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Discount quality

NextGenerationEU – Italian project

Discount quality for responsible data science: 
Human-in-the-Loop for quality data

https://www.discountquality.polimi.it/

Inspired by Nielsen’s Discount Usability Engineering approach 
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Focus of the talk

• Data preparation challenges 

• Sustainable computing

• Measuring indicators

• Green AI and data preparation

• A circular-economy-based framework for data preparation

• Data preparation challenges and some highlights from ongoing research
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Data Preparation
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Data preparation – why?

• Organizations store a lot of heterogeneous data 
• not cleaned, not “prepared” for the analysis
• E.g., Data Lake + ELT approach

• Even if the single data source is well curated
• later it might be integrated with others - need preparation
• too expensive to keep a unified view

• Only a fraction of the data will actually be used



Pipelines for data-driven decision making

• Goal: reduce needed resources

• Design compositions

• Adaptivity
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Importance of data quality 
in data preparation

• Multiple sources
•  integration, deduplication, cleaning

• Economic impact of poor DQ for companies

• Significance of DQ dramatically increasing in AI and Model training
•  influences prediction accuracy
•    increasing focus on data
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Data-centric AI (DCAI)
systematically engineering the data used to build an AI system

• Carefully selecting and preprocessing data
• Reducing data redundancy
• Avoiding overfitting

• Sample and size of samples
• Feature selection 
• Reducing the number of data points
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related concepts and, in particular, discuss potential con-

tributions of and implications for the BISE community.

2 Model-Centric and Data-Centric AI

In previous years, research on ML has mainly focused on

the development of model types, architectures, and the
definition of suitable hyperparameters to improve perfor-

mance. For example, the ML community often benchmarks
different ML approaches based on fixed datasets – both in

practical competitions (Kaggle 2023) as well as in aca-

demic research (e.g., Ronneberger et al. 2015). Utilizing
publicly available benchmark datasets allows for valuable

and scientific sound comparisons across approaches and

has facilitated a significant acceleration in the performance
of ML models. In addition, these benchmark datasets can

be employed to ensure the reproducability of proposed

models. Overall, this led to an increasing maturity of model
types, architectures, and hyperparameter selection.

Definition Model-Centric Artificial Intelligence is the

paradigm focusing on the choice of the suitable model
type, architecture, and hyperparameters from a wide range

of possibilities for building effective and efficient AI-based

systems.

However, in recent years, this strategy (i.e., solely

optimizing models) has plateaued for many datasets with
regard to the model performance. Similarly, with regard to

real-world datasets, a focus on improving (complex)

models does not necessarily lead to significant performance
increases (e.g., Baesens et al. 2021). Furthermore, practi-

tioners often want to use ML to solve unique problems for

which neither public datasets nor suitable pre-trained
models are available. For this reason, the focus of practi-

tioners and researchers has gradually been shifting towards

data, the second, somewhat neglected ingredient for the
development of AI-based systems. In particular, research-

ers and practitioners recognize the need for more system-

atic data work as a means to improve the data used to train
ML models. In fact, data is a crucial lever for an ML model

to generate knowledge (Gröger 2021). Consequently, data

quantity (e.g., the number of instances) and data quality
(e.g., data relevance and label quality) largely influence the

performance of AI-based systems (Gudivada et al. 2017).

Data-centric artificial intelligence (data-centric AI) repre-
sents a paradigm that reflects this.

Definition Data-Centric Artificial Intelligence is the
paradigm emphasizing that the systematic design and

engineering of data are essential for building effective and

efficient AI-based systems.

Data-centric AI differs from model-centric AI in terms

of the general focus, the importance of domain knowledge,
and the understanding of data quality:

• Focus Data-centric AI generally holds the ML model

fixed instead of the dataset. Performance increases are
achieved by improving the quality and quantity of the

data given a fixed model.

• Data Work and Domain Knowledge Domain-specific
data work is an integral component of data-centric AI.

Data work is supplemented by the development of
methods and semi-automated tools to accelerate the

development of successful AI-based systems.

• Perspective on Data Quality Data-centric AI generates
performance improvements based on more appropriate

data. This implies that changes in ML model perfor-

mance metrics also indicate the effectiveness of
adjustments in the data. This results in a novel

perspective on data quality that can be approximated

by changes in metrics from the field of machine
learning.

Despite these differences between model-centric and data-

centric AI, the two paradigms are inherently complemen-

tary, as the development of AI-based systems should ulti-
mately incorporate both paradigms. A high-level overview

depicting this relationship is displayed in Fig. 1.

While the data-centric paradigm emerges from the ML
community – and most academic endeavors dealing with it

do focus on machine learning – , the term ‘‘data-centric

AI’’ has also intruded the computer science and BISE
communities. However, in fact, data-centric machine
learning might have been a more appropriate term (Kühl

et al. 2022). ML research generally focuses on designing
methods that leverage data to increase the performance on

a range of tasks (i.e., learn) with computational resources

(Alpaydin 2020). Artificial intelligence, in contrast,

Fig. 1 Data-centric AI as an
emerging, complementary
paradigm for the development
of AI-based systems
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508 J. Jakubik et al.: Data-Centric Artificial Intelligence, Bus Inf Syst Eng 66(4):507–515 (2024)
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Challenges

• Very large amounts of data

• Importance of data quality

• Processing time

• Environmental sustainability
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Sustainability and IT
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UN Sustainable Development Goals
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Progress towards sustainable development 
goals

The Sustainable Development Goals Report 2025 4

Funding data and statistics: the essential infrastructure for development

I. Five years to go: the stark reality of SDG progress

The 2025 progress assessment reveals that the world remains far off track 
from achieving the 2030 Agenda. Of the 169 SDG targets, 139 could be 
assessed using global trend data from the 2015 baseline to the most recent 
year, supplemented by custodian agency analyses. Among these, only 35 per 
cent show adequate progress – 18 per cent are on track and 17 per cent are 
making moderate progress. In contrast, 48 per cent of targets show 
insufficient progress, including 31 per cent with only marginal gains and 17 
per cent with no progress at all. Most concerning, 18 per cent of targets have 
regressed below 2015 baseline levels.1 
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Number labels should be inside color bars (ideally) and 0p3 from edge. 
If outside, left-aligned and 0p3 away.

Number line 0p2 below bottom bar. Stroke .25pt.

Tick marks 0p3 long. Text 0p1 below tick mark.

Legend categories right-aligned, 1p0 apart, 0p3 between color bubble and 
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Legend color bubble 0p6.
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1 This June 2025 progress assessment incorporates a few new data sets, resulting in slightly different findings from the Secretary-General’s report on progress towards the 
Sustainable Development Goals, which was conducted in April 2025. Due to ongoing data updates and revised methodologies, direct comparisons with previous years’ 
assessments should be made with caution. Percentages do not add up to 100 per cent due to rounding.

This comprehensive assessment underscores the urgent need for intensified 
efforts to put the SDGs on course. A detailed breakdown of progress by 
target is available at the end of this report.

While this report focuses on global trends, the global averages may mask 
meaningful advances in many countries that have made substantial progress 
across several Goals. These national and local successes – driven by sound 
policies, strong institutions and inclusive partnerships – demonstrate that 
accelerated progress is possible and offer valuable pathways for others to 
follow.

Progress assessment for the 17 Goals based on assessed targets, by Goal 
(percentage)
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Just as electricity powers modern life and clean water sustains public 
health, reliable data infrastructure underpins virtually every aspect of 
sustainable development. From tracking disease outbreaks and monitoring 
climate impacts to measuring poverty reduction and ensuring transparent 
governance, quality data and statistics systems are essential infrastructure 
for the digital age.  

With only five years remaining to achieve the Sustainable Development 
Goals (SDGs) by 2030, progress has been deeply inadequate. This reflects 
not just implementation challenges, but also a fundamental problem in how 
we measure, monitor and respond to global development needs. Tracking 
SDG progress and course-correcting in real time depends entirely on robust 
data infrastructure. Yet statistical systems remain chronically underfunded 
– treated as technical afterthoughts rather than foundational investments. 
Without reliable data, Governments cannot identify problems early, allocate 
resources effectively or demonstrate accountability.

