
N A J By
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input ™. - recurrent
# cellinput R _
=05 Ry,
R, Rg=05 Ry

...................................

vantages
fficient & faithful

blevance values for
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est measure zjk)?

(Arras et al. 2019)



Layer-wise Relevance Propagation (LRP)

Layer-wise rele

SR =...

Transformers

LayerNorm(x) =

RMSNorm(x) =

T
A = softmax (g)
Vdj

Vit B O=A-V

softmax;(X) = =——

Zk ek

e.’I,'j

Proposition 3.4 Decomposing LayerNorm or k

a Taylor decomposition (4) with reference poi

Proposition 3.3 Decomposing matrix multiplication with
a sequential application of the uniform rule (14) and the
g-rule (8) yields the following relevance propagation rule:

R
I-10A ) — R1a ip
B8 =Y AiVyg 09

relevance propagation rule:

R =R

bias or distributing the bias uniformly) yields the identity

(19)

ant & faithful

ance values for
nents of NN

-able to non- :
tiable layers (no
1t shattering)

edistribution rule
jht one (i.e. how
mneasure zjk)?

(Achtibat et al. 2024)



What Can We Do ?

Debug models
(Lapuschkin et al. Nat Comm, 2019)

New insights
(Wong et al. Nature, 2023)
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"BLUE XAI"
(Biecek & Samek, ICML, 2024)

Human-values oriented
Responsible models
Legal issues

Trust in predictions
Ethical issues

Trust in LLMs
(Achtibat et al., ICML, 2024)

Question: In what country is Normandy located?
Answer: France

AttnLRP

The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were
the people who in the 10th and 11th centuries gave their name to Normandy,
a region in . They were descended from Norse ("Norman” comes from
"Norseman”) raiders and pirates from Denmark, Iceland and Norway who, under
their leader Rollo, agreed to swear fealty to King Charles I1I of West Francia.
Through generations of assimilation and mixing with the native Frankish and
Roman-Gaulish populations, their descendants would gradually merge with the
Carolingian-based cultures of West Francia. The distinct cultural and ethnic
identity of the Normans emerged initially in the first half of the 10th century,
and it continued to evolve over the succeeding centuries.




Second Wave of XAl: "Understand Model"



Interpreting the Model
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Interpreting the Model

32 29 5 4 3 30 28 7 6 67

nature Vol 435|23 June 2005|doi:10.1038/nature03687

LETTERS

Invariant visual representation by single neurons in
the human brain

R. Quian Qunroga +, L. Reddy', G. Kreiman®, C. Koch' & I. Fried>"

16



Interpreting the Model

32 29 5 4 3 30 28

~

6 67

nature Vol 435|23 June 2005|doi:10.1038/nature03687

LET

Do neural networks have a Jennifer Aniston neuron ?

Invarq
the human brain

R. Quian Qunroga +, L. Reddy', G. Kreiman®, C. Koch' & I. Fried>"

—
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Activation Maximization

Find the input pattern that
maximizes class probability.

simple regularizer
(Simonyan et al. 2013)

max po (we | 2) + AQ(2)

18



Data-Based Activation Maximization

Find training samples, Most relevant training
which maximially samples

activate (output)
neuron.

(Chen et al., 2020) data-based activation maximization 19



Explainability 2.0: Where, What and How

nature machine intelligence

Article https://doi.org/10.1038/s42256-023-00711-8

From attribution maps to human-
understandable explanations through
ConceptRelevance Propagation
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Explainability 2.0: Where, What and How

K_nom Hidden ( = g 5 8 \
layers encode d / R fi} o
semantic concepts. | TETT 7 f} X e
lVigms =&
A 4 O
X / O
'V/ O

Goal: Explain in terms of
these concepts.



Explainability 2.0: Where, What and How

SKann: Hidden : " F— 00—
-layers encode 4 / h C' O o
'semantic concepts. Heatmap 7 ( S o O pape
¢ J / W% O N
_ o o
~ 4 O
Which neurons are relevant ? £ 7 O

—>LRP 'V



Explainability 2.0: Where, What and How

. Known: Hidden
:layers encode
:.semantic concepts.

