
Human Body Pose

Estimation

C. Papaioannidis, Prof. Ioannis Pitas

Aristotle University of Thessaloniki 

pitas@csd.auth.gr

www.aiia.csd.auth.gr

Version 4.4



Human Body Pose 

Estimation

2

• Introduction

• Human body modeling

• Visual 2D human pose estimation

• Visual 3D human pose estimation

• 3D HPE from other sensors

• HPE data sets



Introduction

• Camera pose estimation

involves estimating the 3D

orientation and 3D

translation of the camera

relative to an object/human

or vice-versa.
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• The human body is an

articulated object.

• Human body pose estimation

entails estimating the locations

of specific human body joints.

• It should not be confused with:

• Either camera pose estimation or

• human posture recognition.
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• Human body posture is a specific configuration of the body

joints and is bound to a specific state, e.g., standing, sitting,

lying, etc. .

• Human postures are different from human actions:

• postures are static, while actions are dynamic.

• Human body posture recognition applications:

• Physical training,

• Rehabilitation training,

• Sign language communication,

• Human-computer interaction (HCI).
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Human Pose Estimation (HPE) estimates the configuration

of human body parts from input data captured by sensors

(usually images and videos).

• It provides geometric and motion information of the human

body.

• It can regress human body configuration parameters.

• Wide range of applications:

• Human-computer interaction (HCI),

• Motion analysis,

• AR/VR,

• Healthcare.
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• Deep Neural Networks (DNNs) have achieved remarkable

results in HPE.

• DNN-based approaches have outperformed classical

computer vision methods.

• HPE challenges:

• Human body part occlusion,

• Training data availability,

• Depth information ambiguity.
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• Human body modeling is an important aspect of HPE.

• Human body is a deformable articulated solid object:

• It consists of joints and limbs,

• It has a kinematic structure,

• Body shape information is important.

• Body model types:

• Kinematic model (2D/3D HPE),

• Planar model (2D HPE),

• 3D surface body model (3D HPE)

• Volumetric model (3D HPE).
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Kinematic human body model

• Human body structure is represented

by a set of 2D/3D joint positions (and

limb position/orientations).

• Pictorial structure model (PSM)

[ZUF2012] a.k.a. tree-structured model.

• Flexible and intuitive.

• Cannot represent texture and shape

information.
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Planar human body model

• Body parts are represented by

rectangles.

• Cardboard model [JU1996].

• Represents shape and appearance of

the human body.
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3D surface human body model

• It describes the 3D body surface.

• Triangular or polygonal mesh.

• Skinned Multi-Person Linear

(SMPL) model [LOP2015].

• Modeled with natural pose-dependent

deformations.

• Joint locations are calculated from

the model vertices.
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Volumetric human body model

• Voxel-based human body models.

• Octree representations
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• It involves the prediction of the 2D position or spatial

location of human body key-points/joints from images or

videos.

• Deep learning-based approaches have achieved

remarkable results.

• Single-person 2D HPE:

• Direct regression methods,

• Heatmap-based methods.

• Multi-person 2D HPE:

• Top-down pipeline,

• Bottom-up pipeline.
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Single-person 2D HPE

• Localize human body joints when the input is a single-

person image.
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Single-person 2D HPE

Direct regression methods

• End-to-end framework.

• Learn a mapping from the input image to body joints or parameters

of human body models.

NN model
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Single-person 2D HPE

Direct regression methods

• If 𝐈 is an input RGB image of resolution 𝑀 ×𝑁 and 𝒇 is the 2D HPE

DNN, direct regression methods aim to directly predict (estimate):

𝐣1, 𝐣2, … , 𝐣𝐾 = 𝒇 𝐈 ,

• 𝐣1, 𝐣2, … , 𝐣𝐾 : pre-defined set of body joints that constitute the

2D human pose,

• 𝐾 is the number of the body joints

• 𝐣𝑘 = [𝑥𝑘 , 𝑦𝑘]
𝑇∈ ℕ2, 𝑘 = 1,… , 𝐾 human skeleton body joint

representation using the pixel coordinates on the image plane.
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Single-person 2D HPE

Direct regression methods

• Popular approaches:

• DeepPose [TOS2014],

• Iterative Error Feedback (IEF)

network [CAR2016],

• Compositional pose regression

[SUN2017],

• Cascaded transformer-based

model (PRTR) [LI2021].