In this section we first present a comprehensive progress assessment, 
revealing the stark reality of where the world stands on achieving the 2030 
Agenda. Second, we show the improvements made in terms of SDG data 
availability while also highlighting critical gaps that persist. Finally, we 
explore the urgent need for building sustainable financing and resilient data 
systems in the face of polycrises, examining how fragile funding mechanisms 
threaten progress and what strategies can strengthen country-led data 
infrastructure for the future.
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UN Report June 2025
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Sustainability and IT

Contribution of IT and in particular AI towards achieving the goals
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Sustainability and IT

Contribution of IT and in particular AI towards achieving the goals
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Computing sustainability / Green IT / 
Sustainable AI
• SDG13 Climate action
• SDG16 Peace and justice
• SDG9 Gender equality
• ….
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SDG13 – Climate action

• Indicators
• Emission reduction

• -> CO2 reduction

Indicators
– Emission reduction

• -> CO2 reduction
(CO2 equivalent)
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Energy consumption and data trends

Electricity 2024 Global trends 
Analysis and forecast to 2026  
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The rapid expansion of the data centre sector and the elevated electricity demand 
can pose challenges for the electricity system. To safeguard the system’s stability 
and reliability, Ireland’s Commission for Regulation of Utilities published in late 
2021 its decision on the new requirements applicable to new and ongoing data 
centre grid connection applications with three assessment criteria to determine if 
the connection offer can be made. First, the location of the data centre with respect 
to whether they are within a constrained region of the electricity system. Second, 
the ability of the data centre to bring onsite dispatchable generation and/or storage 
equivalent, at least, to their demand. Third, the ability of the data centre to provide 
flexibility in their demand by reducing it when requested by a system operator. For 
the third clause, data centre operators that offer their servers for hire will have to 
update their contracts to reflect the new regulations. These requirements 
showcase the local government’s inclination to grant connections to those 
operators that can make efficient use of the grid and incorporate renewable energy 
sources with a view of decarbonisation targets. 

Estimated data centre electricity consumption and its share in total electricity demand 
in selected regions in 2022 and 2026 

 
IEA. CC BY 4.0. 

Note: Includes traditional data centres and dedicated AI data centres, excludes consumption from cryptocurrencies and 
data transmission networks. 
Sources: IEA, Data Centres and Data Transmission Networks; Lawrence Berkeley National Laboratory, United Stated Data 
Center Energy Usage Report; Ireland Central Statistics Office, Data Centres Metered Electricity Consumption 2022; Danish 
Energy Agency, Denmark’s Energy and Climate Outlook 2018; China’s State Council, Green data centres in focus; 
European Commission, Energy-efficient Cloud Computing Technologies and Policies for an Eco-friendly Cloud Market; 
Joule (2023), Alex de Vries, The growing energy footprint of artificial intelligence; and Crypto Carbon Ratings Institute, 
Indices.  
 

Denmark currently hosts 34 data centres, half of them located in Copenhagen. As 
in Ireland, Denmark’s total electricity demand is forecast to grow mainly due to the 
data centre sector’s expansion, which is expected to consume 6 TWh by 2026, 
reaching just under 20% of the country’s electricity demand. Denmark is the hub 
for a new pan-European initiative, Net Zero Innovation Hub for Data Centers. The 
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Energy consumption of data centers (US)

EPRI Electric power research Institute White paper Powering intelligence 2024
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Sustainability in Computing

• Efficiency vs sustainability
• Efficiency: less time, fewer human resources, less storage
• Energy efficiency: 

• Green IT vs IT for Green
• outcome/total resources 
• Resources: humans, technical: GPU / CPU, RAM
• Green IT / Green AI / Sustainable AI

• Sustainability
• Focus on the life cycle

• Circular economy reference model

21
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Green IT and measuring indicators
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Measuring indicators

Green IT

Assessment ImprovementMeasurement

Energy estimationIndicators 
definition

Vitali-Pernici IJCIS 2014
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Common Green IT indicators

• PUE
• Efficient use of energy

• Energy mix

• Resource usage
• Proxy: Execution time
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PUE

• PUE
• Power Usage Effectiveness 
• The Green Grid, 2007

PUE= Total Facility Power / IT Equipment Power

• how efficiently the electricity is used from the data center control 
volume to the IT Equipment

• Average around 1.8, best ones (Google, Facebook)  claim approx 1.06

IT
Components

HVAC and
infrastructure

Source: M. Zhang, 2024
https://dgtlinfra.com/pue-power-usage-effectiveness/
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Energy estimation – energy waste

Fig. 2. A system and (sub)systems.

Fig. 3. Critical points within a system where energy is lost or wasted.

certain task, where a task is an abstract assignment that the system has to perform to
fulfil its purpose. To improve the energy efficiency of a system, first it is necessary to
identify problems that degrade efficiency.

Therefore, we identify two critical points where energy is not used in an efficient
way but is instead lost or wasted. Both terms define inefficient use of energy from an
agnostic point of view, where energy loss refers to energy brought to the system but
not consumed for its main task (e.g., energy lost due to transport and conversion). This
also includes energy used by supporting subsystems, such as cooling or lighting within
a data center whose main task is the provision of cloud services. Energy waste refers
to energy used by the system’s main task but without useful output (e.g., energy used
while running in idle mode). Additionally, useless work by the system is also considered
energy waste; for example, for a cooling subsystem, this would mean keeping the cooling
at maximum during the night when temperatures are lower. Both critical points are
shown in Figure 3.

Based on these definitions, two goals are defined for reducing energy loss and two
goals for reducing energy waste, thus improving the energy efficiency:

—L1. The first goal is minimizing a percentage of input energy that is not consumed
by a subsystem. This can be done by implementing more efficient components (e.g.,
using more efficient power supply units for servers that leak less energy).

—L2. The second goal is to reduce the overhead of supporting systems (i.e., systems
that do not perform the main task of the system), for example, by implementing a
single cooling unit for the entire cabinet instead of cooling each rack server separately.

—W1. The third goal is to reduce idle run of the system and increase utilization
or achieve zero energy consumption when no output is produced (i.e., during idle
time). This also implies achieving a proportional increase of energy consumption
with system output (e.g., to provide twice as much bandwidth, a network router
requires twice the amount of energy or less).

—W2. The fourth goal is to minimize energy consumption where the system performs
redundant operations. This can be done by implementing smart functions and
subsystems, such as implementing an optimized algorithm that does not require
redundant steps to perform the same task.

The listed goals are taken as a basis for the literature review in our search to
find current as well as future research directions that focus on improving the energy
efficiency of cloud computing infrastructure. Figure 4 shows data center domains and
their energy cascades as they are covered in this article, starting with Network and

Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona Brandic, Jean-Marc Pierson, et al.. Cloud
computing: survey on energy efficiency. ACM Computing Surveys, Association for Computing
Machinery, 2015, Vol. 47 (n 2), pp. 1-36
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Energy mix

Lottick et al., Energy Usage Reports: Environmental awareness as part of algorithmic accountability
Workshop on Tackling Climate Change with Machine Learning @NeurIPS 2019
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Carbon intensity – Electricity maps
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Green AI and data preparation

30
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Green AI

• Phases
• Data collection and preparation
• Training 
• Monitoring
• Inference 

• Incorporating the concept of cost into ML algorithms
• Report accuracy as a function of computation budget

• Data-centric approaches (efficient data usage)

• Schwartz, Roy, et al. "Green AI" Communications of the ACM 63.12 (2020): 54-63
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Green AI - training

Amodei, D., Hernandez, D., Sastry, G., Clark, J., Brockman, G., & Sutskever, I. (2018). AI and Compute. https://openai.com/index/ai-and-compute/

Two phases
Doubling every 3.4 mo
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AI model training

 

Chapter 1 | The rise of AI and its nexus with energy 21 

 

1 

1.2 The rise of AI 
AI has a long history, dating back to at least the 1950s. Over time, it has seen a series of 
alternating periods of optimism and pessimism (so-called “AI winters”). In recent years, 
however, AI has been dramatically boosted by several developments and breakthroughs in 
techniques, costs and technology that have led to the rise of AI in its modern form that we 
are familiar with today, in particular generative AI. These developments include (Figure 1.1): 

 The massive increase in computing power and decline in cost due to exponential 
improvements in computing hardware performance. Comparing today with 2006, the 
cost of a graphics processing unit (GPU – a specialised computer chip widely used for AI) 
per unit of computation has decreased by more than 99%.  

 The exponential increase in the availability and quality of data used to train AI models 
due to the rise of the Internet and connectivity. The amount of data used to train state-
of-the-art AI models has increased by nearly 30 000 times since 2008. 

 Breakthroughs in the architectures and algorithms behind AI models, notably the rise of 
deep neural networks (section 1.3), enabling the development of exponentially larger 
and more capable models. The amount of computational power used to train state-of-
the-art AI models has increased by around 350 000 times since 2014.  

These advancements have led to AI models that are becoming ever more powerful, capable 
and flexible. In the last few years, AI has gone from a field of academic research to an industry 
driving hundreds of billions of dollars of investment annually and with trillions of dollars of 
financial market value at stake. 

Figure 1.1 ⊳ GPU computation cost, 2006-2024, and notable AI model 
computational training size, 2014-2024 

 
IEA. CC BY 4.0. 

In the past decade, cheaper computing, exponentially more data and research 
breakthroughs in model design have turbocharged AI model capabilities 

Sources: IEA analysis based on data from EpochAI (2024), and Coyle and Hampton (2024). 