Which neurons are relevant ?
—> LRP

What are they encoding ?
—> Activation Maximization

Concept: "colourful feathers"

Concept: "colourful, bushy feathers"

1=
Heatmap g / B 5 AN
f ¥
gy
A /j /)

Concept: "wood (horizontal)" / V Concept: "crossed bars"

!\\ —

Concept: "animal on branch"

© Bee
O eater

=
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Concept Relevance Propagation (CRP)

input conditional heatmap masked reference samples Concept 2
- o3 concept 1 \
é 2— -,;,‘ ) - O \
= g— N O ‘ bird
E = A O Q cat
: : . Oh
T—: ') _;: 7 O O orse
Ry 1 - cow
O
3 i O
o * - concept 3
B o et i P ' Step 1: Find relevant concepts
channels - 8 :’-‘ . .
W20 WS Z > : | Step 2: Compute conditional explanation (where)
M 130 19 g A }
i Meter 3] - ¢ | Step 3: Visualize relevant samples (what)




Concept Composition

features.24 features.28 output

features.26

channel 162: colorful feathers (2.6%)
[

s &R B o’
) w1

channel 506: colorful, bushy feathers (5.1%)
—_N -

8.7%

'
5.1%

2 “channel 102: animal on branch (100%) Bee Eater

— % N = ol

\\ N S B 4+
& }_ b,
W . *,J'
channel 54: horizontal bar (1.2% o 28 e
- (L2%) channel 51: horizontal bar (3.8%) l > & \'~

R L e
N e ~. -
A . 1.2% : A\E i

channel 118 brown, knobby (0. 8"0

relevance flow

c A ' Layer-wise relevance conservation
l +1
SiRi=- . =R =, RV = = @)




Identifying Clever Hans

mput

Prediction: swimming trunk

Relevant concepts: skin,
body, hair, water

conditional heatmap

heatmap

concept atlas

2222 22 44
g I 389 I 1871 other

< Il st  2nd most rel.

channel 389 channel 44 channel 22 channel 222

channel 187

R(x|y) = 3.9%
R(xy) = 3.7%
R(x|y) ;/
Bixly) = 2.6%

R(x|y) = 2.4%

m 1sk9d Ief()ren(‘e samples (most relevant)

unys Jo1j
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Third Wave of XAl: "Understand Everything"



SemanticLens

Mechanistic understanding and validation of large Al models
with SemanticLens

Maximilian Dreyer'* Jim Berend'* Tobias Labarta! Johanna Vielhaben'
Thomas Wiegand!>®  Sebastian Lapuschkin’ Wojciech Samek!-2:3
'Fraunhofer Heinrich Hertz Institute ~ 2Technische Universitit Berlin
SBIFOLD - Berlin Institute for the Foundations of Learning and Data

{wojciech.samek,sebastian.lapuschkin}@hhi.fraunhofer.de

https://arxiv.org/pdf/2501.05398



Technical systems designed by humans

Technical systems designed
by humans

- constructed step by step
- modular

- each component serving a
o g waaia s ‘%Wi specific, well-understood function

- can be validated and certified




What Happens Inside the Model?

incomprehensible

feature space

¢ thousands of neurons
e unstructured
» no description

“owl” (98.0%)
“lay” (01%)
“junco” (0.09%)

predictions



What Happens Inside the Model?

incomprehensible understandable

Idea: Transform feature space semantic space S Q Ssearch
model into
comprehensible form.

ee Describe

» Compare

A Audit Alignment

g? Evaluate Interpretability

“owl” (98.0%)
“jay” (01%)
“junco” (0.09%)

predictions



SemanticLens

© Describing the Role of Components

concept [
component Q) ——> exampz s U2

By collecting highly activating data samples + CRP.

concept examples

concept examples

incomprehensible
feature space

concept
examples

collection components
O[10] |0
0|0 |0
O[O |O
O O ) O prediction
OJlo) (O
DATASET BLACK BOX Al MODEL M

prediction y
“owl” (98.0%)
“jay” (0.1%)
“junco” (0.09%)

PREDICTIONS



SemanticLens

© Describing the Role of Components

component Q) ——>

concept (=
examples U

By collecting highly activating data samples + CRP.

concept examples

concept examples

Model
Data
incomprehensible
feature space
concept
examples
components
OO O prediction y
|0 |O “owl” (98.0%)
Ol|10 - @) “jay” (0.1%)
Ol|10 O|| prediction “junco” (0.09%)
OflO] (O
DATASET BLACK BOX Al MODEL M PREDICTIONS