[TOS2014]

[CAR2016]

[LI2021]
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Single-person 2D HPE

Heatmap-based methods

• Train a body part detector to predict the position of body joints.

• Estimate joint heatmap images that represent the joint locations.

NN model Decoding

[DAN2019]
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Single-person 2D HPE

Heatmap-based methods

• Instead of directly predicting 𝐣1, 𝐣2, … , 𝐣𝐾 , 𝒇 predicts 2D body joint

heatmaps 𝐇1, 𝐇2, … , 𝐇𝐾 of resolution 𝑀 ×𝑁 (one for each joint):

𝐇1, 𝐇2, … , 𝐇𝐾 = 𝒇 𝐈 .

• Each heatmap 𝐇𝑘 ∈ ℝ𝑀×𝑁 encodes the 2D location of the

corresponding body joint by using a 2D Gaussian function centered

at the 2D position of the body joint in the input image.

• 2D pixel coordinates of each body joint can be obtained by

choosing the (𝑥𝑘 , 𝑦𝑘) pairs with the highest heat value.
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Single-person 2D HPE

Heatmap-based methods

• Heatmaps provide richer supervision information, by preserving the

spatial location information.

• Allow using the powerful Convolutional Neural Networks (CNNs).

• Facilitate DNN/CNN training.

• Used in state-of-the-art 2D HPE approaches.
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Single-person 2D HPE

Heatmap-based methods

• Typical CNN-based approaches:

• Convolutional Pose Machines

(CPM) [WEI2016],

• Stacked Hourglass [NEW2016],

• High-Resolution Network

(HRNet) [SUN2019].

[WEI2016]

[NEW2016]

[SUN2019]
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Single-person 2D HPE

Heatmap-based methods

• The emergence of Generative Adversarial Networks (GANs) gave

rise to GAN-based 2D HPE methods.

• GANs can discriminate between real human and predicted ones.

• GANs were used to force the 2D HPE model to predict plausible

pose configurations.

• They provide increased performance in difficult cases (e.g., body

occlusion).

• GAN-based approaches:

• Adversarial PoseNet [CHE2017],

• Adversarial HPE [PEN2018].
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Single-person 2D HP

2D HPE in video sequences

• Video sequences are spatio-

temporal (3D) signals.

• The temporal information of a video

can be exploited by a model capable

of handling sequential data, such as:

• Recurrent Neural Networks (RNN) or

• Long Shot-Term Memory (LSTM)

networks.

[LUO2018]
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Single-person 2D HP

2D HPE in video sequences

• Video-based 2D HPE approaches

aim to model the spatio-temporal

human body pose information.

• Long Shot-Term Memory (LSTM)

Machines [LUO2018],

• Key Frame Proposal Network (K-

FPN) [ZHA2020].

[ZHA2020]
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Multi-person 2D HPE

• Estimate the 2D skeletons of multiple persons that appear

in the input image.

• All persons must be localized,

• Detected body keypoints must be grouped for different persons.

[CAO2017]
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Multi-person 2D HPE

Top-down pipeline

• Each person is detected on the input image (2D bounding boxes)

using off-the-shelf person detectors [REN2015].

• Single-person HPE is performed to each person bounding box.

Detector 2D HPE

[DAN2019]
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Multi-person 2D HPE

Top-down pipeline

• Inference speed increases linearly with the number of persons.

• Research focuses on:

• Designing and improving the person detection and 2D HPE

components, as well as the cooperation between them [MOO2019].

• Successfully handling cases with occlusion and/or truncation

[FAN2017].

• Exploiting the power of Transformers and their ability to encode long-

range dependencies [LI2021].
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Multi-person 2D HPE

Bottom-up pipeline

• Localize all the body joints in the input image.

• Group the detected body joints to the corresponding persons.

