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IoT and Big Data Space



National IoT Research Testbed@Newcastle
 £4.3m total capital investment to 2021
 £25m+ total research revenue
 3500+ sensors deployed to date
 Largest sensor deployment in the UK
 1,000,000,000 observations > 2000 per minute
 Largest set of open environment monitoring data in the world (?)
 64+ variables, 24 platforms

 Weather, traffic, water flow, water quality, bees, traffic, people flows, air quality, energy consumption, waste and clean water, noise
 Monitored infrastructure and buildings
 CCTV – 240+ cameras > 100,000,000 images 
 Relationships with city stakeholders



• 1 billion + data points
• 3600 deployed sensors
• Scaleable data platform, APIs and  

downloads
• 62+ Variables
• 300+ CCTV feeds
• 100,000 images daily
• 5,000,000 observations daily

National Urban Observatory Facility Newcastle http://newcastle.urbanobservatory.ac.uk



Cloud + IoT + Big Data Approaches

IoT 
sensors

Decision 
making

IoT 
sensors

IoT 
sensors

Cloud
+

IoT

Google Cloud IoT

Azure IoT

AWS IoT
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Motivation
Osmotic Computing
Osmotic computing is a new paradigm to support the efficient
execution of Internet of Things (IoT) services (microservices)
and applications between cloud datacenter and the network
edge by providing increased resource and data management
capabilities at the edge of the network.

M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic computing: A new paradigm for edge/cloud integration,” IEEE Cloud
Computing, vol. 3, pp. 76–83, Nov 2016.



Osmosis Process
 In chemistry,“osmosis” represents the

seamless diffusion of molecules from a 
higher to a lower concentration 
solution.

 Dynamic management of 
(micro)services across cloud 
and edge datacenters
 deployment, networking, and 

security, …
 providing reliable IoT

support with specified levels 
of QoS.
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Osmotic Computing: Federated View



Building Blocks: Containerized Microservices
• Division of 

functionality in 
to multiple 
components

• Easy to manage 
and upgrade

• Lightweight
• Improved 

performance

Virtual Machines Containers
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Abstract View of Osmotic IoT Application
 The dependency among various 

microservices is represented by 
a topologically ordered 
directed acyclic graph (DAG).

 Each microservice belongs to 
either a set of pre-defined IoT functions Ψ or user-defined 
functions Ω, 

 Each microservice has specific 
hardware and software 
requirements RH and RS 
respectively. Some QoS
constraints are also associated 
with each microservice
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Osmotic Computing Concept

Microservice
i) Microservice

iii)
Microservice

ii) Microservice
iiii) i)

Microservice
ii)

Microservice

Cloud Edge

A tunable configuration of the resource involvement
• Adapt to the available resources
• Meet application requirements (latency in this paper)



Osmotic Computing Concept
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Data Store

Data flow patternsIoT analysis patterns
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How to abstract IoT Data Analysis and Flow Patterns?

Ref: Y.Li, A.Alqahtani, E. Solaiman, C. Perera, P. P. Jayaraman, R. Buyya, G. Morgan, and R. Ranjan, “IoT-CANE: A Unied Knowledge Management System for Data-Centric 
Internet of Things Application Systems,”  Journal of Parallel and Distributed Computing (JPDC), https://doi.org/10.1016/j.jpdc.2019.04.016, Elsevier. 

Osmotic Computing Challenges



Air Quality IoT Data Analysis Workflow
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Ref: Y.Li, A.Alqahtani, E. Solaiman, C. Perera, P. P. Jayaraman, R. Buyya, G. Morgan, and R. Ranjan, “IoT-CANE: A 
Unied Knowledge Management System for Data-Centric Internet of Things Application Systems,”  Journal of Parallel 
and Distributed Computing (JPDC), https://doi.org/10.1016/j.jpdc.2019.04.016, Elsevier. 



Flood Prediction IoT Data Analysis Workflow
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Ref: Y.Li, A.Alqahtani, E. Solaiman, C. Perera, P. P. Jayaraman, R. Buyya, G. Morgan, and R. Ranjan, “IoT-CANE: A 
Unied Knowledge Management System for Data-Centric Internet of Things Application Systems,”  Journal of Parallel 
and Distributed Computing (JPDC), https://doi.org/10.1016/j.jpdc.2019.04.016, Elsevier. 



Osmotic Computing Challenges
Microservices’ Performance Characterisation:
 How to systematically undertake performance characterisation of data analysis

activities (e.g., microservices) across different parts of the infrastructure (Cloud, Edge,
and IoT)?