0.2

0.4

0.6

0.8

1.0

2006 2024

GPU compute cost index

In
de

x (
20

06
 =

 1
)

70 000

140 000

210 000

280 000

350 000

20242014

Model training size index

In
de

x (
20

14
 =

 1
)

-99% x350 000 times

�
��
�
�
�

33https://www.iea.org/reports/energy-and-ai/energy-demand-from-ai

 

Chapter 2 | Energy for AI 55 

 

2 

consumption, including the migration of service demand to more efficient, larger data 
centres (colocation, service provider and hyperscale), but also continued improvements in 
hardware efficiency and operating efficiency (declining idle power ratios, for example).   

Figure 2.3 ⊳ Total data centre electricity consumption by equipment type 
and data centre type, 2005-2024 

 
IEA. CC BY 4.0. 

After a decade of limited growth, data centre electricity  
consumption began to accelerate again after 2015 

Note: GW = gigawatt; TWh = terawatt hour.  
Sources: IEA analysis based on data from IDC (2024a), OMDIA (2025), and SemiAnalysis (2025). 

However, a sharp acceleration in data centre electricity consumption took place from around 
2017 onwards. Important drivers of this step change were the growth of cloud computing, 
the shift to online media consumption, the wider use of social media platforms and the rise 
of AI, which increased the demand for high-performance computing, facilitated by the rise 
of accelerated servers. Between 2015 and 2024, the capacity of accelerated servers grew 
four times faster than the total capacity of servers. While accelerated servers are much more 
efficient on a per-task basis, they also unlocked many new tasks, that were not possible on 
conventional servers. These new capabilities, among other factors, drove an increase in 
service demand that outstripped the pace of continued efficiency improvements.  

Figure 2.4 provides another view of the drivers of electricity consumption by data centres 
from 2005 to 2015 and then from 2015 to 2023. From 2005 to 2015, global Internet Protocol 
(IP) traffic, mobile broadband subscriptions and active social media accounts grew by more 
than 25% per year. These are proxies for the rapid initial growth in demand for digital 
services. Growth rates moderated in the period from 2015 to 2023. In contrast, the growth 
rate of the total stock of servers in data centres accelerated from an annual growth rate of 
4% seen in the period 2005 to 2015 to 8% per year from 2015 to 2023. Several key indicators 
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Modeling AI energy consumption trends

EPRI, Epoch AI Report 2025
Scaling Intelligence: The Exponential Growth of AI's Power Needs
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Some factors

11   |  EPRI White Paper   Scaling Intelligence: The Exponential Growth of AI’s Power Needs  August 2025

year, then we can calculate the resulting power growth 
trend as follows:

4x per year training compute growth / 1.26x per year 
training duration / 1.4x per year efficiency growth = 
2.27x per year power growth

This is similar to the estimated historic power growth trend, 
though the calculations don’t align exactly because the 
relevant datasets are not identical.

This simple model translates training compute growth into 
the growth rate of power demand for frontier training runs. 
In addition, it can be used to help inform forecasts of power 
demand. Instead of simply extrapolating the historical 
growth in power demand, the trend can be deconstructed 
into the three factors of training compute, training dura-
tion, and efficiency growth, and evidence for how these 
growth rates might evolve can be considered.

Improvements in hardware energy efficiency also reduce 
power demand, holding training compute constant. Energy 
efficiency is improving around 25–40% per year for lead-
ing AI chips. This is likely to continue, but the exact rate of 
improvement makes a significant difference to growth in 
training power demand.

Given these factors, we can build a simple model of power 
demand growth. The growth rate in electric power required 
to train frontier models is equal to the growth rate in over-
all training compute divided by the growth rates in training 
duration and energy efficiency: 

Power demand = Training compute growth /  
(Training duration growth x Energy efficiency growth)

For example, if training compute grows at 4x per year, and 
frontier training runs are increasing in duration by 26% per 
year, and AI hardware is becoming 40% more efficient per 

Figure 5. Historical effect of different trends on power demand growth for AI training. 4x/year compute growth is reduced to 
2x/year power growth due to increasing durations and improving chip efficiency. Graph prepared by Epoch AI.

0

EPRI, Epoch AI Report 2025
Scaling Intelligence: The Exponential Growth of AI's Power Needs
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Fig. 1. Schematic structure of this article and the relationship between the adjacent sections.

more energy efficient. This is due to the growing significance
of data in recent years and the substantial computational cost
incurred by learning from massive datasets [29]. It is also known
that data preparation is a crucial and time-consuming step in
the end-to-end ML process. Estimates suggest that it can take
anywhere from 45% to 80%–90% of the total time spent on an
ML project. This includes tasks, such as collecting data, cleaning
it, and transforming it into a format suitable for training. The high
cost of data preparation highlights the importance of investing
time and resources into this stage to ensure the quality of the
final ML model [30].

It is worth mentioning that while data-centric approaches
appear to be very promising in the context of green AI [2],
[12], their primary goal was to improve performance in terms
of accuracy [24], [25] and to the best of authors’ knowledge,
the study in [12] is the first and only study that explores the
potential of data modifications on energy consumption of AI
algorithms and puts forward the term “data-centric green AI.”
Our article is also the first to give a comprehensive overview of
this topic. Another factor to consider is that these approaches
often require significant computational resources, but they can
later relieve the computational burden in downstream tasks or
other applications [2], [31].

Bartoldson et al. [3], also consider training data a critical
component that can significantly affect the training time. This
article discusses techniques to speed up ML training, which the
authors categorize as the 5Rs: remove, restrict, reorder, replace,
and retrofit. These methods can be applied to the training dataset
to reduce the time required for training either by decreasing the
number of iterations or affecting the duration of each iteration.
Removing redundant training data or data pruning is one such

approach that can be used without compromising the quality of
the model. Restricting the training data involves normalization
techniques or imposing restrictions on the data generation pro-
cess to improve generalizations. The author also discusses using
curriculum or progression approaches to reorder the training
data, which can reduce the number of iterations or the time
required for each iteration. Additionally, the author suggests
replacing the training dataset with an encoded or distilled version
or retrofitting it through data augmentation or pretraining.

The idea behind the data-efficient ML algorithms can be
summarized as follows: selecting the most informative samples
or distilling the dataset into a condensed informative synthesized
dataset. Incorporating pretrained models, which are proven to
reduce the data requirements in downstream tasks or employing
techniques like data augmentation to mitigate overfitting and
increase generalizations. CL, which involves altering the order
in which the network receives training examples, is another al-
ternative technique that can accelerate training. The data-centric
approaches for green ML can be categorized as follows (see
Fig. 1): AL and coresets, knowledge transfer/sharing, DD, data
augmentation, and CL. For each category, we provide a formal
definition of the associated problem.

A. AL and Coresets

AL also known as query learning aims to achieve the max-
imum improvement in a model’s performance by labeling the
minimum number of samples. The idea behind AL is quite
simple: different samples in a dataset have different values for
the update of the current model and these values can be used to
determine which samples are the most important for training. To

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 18,2024 at 16:01:42 UTC from IEEE Xplore.  Restrictions apply. 

Salehi, Shirin, and Anke Schmeink. "Data-Centric Green Artificial 
Intelligence: A Survey." IEEE Transactions on Artificial Intelligence 5.05 
(2024): 1973-1989.
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Sustainable AI: Environmental Implications, Challenges and Opportunities

3.4 Going Beyond Efficiency Optimization
Despite the opportunities for optimizing energy efficiency
and reducing environmental footprint at scale, there are
many reasons why we must care about scaling AI in a more
environmentally-sustainable manner. AI growth is multi-
plicative beyond current industrial use cases. Although
domain-specific architectures improve the operational en-
ergy footprint of AI model training by more than 90% (Pat-
terson et al., 2021), these architectures require more system
resources, leading to larger embodied carbon footprints.

While shifting model training and inference to data centers
with carbon-free energy sources can reduce emissions, the
solution may not scale to all AI use cases. Infrastructure for
carbon free energy is limited by rare metals and materials,
and takes significant economic resources and time to build.
Furthermore, the carbon footprint of federated learning and
optimization use cases at the edge is estimated to be similar
to that of training a TransformerBig model (Figure 11).
As on-device learning becomes more ubiquitous to improve
data privacy, we expect to see more computation being
shifted away from data centers to the edge, where access to
renewable energy may be limited. The edge-cloud space for
AI opens interesting design opportunities (Section 4.3).

The growth of AI in all dimensions outpaces the efficiency
improvement at-scale. Embodied carbon cost is becoming
the dominating source of AI’s overall carbon footprint. To
curb the rising carbon footprint of AI at-scale, we must
look beyond efficiency optimization and complement effi-
ciency and utilization optimization with efforts to tackle the
remaining embodied carbon footprint of AI systems.