2D HPE Grouping

[DAN2019]
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Multi-person 2D HPE

Bottom-up pipeline

• Inference speed is usually increased, compared to top-down

approaches, since there is no need to detect the body joints for

each person separately.

• Research mainly focuses on:

• Improving body joint grouping and association to each person

[INS2016], [JIN2020].

• Improving multi-person 2D HPE in low-resolution images [KRE2019].

• Unifying the body joint detection and grouping stages with single-stage

DNNs [NEW2017].
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• It predict the body joint locations in 3D space.

• It provides 3D structure information related to human body.

• It remains a challenging task.

• 3D pose annotation is costly and time-consuming.

• Limited availability of datasets:

• Generalization issues,

• Problems in real-world applications.
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• Image/video-based 3D HPE:

• Monocular, single-person.

• 3D skeleton estimation,

• Human mesh reconstruction.

• Monocular, multi-person.

• Top-down pipeline,

• Bottom-up pipeline.

• Multi-view.

• 3D HPE from other sources.
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3D HPE from monocular images/videos

• 3D HPE from monocular images/videos is the most popular

approach.

• One monocular RGB camera is required.

• Predicting 3D human poses in this is very challenging:

• Occlusions,

• Depth ambiguities,

• Insufficient data,

• Different 3D human poses can be projected to similar 2D poses.
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3D HPE from monocular images

Single-person

• 3D skeleton estimation (kinematic model): Predict the body joint

locations in the 3D space.
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3D HPE from monocular images

Single-person

• Direct 3D skeleton estimation from an RGB image: The 3D human

pose is obtained directly from the input image without any

intermediate steps.
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3D HPE from monocular images

Single-person

• Methods based on CNNs.

• If 𝐈 is an input RGB image of resolution 𝑀 ×𝑁 and 𝑓 is the 3D HPE

CNN, direct 3D skeleton estimation methods aim to predict:

𝐣1, 𝐣2, … , 𝐣𝐾 = 𝒇 𝐈 ,

• 𝐣1, 𝐣2, … , 𝐣𝐾 is the set of 3D skeleton body joints,

• 𝐾 is the number of the body joints

• 𝐣𝑘 = 𝑋𝑘 , 𝑌𝑘 , 𝑍𝑘
𝑇 ∈ ℝ3, 𝑘 = 1,… , 𝐾 represents the 3D coordinates of

each 3D human body.
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3D HPE from monocular

images

Single-person

• Typical direct 3D skeleton

estimation approaches:

• DconvMP [LI2014],

• Coarse-to-Fine 3D HPE

[PAV2017],

• Ordinal Depth Supervision for

3D HPE [PAV2018].

[PAV2017]

[PAV2018]
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3D HPE from monocular images

Single-person

• 2D-to-3D lifting: A 2D skeleton is first extracted from the input RGB

image, which is then lifted to the corresponding 3D skeleton.
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3D HPE from monocular images

Single-person

• 2D-to-3D lifting methods were motivated by the success of 2D HPE

methods.

• The 2D skeleton extraction stage can be implemented using off-the-

shelf 2D HPE methods [SUN2019].

• If 𝐈 is an input RGB image of resolution 𝑀 ×𝑁, 𝒇 is the 2D HPE

CNN and 𝒈 is the 2D-to-3D lifting DNN, then the corresponding 3D

skeleton is predicted as follows:

𝐣1, 𝐣2, … , 𝐣𝐾 = 𝒈(𝒇 𝐈 ).
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3D HPE from monocular

images

Single-person

• Typical 2D-to-3D lifting

approaches with CNNs/DNNs:

• Simple yet effective 3D HPE

[MAR2017],

• DRPose3D [WAN2018],

• MultiPoseNet [SHA2019].

[MAR2017]

[WAN2018]

[SHA2019]
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3D HPE from monocular images

Single-person

• The human body kinematic model allows the representation of 2D

and 3D human poses as graphs.

• The body joints and bones are the graph nodes and the edges.