 How to reason about heterogeneous QoS implications across Cloud, Edge and IoT?
 The performance of a data analysis activity mapped to a Cloud layer is quite different

from a gateway and/or device in the Edge and IoT layer
 Network stability, throughput optimality, routing delays, fairness in resource sharing,

available bandwidth, and sensor battery state . [Edge and IoT]
 End-to-end response times, platform scalability and reliability, virtual server utilizations,

and the costs of moving data to and from the Cloud. [Cloud]



Microservices’ Performance Characterisation
 Current benchmark kernel implementation can only test 

performance of specific type of IoT data analysis activities
 TPCx-IoT can benchmark Edge layer (data aggregation, real-

time analytics and persistent storage)
 Google ROADEF & Linear Road kernels for benchmarking 

stream processing data analysis activity at the Edge layer.
 None, by themselves, can reveal the true bottleneck of whole 

IoT application graph,
 Possible research directions 

 To identify/build different suitable benchmarks from each type of the 
data analysis activities and hierarchically/logically combine them to 
draw accurate conclusions across an IoT graph in a holistic way. 



Dockerizing Benchmark Kernel: Our Approach

Standford University, MIT, Brandeis University, OHSU/OGI (2004) Linear Road: A Stream Data 
Management Benchmark https://www.cs.brandeis.edu/~linearroad/linear-road.pdf

Linear Road Kernel



Dockerizing Linear Road Kernel
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Testing results – Throughput



New Benchmark Kernels

National Urban Observatory FacilityNewcastle
http://newcastle.urbanobservatory.ac.uk



Microservices’ Performance Characterisation
 Challenges with setting up real-world benchmarking experiments in context 

of Osmotic Computing
 Complexity and heterogeneity of end-point networks (e.g. WiFi, 4G, Bluetooth)
 Heterogeneity of cloud, edge and IoT hardware resources and software stack
 Mobility of IoT and edge devices
 Complex interactions between the IoT and edge layers
 Hard (if not) impossible to scale



Microservices’ Performance Characterisation: Osmotic 
Simulator

Simulator release site: 
https://rajivranjan.net/i
otsim/iotsim-release/



IoTSim-Edge Case Study
- Capacity Planning for Road Side Units (RSUs)



IoTSim-Edge Case Study
- Capacity Planning for Road Side Units (RSUs)

Simulation Configuration for IoT device, Edge device and Microservices

Microservices



IoTSim-Edge Case Study
- Capacity Planning for Road Side Units (RSUs)



Osmotic Computing Challenges
Microservice deployment:
 How to map microservices to Edge, IoT,

and Cloud layers based on non-
functional requirements?

 How to solve the NP-hard deployment
problem?

 To this end, novel decision-making
techniques based on multi-criteria
optimization and multi-criteria decision
making techniques should be
investigated. Fig: Non-functional Requirements



Osmotic Computing Challenges
Microservice Networking 
 Limitation of Software Defined Networking (SDN) in context of IoT includes:

 having a centralized controller
 connecting millions of IoT devices to a centralised controller is not scalable

 One of the important research direction will be to
 first subdivide the controlling layer to create hierarchy of controllers
 develop algorithms for coordinating bandwidth allocation across controllers
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Osmotic Computing Challenges
Microservice Contention
 The co-deployed microservices on Cloud 

or Edge datacenters can lead to contention 
problems which will affect QoS. 

 Research in Osmotic Computing should be 
focus on novel microservice consolidation 
techniques that can dynamically detect and 
resolve resource contention.

Edge

Cloud



Osmotic Computing Challenges

Microservice Monitoring 
 How to monitor & debug IoT applications in real-time?
 How to effectively analyze collected monitoring data to detect root

causes of QoS violations and failures?

Monitor
Resources Analysis activities

MeasurementDebugging
Platforms 

Dataflow 
IoT data analysis microservices’ graph

IoT CloudEdge



Osmotic Computing Challenges
Microservice
orchestration and 
elasticity control
 How to holistically 

autoscale?
 How to replicate data 

to avoid data loss?
 How to load-balance 

based on resource 
and data flow?

IoT application

Autoscaling Replication Load-balancing

IoT CloudEdge
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Building Blocks: IoT Sensors and Acutators



Building Blocks: Connectivity



Building Blocks: Edge Computing
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Smart World of Things in Connected “Cities”

Source: http://images.libelium.es/content/applications/libelium_smart_world_infographic_big.png