4 A SUSTAINABILITY MINDSET FOR AI
To tackle the environmental implications of AI’s exponen-
tial growth, the first key step requires ML practitioners and
researchers to develop and adopt an sustainability mindset.
The solution space is wide open—while there are significant
efforts looking at AI system and infrastructure efficiency
optimization, the AI data, experimentation, and training
algorithm efficiency space (Sections 4.1 and 4.2) beyond
system design and optimization (Section 4.3) is less well
explored. We cannot optimize what cannot be measured
— telemetry to track the carbon footprint of AI technolo-
gies must be adopted by the community (Section 4.4). We
identify a number of important directions to scale AI in
a sustainable manner and to minimize the environmental
impact of AI for the next decades.

The field of AI is currently primarily driven by research
that seeks to maximize model accuracy — progress is of-
ten used synonymously with improved prediction quality.
This has led to a decade of AI achieved through the use of
massive computational power while disregarding resources
or environmental footprint. To develop AI technologies re-
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Figure 9. Model quality of recommendation use cases improves
as we scale up the amount of data and/or the number of model
parameters (e.g., embedding dimension), leading to higher energy
and carbon footprint. Maximizing model accuracy for the specific
recommendation use case comes with significant energy cost —
Roughly 4→ energy saving can be achieved with only 0.004 model
quality degradation (green vs. yellow stars).

sponsibly, we must achieve competitive model accuracy at
a fixed or even reduced computational and environmental
cost. Despite the recent calls-to-action (Strubell et al., 2019;
Lacoste et al., 2019; Henderson et al., 2020; Bender et al.,
2021; Patterson et al., 2021), the overall community remains
under-invested in research that aims at deeply understand-
ing and minimizing the cost of AI. To bend the exponential
growth curve of AI and its environmental footprint, we must
build a future, where efficiency is an evaluation criterion
for publishing ML research on computationally-intensive
models beyond accuracy-related measures.

4.1 Data Utilization Efficiency
Data Scaling and Sampling: No data is like more data
— data scaling is the de-facto approach to increase model
quality, where the primary factor for accuracy improvement
is driven by the size and quality of training data, instead
of algorithmic optimization. However, data scaling has sig-
nificant environmental footprint implications. To keep the
model training time manageable, overall system resources
must be scaled with the increase in the data set size, resulting
in larger embodied carbon footprint and operational carbon
footprint from the data storage and ingestion pipeline and
model training. Alternatively, if training system resources
are kept fixed, data scaling increases training time, resulting
in a larger operational energy footprint.

Figure 9 depicts energy footprint reduction potential when
data and model scaling is performed in conjunction. The x-
axis represents the energy required per training step whereas
the y-axis represents model error. The blue solid lines cap-
ture model size scaling (through embedding hash scaling)
while the training data set size is kept fixed. The red dashed

Wu et al., MLSys, 2022
However, when designed well, data scaling, sampling and selection 
strategies can improve the competitive analysis for ML algorithms, 
reducing the environmental footprint of the process



Environmental equity

• Limited power-grid capacity
• Impact on other resources (e.g. water)

• Types of flexibility for AI workloads:

• Spatial
• Temporal
• Performance (tradeoffs between accuracy and resource 

consumption)
Hajiesmaili, et al., 2025
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ICT eco-feedback

Young, Sydney, Udit Gupta, and Josiah Hester. 
"Empowering Users to Make Sustainability-Forward Decisions 
for Computing Services." Communications of the ACM 68.7 (2025)

impact of large-scale AI,13 and stream-
ing media.6 While laudable, these 
efforts 1) are immediately obsolete 
or incomplete due to upgrades and 
secrecy, and 2) are not comprehensible 
to the average consumer. Large-scale 
ICT services include search engines, 
emerging LLMs, and video streaming 
services such as Youtube and Netflix—
sustainability-driven user decisions 

when interacting with these platforms 
may have significant carbon impact. 
In many instances, a user has control 
of certain factors (for example, the 
time of day to watch a Netflix video, 
or the streaming quality) where they 
could feasibly mitigate their envi-
ronmental impact. However, due to 
the complexity of these services, the 
actual trade-offs are not apparent to 

the user, and in fact may be optimized 
away under the covers by works in the 
green and sustainable space.

Importantly, decisions made invisi-
bly for the user may not be the applica-
tion or user-optimal decisions, or even 
consider that the user may not care 
about a small percentage increase in 
latency if they can get an appreciable 
reduction in carbon impact.

We hypothesize that due to the 
overwhelming evidence of climate 
change, the general knowledge avail-
able now on the impacts of climate 
degradation, and the significant 
media and government campaigns to 
raise awareness, users are more likely 
to engage with technology patterns 
that would reduce their personal (or 
group) carbon impact if given the 
chance and information. In fact, 
years of research into the ideas of 
eco-feedback, environmental psy-
chology, and persuasive technology,3 
confirm this trend.

Unfortunately, 1) it is unclear what 
trade-offs, once these have been 
exposed to the user, are motivating 
in terms of carbon impact, 2) it is 
unclear the exact impact one might 
have based on shifting technology 
usage patterns and economics, and 
3) it is unclear what types of changes 
in systems and architecture would 
need to be made to best facilitate this 
user-preference-driven operation. For 
example, is reducing video quality 
worth it if a user only saves 0.5kg of 
CO2? This approach brings in the 
concept of eco-feedback, applied to 
IC applications. But, to better provide 
this level of real-world eco-feedback, 
we must better understand these 
systems’ carbon impacts and make 
them transparent to users.

Eco-feedback-driven computing 
systems. Work has explored both the 
systems side of sustainable comput-
ing systems and the user-focused 
side, including carbon-based eco-
feedback interventions8 and typolo-
gies which map design choices to be-
havioral mechanisms.11 Few works try 
to bridge this gap, where user deci-
sions motivate and guide sustainable 
software and hardware operation 
at the mega-scale in order to enable 
more carbon-efficient AI, streaming, 
and other computing services that 
are still useful.

Figure 1. Example user interface empowering users to modify computing applications 
based on carbon footprint. This exposes the trade-off in large-scale computing services be-
tween various metrics of user interest (latency, and so forth) and carbon cost of using the 
service. Computer architecture and human-computer interaction (HCI) research challeng-
es stem from determining how to best enable this type of user preference-driven approach 
to green computing and leverage collective choices to reduce total carbon emissions.

Table 1. Dimensions of user experience.

Dimension Description Example

Quality A measure of the condition of 
data based on factors such as 
accuracy, completeness, consis-
tency, reliability, and timeliness.

“You may be required to attempt 
multiple searches or explore 
multiple pages of results to find 
the best result for your query.”

Latency The time it takes for a data 
packet to travel from one desig-
nated point to another.

“Results take a few seconds 
longer to load than normal.”

Availability The percentage of time that the 
infrastructure, system, or solu-
tion remains operational under 
normal circumstances.

“Google is only available for set 
time periods each day. How likely 
is it that you would choose this 
option?”

sustainability      
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impact of large-scale AI,13 and stream-
ing media.6 While laudable, these 
efforts 1) are immediately obsolete 
or incomplete due to upgrades and 
secrecy, and 2) are not comprehensible 
to the average consumer. Large-scale 
ICT services include search engines, 
emerging LLMs, and video streaming 
services such as Youtube and Netflix—
sustainability-driven user decisions 

when interacting with these platforms 
may have significant carbon impact. 
In many instances, a user has control 
of certain factors (for example, the 
time of day to watch a Netflix video, 
or the streaming quality) where they 
could feasibly mitigate their envi-
ronmental impact. However, due to 
the complexity of these services, the 
actual trade-offs are not apparent to 

the user, and in fact may be optimized 
away under the covers by works in the 
green and sustainable space.

Importantly, decisions made invisi-
bly for the user may not be the applica-
tion or user-optimal decisions, or even 
consider that the user may not care 
about a small percentage increase in 
latency if they can get an appreciable 
reduction in carbon impact.

We hypothesize that due to the 
overwhelming evidence of climate 
change, the general knowledge avail-
able now on the impacts of climate 
degradation, and the significant 
media and government campaigns to 
raise awareness, users are more likely 
to engage with technology patterns 
that would reduce their personal (or 
group) carbon impact if given the 
chance and information. In fact, 
years of research into the ideas of 
eco-feedback, environmental psy-
chology, and persuasive technology,3 
confirm this trend.

Unfortunately, 1) it is unclear what 
trade-offs, once these have been 
exposed to the user, are motivating 
in terms of carbon impact, 2) it is 
unclear the exact impact one might 
have based on shifting technology 
usage patterns and economics, and 
3) it is unclear what types of changes 
in systems and architecture would 
need to be made to best facilitate this 
user-preference-driven operation. For 
example, is reducing video quality 
worth it if a user only saves 0.5kg of 
CO2? This approach brings in the 
concept of eco-feedback, applied to 
IC applications. But, to better provide 
this level of real-world eco-feedback, 
we must better understand these 
systems’ carbon impacts and make 
them transparent to users.

