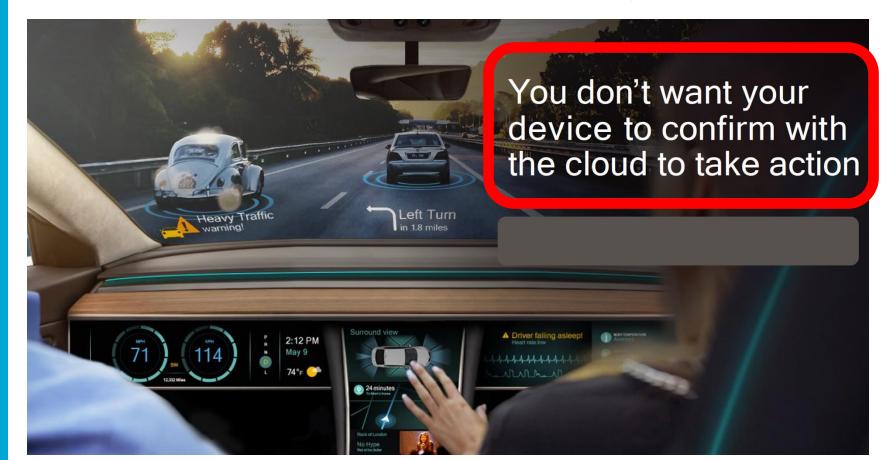
2nd April 2025

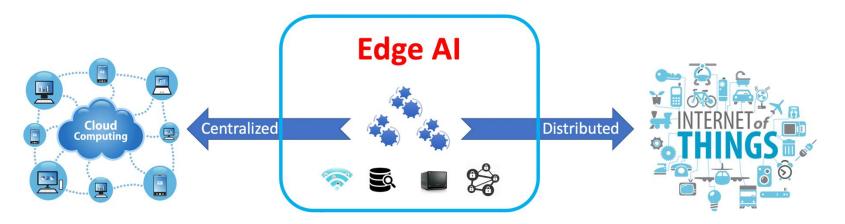
Edge AI 2.0 for Future Computing

Aaron Ding

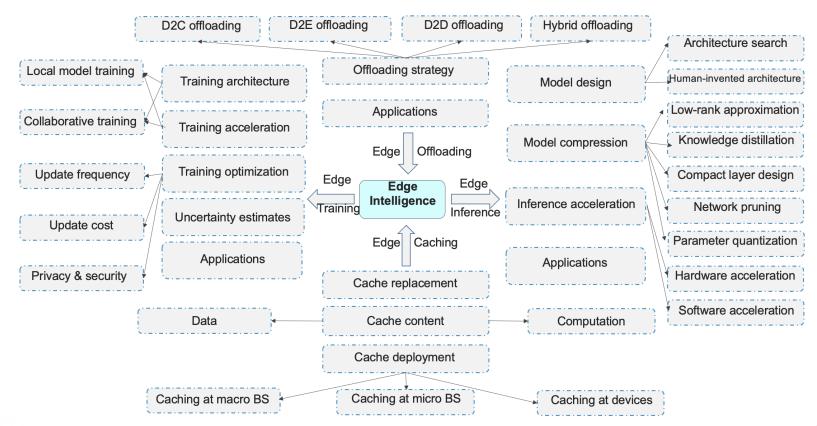
Director of CPI, Senior Associate Professor (UHD1 lus Promovendi)

Why + Lessons + Directions


Why + Lessons + Directions


ruDelft

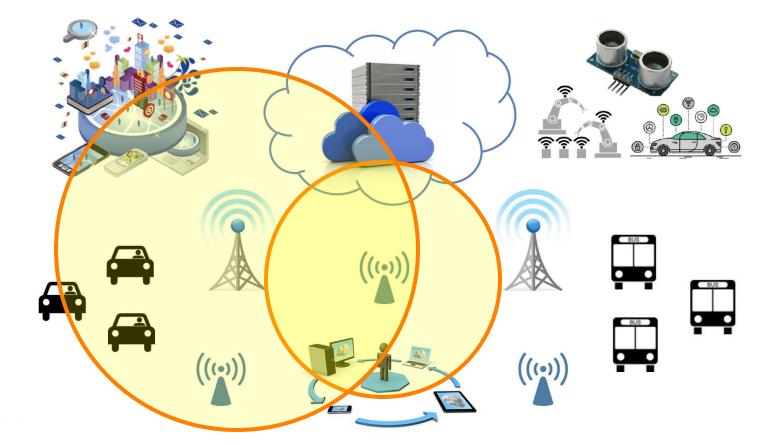
latency, reliability, security, data privacy and trust ...