SemanticLens

@ Describing the Role of Components

component Q y  concept

examples U

incomprehensible
feature space

® Semantic Embedding

concept S semantic
examples embeddings D

Via Foundation Model as Semantic Domain Expert:

concept semantic
examples FOUNDATION embeddings

MODEL ‘9< HED

General Knowledge: Medical Domain:

« CLIP + WhyLesion-CLIP

« Florence ¢ CXR-CLIP ;

¢ ® . collection com ns
OO @) prediction y
©O]|O| (O “owl” (98.0%)
Ol(O] O “iay” (0.1%)
Ol|1O] O]l prediction “junco” (0.09%)
OO |O

DATASET BLACK BOX Al MODEL M PREDICTIONS

No need for human in the loop anymore




SemanticLens Model

@ Describing the Role of Components . Data

component Q y  concept

examples U

incomprehensible

feature space | Interpretation

® Semantic Embedding

concept S semantic
examples embeddings D

Via Foundation Model as Semantic Domain Expert:

concept semantic
examples FOUNDATION embeddings

MODEL ‘9< HED

General Knowledge: Medical Domain:

« CLIP + WhyLesion-CLIP

« Florence ¢ CXR-CLIP com qis

¢ ® . collection J
OO @) prediction y
©O]|O| (O “owl” (98.0%)
Ol|10] O “iay” (0.1%)
Ol|1O] O]l prediction “junco” (0.09%)
OO |O

DATASET BLACK BOX Al MODEL M PREDICTIONS

No need for human in the loop anymore




SemanticLens

© Describing the Role of Components

3 concept .
component Q examples .‘t

©® Semantic Embedding

semantic
embeddings D

concept
examples

© Connect with Concept Relevance

semantic relevance
embeddings ID <> scores D

Retrieve component-level relevance scores with CRP for:

« output predictions

D = |O] ¢— “owr" (98.0%)

« upper-level components

D = (O] «—{0) ~ crmD

incomprehensible
feature space

concep t semantic
exgmp[es FOUNDATION embeddings

bMODEL 0 D
CI:I:D

collection components relevance R
‘O O O propagation
O[O O
oo O
O|O|l " [Of prediction
Of|1O] |O

DATASET

BLACK BOX Al MODEL M

prediction y
“owl” (98.0%)
“jay” (0.1%)

“junco” (0.09%)

PREDICTIONS



SemanticLens

© Describing the Role of Components

concept [
component O ———> examples 2

©® Semantic Embedding

concept . semantic
examples embeddings o

© Connect with Concept Relevance

semantic relevance
embeddings ID <> scores D

Retrieve component-level relevance scores with CRP for:

« output predictions

. @ e “owl” (98.0%)

« upper-level components

@D = (0] «—{O] ~ D

/ T v\>I;rediction
I

Interpretation

incomprehensible
feature space

concept E semantic
examples FOUNDATION embedd,ngs

8-
CEED

collection components relevance R
llle] Ol propagation prediction y
©O||0] <O “owl” (98.0%)
Of|0] O “jay” (01%)
elle; O|| prediction “junco” (0.09%)
OJ|O] |O
DATASET BLACK BOX Al MODEL M PREDICTIONS



SemanticLens: What Can We do ?

understandable
semantic spac{e S Q Search
Describe
e
Audit Al |

" Evaluate Interpretabllity



Search: Finding the Needle in the Haystack

find artefact-related neurons concept examples £
Q “watermark”

of most aligned
semantic :ambeddings

» N

g [7e00]
find specifc knowledge-related neurons
Q “bioluminescence”

_{.‘
enis

S NO|
Worn

alage

neuron numoer

Note: CLIP models allow to measure
similarity between image embeddings
(here: neuron) and text embeddings
(here: query).



SemanticLens: What Can We do ?

understandable
semantic space S

Search
o .
ee Describe

Compare

Audit Allanment

" Evaluate Interpretabllity



Describe: What Knowledge (does not) Exists ?

b Structure knowledge in semantic space

Also here we measure similarity between
image embeddings (here: neuron) and

Each point
corresponds to the
semantic embedding 19

wheels

of a neuron. vaog is the > text embeddings (here: label from a
best latelfor L0 o DU vocabulary of labels).

peg (text texture /s

» 2
o o [Ner camera

reh
boat 1 EHLYE ¥

1/ bridg: >
sea

<%

expectationy - /4385

the dark
matter

coloured by alignment to

reptile



SemanticLens: What Can We do ?