Eco-feedback-driven computing 
systems. Work has explored both the 
systems side of sustainable comput-
ing systems and the user-focused 
side, including carbon-based eco-
feedback interventions8 and typolo-
gies which map design choices to be-
havioral mechanisms.11 Few works try 
to bridge this gap, where user deci-
sions motivate and guide sustainable 
software and hardware operation 
at the mega-scale in order to enable 
more carbon-efficient AI, streaming, 
and other computing services that 
are still useful.

Figure 1. Example user interface empowering users to modify computing applications 
based on carbon footprint. This exposes the trade-off in large-scale computing services be-
tween various metrics of user interest (latency, and so forth) and carbon cost of using the 
service. Computer architecture and human-computer interaction (HCI) research challeng-
es stem from determining how to best enable this type of user preference-driven approach 
to green computing and leverage collective choices to reduce total carbon emissions.

Table 1. Dimensions of user experience.

Dimension Description Example

Quality A measure of the condition of 
data based on factors such as 
accuracy, completeness, consis-
tency, reliability, and timeliness.

“You may be required to attempt 
multiple searches or explore 
multiple pages of results to find 
the best result for your query.”

Latency The time it takes for a data 
packet to travel from one desig-
nated point to another.

“Results take a few seconds 
longer to load than normal.”

Availability The percentage of time that the 
infrastructure, system, or solu-
tion remains operational under 
normal circumstances.

“Google is only available for set 
time periods each day. How likely 
is it that you would choose this 
option?”

sustainability      

82    COMMUNICATIONS OF THE ACM   |   JULY 2025  |   VOL.  68  |   NO.  7

39

limit the time I spend on social me-
dia” (P11). This indicates that a user’s 
perceived importance and usage of 
the application also plays a role in 
their ranking of trade-offs.

Self-identification of values. Addi-
tionally, participants were asked to 
rate their environmental conscious-
ness on a scale of 1–5, with 1 being 
not environmentally conscious and 
5 being extremely environmentally 
conscious. It was found that a par-
ticipant’s level of environmental 
consciousness (63% of users reported 
being moderately to extremely en-
vironmentally conscious) was not a 
predictor of any trade-off response 
aside from Google availability trade-
off (the most unaccepted), so there is 
not necessarily a relationship between 
a user’s intention and action in this 
scenario. This could be due to the 
phrasing of our questions, equating 
CO2 emissions saved to trees saved per 
year. It is possible users cannot see 
the tangibility of the trade-off in the 
way we presented it. Additionally, this 
finding could suggest that a user’s self-
identified level of “eco-mindedness” 
does not influence ICT decisions in 
the same way that it may influence 
more material consumer decisions. 
Further, because this sector of energy 
consumption is not openly discussed 
or consumption information acces-
sible (in form of eco-feedback or other-
wise) to the day-to-day user, the idea 
is not tangible or relatable enough to 
influence decision-making.

Call to Action
This work illustrates the potential for 
eco-feedback-driven computing sys-

not mind slower-running products 
and services if I knew they were 
conserving energy overall” (P17). This 
indicates that while quality and avail-
ability may not be acceptable param-
eters to trade off for sustainability 
wins, that latency trade-offs may be 
worth the extra wait.

Preference across applications. 
Overall, latency was widely accepted 
across both applications. Users report 
that they are most likely to accept a 
latency trade-off (over 50% reported 
“likely” or “extremely likely” to accept), 
followed by quality and then avail-
ability. The results of the Wilcoxon 
Signed Rank Test also suggested that 
users may be more willing to accept 
trade-offs in social media availability 
over search engines such as Google. 
The availability trade off was the 
least-accepted trade-off presented 
to participants. This trade-off was 
not seen as enough in many cases. 
“Incredibly inconvenient and not 
worth it... ” (P20). Additionally, only 
one person included environmental 
benefits in motivating their ranking 
(P19). On the other hand, availability 
changes for social media was largely 
accepted. Participants reasoned that 
this would promote better habits and 
is potentially a good idea: “This would 
honestly help reduce the amount of 
time I spend on social media in gen-
eral” (P7, who previously reported the 
opposite likelihood for Google). It was 
also suggested that participants may 
be more likely to accept trade-offs for 
applications they use less frequently: 
“I don’t know if energy is the deciding 
factor here. I think I use social media 
too much, so it would be helpful to 

monious preaching” (P16).
Latency. On the other hand, Google 

latency seemed to be largely accepted 
by participants, with participants 
commonly stating that this would not 
make much of a difference or bother 
them, and that the environmental 
impacts are worth the trade-off in 
loading time. For example, a par-
ticipant who opposed an availability 
trade-off explained that “this trade-off 
would not be much effort or difference 
so I would probably participate”(P20). 
Another participant attested, “I would 

Figure 3. User sentiments: summary of Likert survey items.
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Figure 2. Example participants based on 
user study that choose different eco-feed-
back tradeoffs between quality, latency, 
and availability for sustainability benefits.
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Sustainability in Data preparation

05



Data preparation

Context and focus:

•  Data ecosystems
•  Data preparation (also for ML models training)
•  Data quality

Sustainability of the data preparation process (“discount” data quality)

•  reducing the computational effort needed to analyze data
•  introducing HITL in a sustainable way, to make human contributions 

effective, keeping them limited in time and size
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Data preparation
Architecture and phases

Discount Quality project team,
SEBD 2024
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Circular economy strategies

Muñoz et al., 2024
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Strategies for data preparation 
Design phase
Smarter product use and manufacture

6 Barbara Pernici

Category Strategy Description Data preparation

Smarter
product use

and manufacture

(Design phase)

R0
Refuse

Avoid unnecessary prod-
ucts or resource use by re-
fusing non-essential con-
sumption.

Not relevant

R1
Rethink

Make product use more in-
tensive via new concepts or
business models.

Redesign pipelines for
reuse/sharing (feature stores,
data contracts); prioritize ex-
perimental design and active
sampling to reduce data needs.

R2
Reduce

Increase e!ciency by con-
suming fewer resources in
manufacture or use.

Minimize features/rows; dedu-
plicate; compress; downsample
smartly; use e!cient formats (Par-
quet/Arrow) and typed schemas.

Extend lifespan
of product

and its parts

(Consumption phase)

R3
Reuse

Reuse by another con-
sumer of a discarded prod-
uct that still fulfills its orig-
inal function.

Reuse curated datasets, splits, and
labels; leverage pre-trained em-
beddings and public benchmarks
instead of recollecting data.

R4
Repair

Repair and maintenance of
a defective product so it can
be used with its original
function.

Fix data errors (typos, outliers,
schema drift); impute missing val-
ues; relabel incorrect examples;
restore corrupted files.

R5
Refurbish

Restore an old product and
bring it up to date.

Modernize legacy datasets: nor-
malize units, enrich with meta-
data, standardize IDs, update tax-
onomies and codebooks.

R6
Remanufacture

Use parts of discarded
products to make a new
product with the same
function.

Not considered

R7
Repurpose

Use a discarded product or
its parts in a new product
with a di”erent function.

Not considered

Useful application
of materials

R8
Recycle

Process materials to obtain
the same or lower-quality
raw material.

Not relevant

R9
Recover

Incinerate materials with
energy recovery.

Not relevant

Table 1.1 Sustainability strategies in data preparation (adapted and extended from [9]).
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Data spaces

Models to perform multiple tasks - LLMs

On demand
Selecting relevant tables

Designing efficient pipelines



Strategies for data preparation 
Consumption phase

6 Barbara Pernici

Category Strategy Description Data preparation

Smarter
product use

and manufacture

(Design phase)

R0
Refuse

Avoid unnecessary prod-
ucts or resource use by re-
fusing non-essential con-
sumption.

Not relevant

R1
Rethink

Make product use more in-
tensive via new concepts or
business models.

Redesign pipelines for
reuse/sharing (feature stores,
data contracts); prioritize ex-
perimental design and active
sampling to reduce data needs.

R2
Reduce

Increase e!ciency by con-
suming fewer resources in
manufacture or use.

Minimize features/rows; dedu-
plicate; compress; downsample
smartly; use e!cient formats (Par-
quet/Arrow) and typed schemas.

Extend lifespan
of product

and its parts

(Consumption phase)

R3
Reuse

Reuse by another con-
sumer of a discarded prod-
uct that still fulfills its orig-
inal function.

Reuse curated datasets, splits, and
labels; leverage pre-trained em-
beddings and public benchmarks
instead of recollecting data.

R4
Repair

Repair and maintenance of
a defective product so it can
be used with its original
function.

Fix data errors (typos, outliers,
schema drift); impute missing val-
ues; relabel incorrect examples;
restore corrupted files.

R5
Refurbish

Restore an old product and
bring it up to date.

Modernize legacy datasets: nor-
malize units, enrich with meta-
data, standardize IDs, update tax-
onomies and codebooks.

R6
Remanufacture

Use parts of discarded
products to make a new
product with the same
function.

Not considered

R7
Repurpose

Use a discarded product or
its parts in a new product
with a di”erent function.