• Human graph: 𝒢 𝒱, ℰ , where 𝒱 is a set of 𝐾 body joints/nodes and

ℰ is a set of 𝐵 bones/edges.

• This allowed 2D-to-3D lifting to be performed using Graph

Convolutional Networks (GCNs).
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3D HPE from monocular images

Single-person

• 2D-to-3D lifting with GCNs allows:

• Modeling local and global body joint and bone relations by utilizing an

adjacency matrix 𝐀 ∈ ℝ𝐾×𝐾 in each GCN layer, which encodes the

human graph structure.

• GCN-based 2D-to-3D lifting approaches:

• Locally Connected Network (LCN) [CI2019],

• SemGCN [ZHA2019].
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3D HPE from monocular images

Single-person

• The kinematic model also allows the

exploitation of the kinematic constraints of

the human body.

• Body joints connectivity information,

• Joints rotation properties,

• Fixed bone length ratios.

• Constraints can be enforced on the 3D HPE

model outputs.

[XU2020]
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3D HPE from monocular images

Single-person

• 3D HPE in-the-wild involves predicting 3D

human poses in more challenging scenarios,

such as outdoor sports.

• Limited or no availability of annotated

datasets.

• Approaches:

• Enforce kinematic constraints.

• Weakly-supervised training through 3D-to-2D

reprojection [WAN2019].

[WAN2019]
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3D HPE from monocular videos

Single-person

• Videos provide temporal information, which can improve the

accuracy and the robustness of 3D HPE.
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3D HPE from monocular videos

Single-person

• The temporal information of a video can be exploited by a model

capable of handling sequential data, such as RNNs or LSTM

network.

• Occlusions or ambiguities on a single frame can be alleviated by

additional information provided by neighbouring frames.

• Video-based approaches:

• LSTM-based [HOS2018],

• GCN-based [CAI2019],

• Transformer-based [LI2022].
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3D HPE from monocular images/videos

Single-person

• Human body surface mesh reconstruction methods incorporate

parametric body models (Human body surface model).

• The 3D skeleton can also be obtained using a model-defined joint

regression matrix.
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3D HPE from monocular images/videos

Single-person

• Human surface meshes provide rich information about body shape

and texture, as well as a more accurate representation of the 3D

human pose.

• The SMPL is the most popular human body model.

• Predefined representation of a human mesh.

• Simple to use,

• Compatible with existing rendering engines,

• Computationally intensive.
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3D HPE from monocular images/videos

Single-person

• Human mesh reconstruction approaches:

• Regression of SMPL parameters [OMR2018],

• Regression of vertex locations [KOL2019a].

• SMPL-based models:

• SMPLify [LAS2017],

• SMPL-X [PAV2019],

• SPIN [KOL2019b]

• STAR [OSM2020].
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3D HPE from monocular images

Multi-person

• Estimate the 3D skeletons of multiple persons in an input image.

• Top-down pipeline: Similar to the 2D HPE case,

• each person is first detected on the input image and

• individual 3D skeletons are then estimated.

• Bottom-up pipeline:

• First predict all body joints and depth maps and then

• group and associate all detected body parts to each person.
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3D HPE from monocular images

Multi-person

• Top-down pipeline:

• Utilize off-the-shelf person detectors to predict a 2D bounding box for

each person in the image.

• For each predicted person 2D bounding box, predict 3D human poses

using single-person 3D HPE approaches.

• The estimated 3D human poses are aligned to the 3D world

coordinates system by also predicting an absolute 3D coordinate for

each detected person.
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3D HPE from monocular images

Multi-person

• Top-down pipeline.
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3D HPE from monocular images

Multi-person

• Top-down pipeline:

• It achieves promising results.

• Human mesh reconstruction is straightforward.

• Computations increase linearly with the person number.

• Global information for the scene is lost since a detection step is first

applied.

• Popular approaches:

• LCR-Net [ROG2017], LCR-Net++ [ROG2019], PandaNet [BEN2020].
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3D HPE from monocular images

Multi-person

• Bottom-up pipeline:

• All visible body joints are detected on the 2D image along with the

corresponding depth maps.