understandable
semantic space S

A Audit Alignment

" Evaluate Interpretabllity



A Tool for Auditing

1 define concepts for detecting Ox

2 evaluate alignment of neurons

alignment to spurious concepts

valid concepts:

spurious concepts:

large muscular body grassland
curved horns sky

hooves tree

thick neck water

short, rough fur grain, straw
soft fur cart

long fur wheel

brown coat mud, dirt
black coat person

white coat wooden

strong legs
long tail
wide muzzle

/

N
o

problematic

relevance score
of neuron

N2
.—cart (42%)

Y
alignment to valid concepts

o @
not

7

safe

understood

o’ farved gv)
¢ ﬁ Py
°

short, rough fur (61%)

spurious

the dark
matter

Note: Size of circle shows the “relevance” of this concept.



A Tool for Auditing

. . unexpected
a“gnment tO SpUFIOUS COnceptS representations
N problematic Indian person used in Ox data other affected classes
° .
palm tree (4%)
1
relevance score
of neuron
® @-cart (42%)
o
]
(o] ~
° alignment to valid concepts
curved
(] horns (484 ¢
o @ L
not
understood safe

short, rough fur (61%)

manual inspection
of concepts

For concepts which we do not understand (i.e., dark matter) we can go back to data for manual inspection.



A Tool for Auditing

naveoctoad

alignment to spurious concepts
™ problemati Understand the role of concepts in decision-making other affected classes
o
p'a Im tree (4%) attribution graph for Ox detection
relevance score
of neuron butcher shop
® GS-cart (422 E—
o
o
—~> Components & Data
® | o conce
° alignment to valid concepts E
Ox
curved
o horns ]
o @O ° importance
not
understood safe no label
short, rough fur (61%) layer 2 layer 3

manual inspection
of concepts



Alignment to expected concepts

A Tool for Auditing

classes that rely on unexpected concepts classes that rely on expected concepts

used for shovel sandal steel drum screwdriver sports car brown bear

#315

<+ 1 high
each circle corresponds the larger, the more 9

0.10 1 to a neuron - / relevant

0.05 A 1

0.00 1 é

-0.05 1 ,) F 1 - low

:
T

v

T T T T T T T T T T T T T T T T T T T T T T T T T T

- e\ e\ e( o S el el e .30 1 e ot 2 20 x(@ \\ Q e
eCh (&' oV o d W 36\ &€ 0 Xy 20° LCLIR g 00 e S NN
O o \ O e O @ ‘5\30‘03 <€2 “\b\)\a o 7—9'(0«“ o® e

R\ (‘ (\S )
s‘ee ¢\C\° \(\o‘\e sc( W geet 90 6"’ 0¥ " (\‘
©®

ImageNet class



Audit Alignment: Medical Case

a Defining concepts for melanoma detection: ABCDE rule

valid concepts: spurious concepts:
A. Asymmetry

e asymmetric lesion, ... hairs

B. Border hairy

e ragged border, ... band-aid

c-bclzl:rwhite veil blue-coloured band-aid

Melanoma *brue- b oo .

D. Diameter red skin

e large lesion, ... measurement scale bar
E. Evolving ruler

e crusty surface, ... vignetting
Other (Regular) le ink

e even border, ... purpie in
Other (Irregular) skin marker

e white or yellowish
Other (Regular) structures, ...



Audit Alignment: Medical Case

vascular lesion (Other)

regular dark streaks (Other)

red skin (Spurious)

regression structures (A)

atypical dots or globules (A)

white or yellowish structures (Other)
glomerular blood vessels (Other)

blue coloured band-aid or patch (Spurious)
white streaks (Other)

capillary lesion (Other)

white dots (Other)

irregular dark streaks (A)

scab, scabbed (Other)

white scar-like areas (Other)
actinic keratosis (Other)
measurement scale bar (Spurious)

Other
mm Melanoma

L)

0?1 0?2 0.3

Relevance score

0.0



From Inspecting to Debugging

<= next iteration

Identification of Model Weakness

@) Explanation Embedding . .
Input 1mages

L

outliers

*(']nster

heatmaps
7 £}

scales
with #=samples

() Concept Embedding
CRP concept visualization

collect top reference samples

Artifact Labeling & Loca]izatione

® Finding Artifact Direction

Va L ©@
°® o @ CAV ¢ o
°. o ! e® o
° o0 ¢
.. [ ] ° -"
clean artifact

samples l samples

® Localizing Artifact

CAV  extracted
heatmap artifact

.

input

Model Evaluation

® Poisoning Dataset

clean

‘C

oisoned

input

® Artifact Relevance

heatmap

PR—

-

T

R(%)

A

Model Correction

® Artifact Unlearning

heatmap

heatmap

)

vanilla

.

corrected

[Pahde et al. 2023]



SemanticLens: What Can We do ?

understandable
semantic space S reh
i
Describe
» Compare

Audit Allanment

" Evaluate Interpretabllity



Compare: Identify Common and Unique Knowledge

What concepts are shared between two models, and which are unique to each one?