Not considered

Useful application
of materials

R8
Recycle

Process materials to obtain
the same or lower-quality
raw material.

Not relevant

R9
Recover

Incinerate materials with
energy recovery.

Not relevant

Table 1.1 Sustainability strategies in data preparation (adapted and extended from [9]).

Extend the lifespan of the product and its parts
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Consider context
Enrich metadata

Inspection and pipeline design
Considering additional sources

Extend lifecycle of old datasets



Evaluation framework
Data quality evaluation
 DQ dimensions:

• Conventional DQ (accuracy, completeness, consistency, timeliness, 
uniqueness, …)

• Data-centric-AI DQ
• Bias, dimensionality, coverage/density, overlap, …

• Human interaction DQ
• Granularity, latency, user control, mental effort, success rate of tasks, …

46

During data preparation quality 
can 
 improve
 decrease



Evaluation framework (2/2)

Cost evaluation
 Considering both computational and human resources

• Assessment cost 
• Improvement cost 

Waste evaluation
• Based on the percentage of data being prepared that will actually be 

used and 
• The success rate of the technique in solving a given quality issue in 

a given context.
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Strategies for data preparation 
Design phase
Smarter product use and manufacture

6 Barbara Pernici

Category Strategy Description Data preparation

Smarter
product use

and manufacture

(Design phase)

R0
Refuse

Avoid unnecessary prod-
ucts or resource use by re-
fusing non-essential con-
sumption.

Not relevant

R1
Rethink

Make product use more in-
tensive via new concepts or
business models.

Redesign pipelines for
reuse/sharing (feature stores,
data contracts); prioritize ex-
perimental design and active
sampling to reduce data needs.

R2
Reduce

Increase e!ciency by con-
suming fewer resources in
manufacture or use.

Minimize features/rows; dedu-
plicate; compress; downsample
smartly; use e!cient formats (Par-
quet/Arrow) and typed schemas.

Extend lifespan
of product

and its parts

(Consumption phase)

R3
Reuse

Reuse by another con-
sumer of a discarded prod-
uct that still fulfills its orig-
inal function.

Reuse curated datasets, splits, and
labels; leverage pre-trained em-
beddings and public benchmarks
instead of recollecting data.

R4
Repair

Repair and maintenance of
a defective product so it can
be used with its original
function.

Fix data errors (typos, outliers,
schema drift); impute missing val-
ues; relabel incorrect examples;
restore corrupted files.

R5
Refurbish

Restore an old product and
bring it up to date.

Modernize legacy datasets: nor-
malize units, enrich with meta-
data, standardize IDs, update tax-
onomies and codebooks.

R6
Remanufacture

Use parts of discarded
products to make a new
product with the same
function.

Not considered

R7
Repurpose

Use a discarded product or
its parts in a new product
with a di”erent function.

Not considered

Useful application
of materials

R8
Recycle

Process materials to obtain
the same or lower-quality
raw material.

Not relevant

R9
Recover

Incinerate materials with
energy recovery.

Not relevant

Table 1.1 Sustainability strategies in data preparation (adapted and extended from [9]).
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Strategies for data preparation 
Consumption phase

6 Barbara Pernici

Category Strategy Description Data preparation

Smarter
product use

and manufacture

(Design phase)

R0
Refuse

Avoid unnecessary prod-
ucts or resource use by re-
fusing non-essential con-
sumption.

Not relevant

R1
Rethink

Make product use more in-
tensive via new concepts or
business models.

Redesign pipelines for
reuse/sharing (feature stores,
data contracts); prioritize ex-
perimental design and active
sampling to reduce data needs.

R2
Reduce

Increase e!ciency by con-
suming fewer resources in
manufacture or use.

Minimize features/rows; dedu-
plicate; compress; downsample
smartly; use e!cient formats (Par-
quet/Arrow) and typed schemas.

Extend lifespan
of product

and its parts

(Consumption phase)

R3
Reuse

Reuse by another con-
sumer of a discarded prod-
uct that still fulfills its orig-
inal function.

Reuse curated datasets, splits, and
labels; leverage pre-trained em-
beddings and public benchmarks
instead of recollecting data.

R4
Repair

Repair and maintenance of
a defective product so it can
be used with its original
function.

Fix data errors (typos, outliers,
schema drift); impute missing val-
ues; relabel incorrect examples;
restore corrupted files.

R5
Refurbish

Restore an old product and
bring it up to date.

Modernize legacy datasets: nor-
malize units, enrich with meta-
data, standardize IDs, update tax-
onomies and codebooks.

R6
Remanufacture

Use parts of discarded
products to make a new
product with the same
function.

Not considered

R7
Repurpose

Use a discarded product or
its parts in a new product
with a di”erent function.

Not considered

Useful application
of materials

R8
Recycle

Process materials to obtain
the same or lower-quality
raw material.

Not relevant

R9
Recover

Incinerate materials with
energy recovery.

Not relevant

Table 1.1 Sustainability strategies in data preparation (adapted and extended from [9]).
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DQImprovement 
Cost

Consider context
Enrich metadata

Inspection and pipeline design
Considering additional sources

Extend lifecycle of old datasets
DQImprovement 

Cost

DQImprovement 
and Assessment 

Cost
DQWaste



Focus on reduce and reuse

Challenges, strategies, and methods

• Pipeline design

• On demand data preparation

• Progressive visualization

• Data enrichment
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Pipeline design

5.1



Pipelines for 
data-driven decision making
• Goal: reduce needed resources

• Design compositions

• Adaptivity
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Reducing needed resources by design
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Table 2. Component Execution Time Statistics, Estimated on 10 Runs, for
One Item

Measure Photo TwoPersons PublicPlace
Mean 45 ms 24 ms 37 ms
StdDev 2 ms 3 ms 2 ms

Fig. 5. Precision, recall, and reduction rate responses to confidence threshold.

Sample Annotated Dataset. In Table 2, we report summary statistics for the processing time of
the components on the Sample Annotated Dataset.7

Insights on the behavior of the three components with different confidence thresholds are de-
rived using annotated data and provenance metadata. A visual intuition about how the parameters
(e.g., confidence thresholds) could be tuned in order to match the pipeline constraints is provided
to the data analyst and is shown in Figure 5. This information is essential for the data analyst, since
the precision/recall trade-offs will usually take different shapes in real-world scenarios depending
on the dataset. The data analyst can exploit this information to revise the confidence threshold of
the single components.

The Feedback dashboard is aimed at understanding the behaviour of the pipeline when varying
its parameters. As mentioned before, a grid exploration of the variable space is performed in order
to estimate the Pareto frontier for the objectives. This functionality can be appreciated in Figure 6,
representing the pipeline performance in terms of precision and recall when changing the pipeline
parameters. If applicable, admissible regions for the required reduction rate are highlighted. With
this tool, moving from sub-optimal solutions to better ones is just a matter of moving a marker in
the space of pipeline configurations towards the desired region of the Pareto frontier, subject to
the constraints.

In our example, the resulting reduction rate is approximately 81%. Therefore, the number of
output items violates the constraints according to the pipeline assessment. The data analyst could
evaluate improvements that increment both reduction rate and precision: for example, there is
room for enhancement rising the confidence threshold for the TwoPersons and PublicPlaces com-
ponents, whereas the same operation for the Photo component appears less convenient.

Finally, in light of reduction rates and component execution times, we can possibly suggest a
different ordering, following the intuition that faster and more selective components should be
placed upstream in the pipeline. With such heuristics, alternative orderings can be selected by the

7These measures also include processing overheads, such as network communication and request parsing.
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Fig. 4. Data analysis pipeline design applied to a COVID-19 image dataset.

The source outputs approximately 500,000 images per week. According to the proposed meth-
odology, a sample dataset consisting of 918 images is extracted. In order to obtain a well-grounded
truth for annotations, the images comprising the sample dataset were each reviewed by three
crowd workers, annotating the item as relevant if it is a photo with at least two persons in a public
space, as described in the goal. To account for disagreements between crowd workers, an item
was marked as relevant when the agreement among annotators was above or equal to 66%. The
provenance metadata stored the information related to the post belonging to the sample dataset
(media URL, post id, etc.), to the annotators, and the result of the annotations.
. . .
e n t i t y ( p i p e l i n e : pos t1 , [ prov : type =" p i p e l i n e : P o s t " , p i p e l i n e : p o s t _ i d = " 1 2 9 6 4 7 4 4 8 5 6 8 8 8 5 2 4 8 0 " ,
prov : atTime ="2020−08−20 1 7 : 4 9 : 3 9 " ,
p i p e l i n e : m e d i a _ u r l =" h t t p s : / / pbs . twimg . com / media / Ef4ArKdXkAIbZCV . j p g " ] )
wasDerivedFrom ( p i p e l i n e : s a m p l e _ d a t a s e t , p i p e l i n e : pos t1 , − , − , −)
wasGeneratedBy ( p i p e l i n e : s a m p l e _ d a t a s e t , p i p e l i n e : c rawl ing1 , −)
agen t ( p i p e l i n e : a n n o t a t o r 1 , [ prov : type =" p i p e l i n e : Annota tor " ] )
wasAssoc ia tedWith ( p i p e l i n e : annota te , p i p e l i n e : a n n o t a t o r 1 , −)
e n t i t y ( p i p e l i n e : a n n o t a t e d _ d a t a s e t , [ prov : type =" p i p e l i n e : A n n o t a t e d D a t a s e t " ,
p i p e l i n e : a n n o t a t i o n s = ( ' Va l id ' ) ] )
wasGeneratedBy ( p i p e l i n e : a n n o t a t e d _ d a t a s e t , p i p e l i n e : annota te , −)
. . .