• Detected body parts are associated to each person, according to a

predicted global depth and part relative depth.
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3D HPE from monocular images

Multi-person

• Bottom-up pipeline.

               

              

                        

              

                   



3D human pose estimation

58

3D HPE from monocular images

Multi-person

• Bottom-up pipeline:

• Faster execution speed.

• Human mesh reconstruction is not straightforward.

• Body joint grouping is challenging.

• Occlusions can cause inaccurate predictions.

• Popular approaches:

• Single-stage multi-person Pose Machine [NIE2019],

• Occlusion-Robust Pose-Maps (ORPM) [MEH2018].
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Multi-view 3D HPE

• It can provide a solution in the case of partial human body

occlusion.

• Since the 3D human pose is estimated from multiple views, the

occluded part in one view may become visible in other views.

• 3D human pose reconstruction from multiple views requires

the association of corresponding joint locations, as

images by different cameras.

• Mainly used for multi-person 3D HPE.
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Multi-view 3D HPE
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Multi-view 3D HPE

• There are various Multiview 3D HPE approaches:

• Based on body models (3D pictorial model [BUR2013]) [DON2021].

• Increased computational cost.

• Memory-demanding

• Multi-view matching frameworks [HUA2020].

• Direct 3D human pose regression from multi-view images [ZHA2021].

• Lightweight architectures, increased inference speed and

efficient adaptation to different multi-view settings are also

important features.
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3D HPE from other sensors

• Besides RGB images/videos, data from other sensors can

also be used for 3D HPE.

• Depth sensors,

• Inertial Measurement Units (IMUs),

• Radio frequency devices,

• Non-line-of-sight (NLOS) imaging system, etc. .

• Data from these sensors can be used individually or

alongside RGB data.
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3D HPE from other sensors

Depth sensors

• Popular in 3D vision tasks.

• Low-cost.

• Easy-to-use.

• Tackle depth ambiguity problem.

• 3D HPE approaches that utilize depth sensors:

• [KAD2017],

• [YU2018],

• [ZHI2020].

[TER]



3D human pose estimation

65

3D HPE from other sensors

Inertial Measurement Units (IMUs)

• Wearable devices that can track the

movement of specific body parts.

• Can be used to infer body motion and

structure.

• Do not suffer from occlusion or clothes

obstruction problems.

• They can be inaccurate due to drifting.

• IMU-based 3D HPE approaches:

• [HUA2020], [VON2018], [ZHA2020b].

[HAC]
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3D HPE from other sensors

Radio Frequency (RF) devices

• Ability to traverse walls.

• Humans do not need to carry any

device.

• Privacy-preserving.

• Low spatial resolution.

• 3D HPE approaches based on RF

signals:

• [ZHA2018], [ZHA2019b].

[ZHA2018b]
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• Annotated data are really important for producing reliable

human pose estimation algorithms.

• Ideally, a dataset for human pose estimation should contain

a large number of data samples, obtained using different

persons, different scenes and a great variety of

postures/actions.

• Each dataset may correspond to a specific real-world

application scenario.
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2D HPE datasets

Image-based

• Single-person:

• LSP [JOH2010], LSP-extended

[JOH2011],

• FLIC - FLIC-full [SAP2013], FLIC-

plus [TOM2014],

• MPII [AND2014].

• Multi-person:

• MPII [AND2014],

• COCO2016 - COCO2017[LIN2014],

• CrowdPose [LI2019].

Video-based

• Single-person:

• Penn Action [ZHA2013],

• J-HMDB [JHU2013].

• Multi-person:

• PoseTrack [AND2018].
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3D HPE datasets

Monocular and multi-view

• Single-person:

• HumanEva [SIG2010],

• Human3.6M [ION2013],

• CMU Panoptic [JOO2015],

• MPI-INF-3DHP [MEH2017],

• 3DPW [VON2018] (no multi-view),

• MuPoTS-3D [MEH2018].

• Multi-person:

• CMU Panoptic [JOO2015],

• 3DPW [VON2018] (no multi-

view),

• MuPoTS-3D [MEH2018].
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