Chinese text —>* . ey ® ResNet50v2

£ A | R - ) e ® ResNet50
- saafhe ‘ abstract fur

4;" ’. texture

bird-like
concepts

Note: Comparison can be done because components of different models maps into the same semantic space.



Compare: Identify Common and Unique Knowledge

different training recipes different model architectures

1.00 1.0

ResNet50
block_3

ResNet50v2

block_3 0.95

ResNet50

block_2
0.90 -

Re;'rggisg ResNet34
- 8 block_3
0.85 g
% ResNet34
ResNet50.a1 P block 2
block_3 080 2
@ VGG-13 (BN)
2. features.29
0.75 2
ResNet50d.al Q'* VGG-13
block_3 features.23
0.70
VGG-16 (BN)
features.42
ResNet50d.a2
block_3 0.65

VGG-16
features.29

N, ¢
M

Auepwis 19s 1deouoo

*



SemanticLens: What Can We do ?

understandable
semantic space S
H




Evaluating Component Interpretability

clarity polysemanticity similarity
per concept @ per concept @ between two concepts &

how clear i n ? .
ow clear is a concept semantic

B representation

how polysemantic is a concept? how similar are concepts?




Evaluating Component Interpretability

well-trained, large CNNs have interpretable components

number of neurons: O 512 O1024 O 2048 \/

70 - ResNet50 . 20
ResNet50v2
L 65 ResNet50d.a2 C .
< 80
> o
o VGG-13 (BN) ‘ -
o 60 - \. VGG-13 ResNet50d.al =
S VGG-16 o
5 ‘\ ResNet18 70 ¢
. . esie

§ 55 {Vrmedum " (g @ vGG-16 (BN) o
= ]
)

S ViT-large , - 60 2‘
O 50 A . ResNet34 8.
(@]

(&)

45 | ViT:small @
J ResNet34.al - 50
4 ||

T T T

30 35 40 45 50 55
T concept clarity (%)

ViTs have no inherently intepretable components



Next Steps: Component-Level Understanding of LLMs

Input Prompt: 0
Mike Tyson| is a/firefighter|and
. a paramedicwith the New York
5

City Fire Department.
/Q:(What has he worked as7]
' *Helsaho,\('r/ hter

: 10
i Task heads encode instructions

-~ What is his occupation?

25

iParametric heads encode attributes

= occupation: boxer 30
- birthdate: 30 June 1966
= birthplace: Brooklyn

In-Context Heads
« Parametric Heads

e Retrieval (In-Context) Heads W Task Relevance
e Task (In-Context) Heads

o e
.
.
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o
oo
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5 10
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L
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15

20

| Retrieval Relevance

e

i
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a) Execute instructions in another prompt

itch instruction
(What has he worked as?| - 000

Margaret Mitchell was born in Geogiaj
- She is a novelist

\hke Tyson isa ﬁreﬁghter and a paramedlc =]

1941
H S A ] ramedi

c) Overwrite entities’ attributes

Mike Tyson : A T \
Q: What is the occupation of Albert Einstein @
- He is a boxer




Future Work
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Toolboxes Q

Benchmarking;:

@UANTUQ SemanticlLens
& Q_) https://github.com/jim-berend/semanticlens
https://github.com/understandable-machine-intelligence-lab/Quantus
Benchmarking:
A) CLEVR-XAI CRP
: CONCEPT
zennit m . ﬂ

RELEVANCE
https://github.com/ahmedmagdiosman/clevr-xai Zennlt—crp

PROPAGATION

https://github.com/chr5tphr/zennit

o o https://github.com/rachtibat/zennit-crp
1NNvestigate
Y. e ,
https://github.com/albermax/innvestigate € qUCIndCI https://github.com/dilyabareeva/quanda