8.1.2 Components Selection and Workflow Definition. The data analyst selects the components
of the pipeline from the Components Library. In the considered context, the target function can
be decomposed as the logical conjunction of three separate sub-goals: “is a photo”, “contains
two persons”, “displays a public space”. These components leverage established deep learning
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Fig. 6. Confidence grid search for precision, recall,
and reduction rate. The cross marker represents the
initial configuration (0.7 confidence threshold). Solu-
tions that satisfy the constraints are in a lighter
shade.

Fig. 7. Execution times for the same pipeline while
varying component ordering. Horizontal lines repres-
ent different confidence thresholds.

data analyst, revising the initial pipeline configuration. Executing this new pipeline on the sample
dataset, we demonstrated a significant execution time decrease (down to 33% of the original execu-
tion time in our experiments) without affecting the precision and recall values. Figure 7 empirically
shows the effect of changing the ordering of the components. Each row corresponds to a single con-
fidence threshold, which is fixed for all the components in the pipeline. The different points along
each row represent the execution times with different orderings of the components. Consistently
across different orderings, in our experimental setup, the best configuration was [C2: TwoPersons,
C1: Photo, C3: PublicPlace] and the worst was [C3: PublicPlace, C1: Photo, C2: TwoPersons].

An extract of the provenance model obtained by executing the pipeline on a small dataset can be
retrieved and visualized from the shared repository.8 The repository also contains the sample data-
set, aggregated annotations, and the dataset in output of each of the components of the pipeline,
thus enabling the replication of the results.

9 RELATED WORK
Data ecosystems are emerging to indicate infrastructures in which several actors can share
data and collaborate with the goal of creating value for all participants. New requirements are
emerging towards enhancing trust in data, including transparency of the data generation process
[15], and it is important to associate quality properties to data and data processing for enhancing
the (re)usability of datasets. When considering datasets derived from social media, the number
of relevant posts for a specific investigation could be limited, for example, when natural disasters
strike and social media are used for getting rapid awareness of the event [28] in which firsthand
evidence is limited, and most of the posts just refer to the event in a generic way. Another factor
is the presence of fake news or bot-generated posts, which may have heavy implications for the
results of analyses of news on social media [18, 24]. As a result, datasets in general, and specifically
those derived from social media as data sources, need to be preprocessed before using them to
derive a dataset that is fit for use for the analyses at hand. The data preparation activities can be
performed both automatically and manually. An overview of data science processes is provided
in [5], in which the main steps of the data lifecycle are presented and the importance of data
curation, tracking, caring, and metadata are discussed. On the other hand, the attention to the
data preparation process in such contexts and their implications for the quality of the results are
gaining more importance [22]. In [2], different combinations of machine learning (ML) classifiers
and crowdsourcing for data annotations are discussed, with an empirical analysis on the suggested

8https://bit.ly/30CNVcU.
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best configuration 
[C2: TwoPersons, C1: Photo, C3: PublicPlace] 

worst 
[C3: PublicPlace, C1: Photo, C2: TwoPersons] 
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Lightweight pipelines 

• “Good Enough is Sometimes Better”

• Improve only the first ranked DQ dimension
• Based on a knowledge base on DQ dimensions 
    and improvement techniques

• Tests vs improving all dimensions
• Assessing the impact on accuracy

• Considered dimensions: accuracy and completeness
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Table 1: Median ω𝐿1 and ω𝐿2 results for di!erent combinations of dataset and algorithms

DT LR KNN RF AB SVC
ω𝐿1 ω𝐿2 ω𝐿1 ω𝐿2 ω𝐿1 ω𝐿2 ω𝐿1 ω𝐿2 ω𝐿1 ω𝐿2 ω𝐿1 ω𝐿2

weather suggested 0.8388 0.836 0.8552 0.8698 0.8396 0.8405 0.8438 0.841 0.8561 0.8531 0.4609 0.5865
all 0.815 0.78 0.5592 0.657 0.7651 0.7819 0.8385 0.8124 0.8493 0.8316 0.3143 0.3549

galaxy suggested 0.9802 0.9776 1.1107 1.1104 0.9696 0.9715 0.9735 0.9805 0.9627 0.9735 1.2328 1.2403
all 0.9284 0.9011 0.7415 0.9142 0.8545 0.869 0.9391 0.9207 0.9423 0.918 1.0045 1.0723

character suggested 0.7926 0.813 0.9476 0.9456 0.8234 0.8283 0.7984 0.7997 0.8514 0.8449 0.98 0.9805
all 0.8039 0.7936 0.8714 0.8752 0.8195 0.8076 0.7962 0.792 0.8511 0.8305 0.9466 0.9588

consumer suggested 0.9441 0.9385 1.0049 0.9977 0.9361 0.9325 0.921 0.9239 0.9348 0.9292 0.6352 0.6315
all 0.9268 0.9113 0.9213 0.9171 0.9229 0.9161 0.908 0.8993 0.9427 0.9342 0.5804 0.5685

pet suggested 0.8223 0.8389 0.994 0.9924 0.8761 0.8853 0.8279 0.8258 0.8275 0.8279 1.0143 0.9912
all 0.8178 0.8095 0.9761 0.9572 0.882 0.8567 0.8172 0.8006 0.8768 0.862 1.0146 0.9902

heart suggested 0.815 0.8089 0.9427 0.9269 0.8488 0.8107 0.8224 0.7884 0.8215 0.7671 1.0343 1.0334
all 0.8187 0.8047 0.9363 0.9504 0.8494 0.83 0.8165 0.7894 0.8293 0.8349 1.0173 1.0188

MEDIAN
(all data)

suggested 0.8306 0.8375 0.9708 0.969 0.8625 0.8629 0.8359 0.8334 0.8538 0.849 0.9972 0.9859
all 0.8183 0.8071 0.8964 0.9157 0.852 0.8434 0.8279 0.8065 0.864 0.8485 0.9756 0.9745

This clearly suggests that improving the most in!uential DQ
dimension results in a signi"cant gain in performance, while subse-
quent improvements of less in!uential dimensions result in a very
small performance gain.

We also noted that improving less impactful errors can worsen
the "nal performance: since the algorithm is not sensitive to those
types of errors, correcting them introduces approximate values that
can compromise the "nal results.

This highlights that “good enough is sometimes better” : improv-
ing the "rst dimension suggested by our approach always leads to
performance that is at most the same as the performance obtained
by running the total pipeline. This performance can be achieved
even without completing the pipeline execution, saving the en-
ergy and resources needed for all subsequent quality improvement
operations.

4 CONCLUSIONS
We presented an approach for suggesting lightweight preparation
pipelines that favor sustainability while preserving an acceptable
results’ quality. Future work includes actually measuring the con-
sumption of the collected pipelines, in terms of energy, gas emis-
sions, and carbon footprint, if carried out on large amounts of data.
Moreover, the current framework can be extended with more DQ
dimensions, ML algorithms, and data preparation techniques.
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is a multi-dimensional concept that refers to several aspects that a!ect data from various
perspectives. The most used data quality dimensions are accuracy, completeness, consistency
and timeliness [2]. We base our approach on the fact a speci"c data quality issue can be solved
by using one or more data preparation actions. Therefore, once that a preliminary data quality
assessment reveals the dimensions that need to be improved, it is possible to identify the related
data preparation actions to perform. Moreover, a series of experiments allowed us to discover
that the impact of di!erent quality issues is dependent on the context of the analysis, where the
context is modeled as the analytics application and the characteristics of the considered data
sources. These "ndings helped us in designing an adaptive system able to provide users with
guidelines about the sequence of data preparation activities to perform in a particular context to
maximize the output quality. The e!ectiveness of such guidelines has been proven testing them
with di!erent combinations of data sets and analytics algorithms. The tests con"rmed that
applying the suggested sequence of data preparation tasks yields better "nal results. The paper
is organized as follows. Section 2 presents the proposed approach and shows the experiments
conducted to understand the impact of the data quality errors on the results of data analysis.
Section 3 shows a preliminary validation of the e!ectiveness of the presented system. Section 4
discusses previous literature contributions. Finally, Section 5 draws conclusion and discusses
future work.

2. A framework to support the design of data preparation
pipelines

This section aims to describe the framework we designed for supporting users in the data
preprocessing phase. Sections 2.1 and 2.3 present the architecture and the experiments conducted
for feeding the knowledge base used to provide valuable recommendations. Section 2.2 clari"es
the data quality aspects and biases we consider in this work.

2.1. The general architecture

A data analytics pipeline is usually composed of two main phases: data preprocessing and data
analysis. The former collects and processes the data for guaranteeing a certain level of quality
while the latter performs the data analysis tasks. This paper focuses on the data preprocessing

Figure 1: The Data Preparation framework: the high level architecture
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Considering a limited budget for workflows

• Organization need to minimize the environment impact of their 
operations

• Approximation techniques: dynamically adjust workflows

• Balance 
• Sustainability
• User experience 
• Revenue
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Adaptive workflows
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Fig. 3. BPMN model for the !ight-booking application used in the experiments.
Table 2 
Application model parameters for the !ight booking application.
 Component  Versions  Mandatory?  Instance Type  ED  q  uc  QoE  rev

Flight Search
 Low Power

Mandatory
 t3.micro  13.0  0.5  20,000 or 5,000  0.5 or 0.1  0

 Normal  t3.xlarge  39.9  0.7  20,000 or 5,000  0.75 or 0.3  0
 High Performance  g2.2xlarge  305.4  0.9  20,000 or 5,000  1  0

Weather Information  O" Optional  –  0.0  0.9  –  0  0
 Normal  t3.micro  13.0  1.0  20,000 or 5,000  1  0.2

Flight Booking  Low Power Mandatory  t3.micro  13.0  0.5  20,000 or 5,000  0.5 or 0.1  0
 Normal  t3.xlarge  39.9  0.95  20,000 or 5,000  1  0

Rental Car Booking
 O"

Optional
 –  0.0  0.75  –  0  0

 Normal  t3.xlarge  39.9  0.9  20,000 or 5,000  0.75 or 0.3  2
 High Performance  g2.2xlarge  305.4  1.0  20,000 or 5,000  1  2

 Payment  Normal  Mandatory  t3.xlarge  39.9  0.99  20,000 or 5,000  1  0

while current workload levels inform the Deployment Optimizer in scaling 
the application’s components. For the experiments, we used hourly page 
view statistics from the English subdomain of Wikipedia [46] from 2022 
and 2023. This dataset is based on real-world access logs and provides 
a realistic approximation of the tra#c patterns experienced by a large-
scale online service. The traces capture typical diurnal and weekly usage 
cycles, including peak and o"-peak periods, as well as seasonal e"ects.

Carbon intensity. This information is used by the Energy Budget Estima-
tor component to determine the energy budget available for applica-
tion deployment at each time slot (in our experiments, hourly) and to 
compute the total emissions produced by the application over the year 
based on the generated deployment plan. In a real-world scenario, this 
data would be gathered in real-time from a live service during the ap-
plication’s execution. For the experiments, we used historical traces of 
the hourly average carbon intensity in three regions for 2022 and 2023, 
provided by Electricity Maps [47]: California (CAISO), Texas (ERCOT), 
and Germany (DE).

Carbon budget. In this work, we assume that the total Carbon Budget 
available for application execution is determined by the application de-
signer at the beginning of each year (see Fig. 1). The Energy Budget Esti-
mator divides this budget into time slots, taking into account expected 
variations in the application workload.

To assess how well the approach adapts to varying carbon con-
straints, we conducted experiments under three distinct carbon budget 
scenarios:

• HIGH Carbon Budget: The hourly budgets for 2023 are set to match 
the emissions required to run the service in its highest-performance 
con$guration during the same hour in 2022.

• LOW Carbon Budget: The hourly budgets are based on the emissions 
required to run the service in its most carbon-e#cient con$guration 
during the same hour in 2022.

• AVERAGE Carbon Budget: The budgets are computed as the aver-
age of the HIGH and LOW scenarios for each hour.
The HIGH and LOW budget scenarios represent extreme cases with 

limited !exibility for adaptation, but they are essential for evaluating 
the robustness of the approach under stringent or relaxed carbon con-
straints. In contrast, the AVERAGE scenario o"ers greater room for adap-
tivity, allowing the system to dynamically trade o" between perfor-
mance and carbon e#ciency.

6.2.  Baselines

To evaluate the performance of the proposed approach, referred to 
as Optimised Selection Carbon-Aware algorithm (OSCA), its results 
are compared against three baseline approaches:

• High Performance (HPE): This baseline represents the scenario 
where the application is executed with all services deployed in their 
highest performance versions. It re!ects a “do-nothing” approach, 
where no actions are taken to reduce the application’s environmen-
tal impact.

• Simple Carbon-Aware (SCA): In this baseline, adaptive measures 
are introduced to reduce the application’s environmental impact. 
Three $xed con$gurations are de$ned: High Performance, Normal 
Performance, and Low Performance, where all components operate 
in the same mode if available. At each time slot, the con$guration 
that complies with the carbon budget is selected.

• Sequential Carbon-Aware (SeqCA): Similar to SCA, this baseline 
de$nes the same three $xed con$gurations but restricts their selec-
tion to a sequential order. At each time slot, the carbon budget is 
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Strategies
• Optimised Selection Carbon-Aware algorithm (OSCA)
• High Performance (HPE ) “do-nothing” 
• Simple Carbon-Aware (SCA): Three fixed 

configurations: High Performance, Normal
     Performance, and Low Performance. Selected  wrt
     carbon budget compliance
• Sequential Carbon-Aware (SeqCA), adaptive to 

emissions



On demand

5.2



Considerations

• 85% of data not used during information access
• Costly data preparation operations

Integrate cleaning operations in queries
Extract clean samples from dirty data
Select most appropriate table to merge in a data lake
…
ON DEMAND



Entity resolution
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Entity Resolution (ER) is the task of identifying records that
pertain to the same real-world object.

Data Source A Data Source B
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First correct entity 
after minutes/hours

Traditional approach

First correct entity 
after seconds

On Demand
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Concluding remarks
• Measuring is complex

• Circular economy strategies provide an analysis framework

• Comparing alternative approaches focusing on specific problems helps

• Much future work is needed
• Balance time and space requirements and constraints
• Assess human experience and involvement
• Define “good enough”…

• Guidelines: EU AI Act encourages Code of Conducts for environmental sustainability (art. 95)
“assessing and minimising the impact of AI systems on environmental sustainability, including as 
regards energy-efficient programming and techniques for the efficient design, training and use of 
AI”
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Many different perspectives

65

along the AI lifecycle regarding the social, ecological, 
economic, and governance dimension of sustainability. 
With this integrative approach, we want to strengthen the 
perspective of responsible AI development [24,25], which 
is urgently needed in view of the increasing integration of 
AI in infrastructures [3] and services of public interest. By 
putting forward this comprehensive assessment frame-
work for sustainable AI, we aim not only to raise aware-
ness among developers, companies, policymakers, and 
the public but also to provide an assessment framework 
that enables actors to develop concrete measures to im-
prove AI development and deployment. 

The remainder of the paper is organized as follows. An 
embedded perspective on sustainable artikcial intelligence and the 
impacts of socio-technical–ecological artikcial intelligence systems 
elaborates on our socio-technical approach toward AI and 
briefy describes the sustainability concept from which our 
evaluation framework for sustainable AI is derived. 
Methodological approach describes the methodology on how 
we arrived at the sustainability criteria and indicators for 
AI systems in detail. The SCAIS framework is introduced 

in Sustainability criteria and indicators for artikcial intelligence 
systems — the Sustainability Criteria and Indicators for 
Artikcial Intelligence Systems Framework. Challenges and im-
plications for artikcial intelligence development, research, and 
policy indicates the challenges for sustainable AI we have 
identijed as well as recommendations for future research. 

An embedded perspective on sustainable 
artificial intelligence and the impacts of socio- 
technical–ecological artificial intelligence 
systems 
In the following, we explain in more detail our con-
ceptual approach on sustainable AI, which we refer to as 
the embedded perspective. We dejne AI systems as systems 
in which the rules are not dekned by humans in the program-
ming of the algorithm but are created by a subsequent learning 
process (from data). AI systems include both the underlying 
machine-learning models with inscribed values and the data 
used for learning. This study focuses on supervised ma-
chine learning as a subset of the AI jeld while ac-
knowledging other approaches to AI, such as planning 
and search, knowledge representation, and reasoning. 

Figure 1  

Current Opinion in Environmental Sustainability

AI systems as socio-technical–ecological systems, with impact levels and relevant actors for sustainable AI.   

Sustainability indicators for AI systems Rohde et al. 3 

www.sciencedirect.com Current Opinion in Environmental Sustainability 2024, 66:101411 

Rohde et al, 2024
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