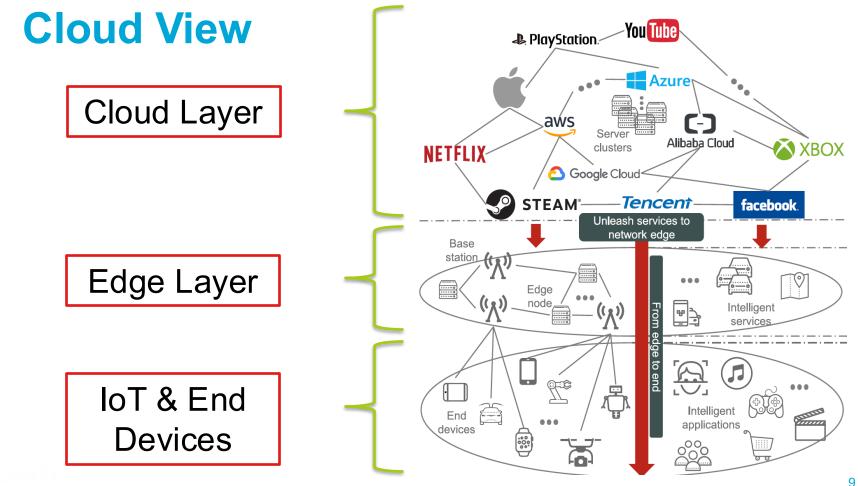

Bridge the Gap

Consolidate Cloud & IoT

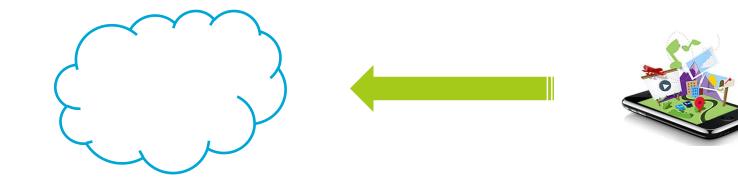
Enabling Techniques

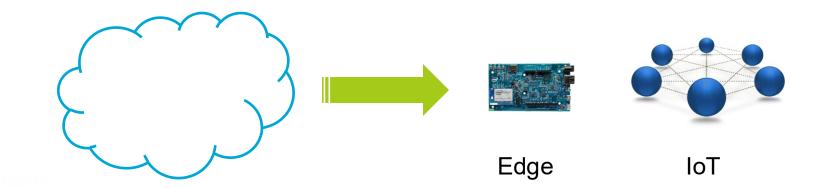
TUDelft


"Edge Intelligence: Empowering Intelligence to the Edge of Network", Proc of IEEE, Vol 109, No 11, 2021

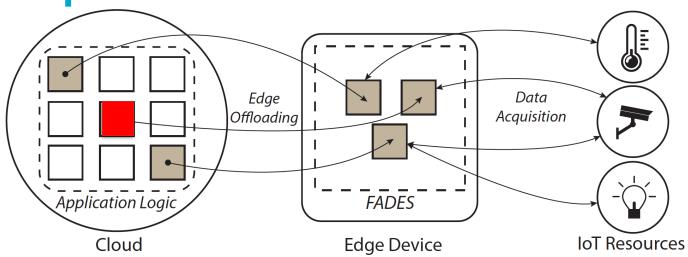

But Where Are They ?

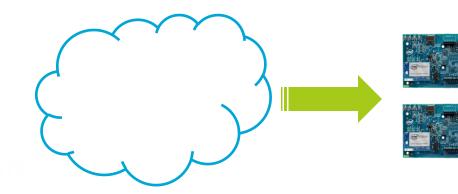
≸ TUDelft


Convergence of Edge Computing and Deep Learning: A Comprehensive Survey, IEEE COMST 2020


TUDelft

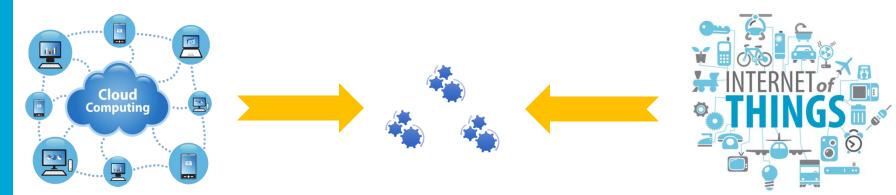
What exactly is it ?



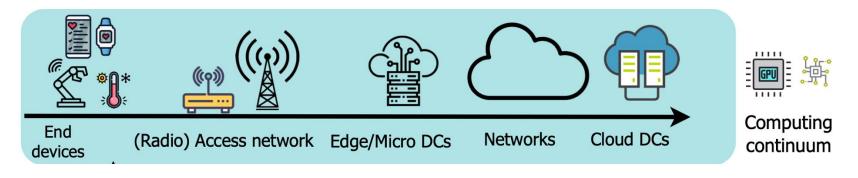


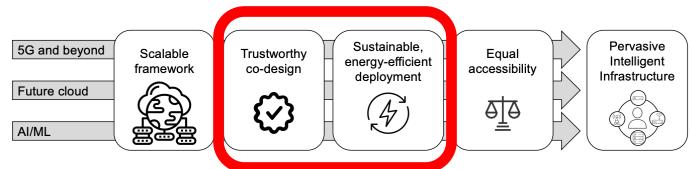
Example

≢ TUDelft



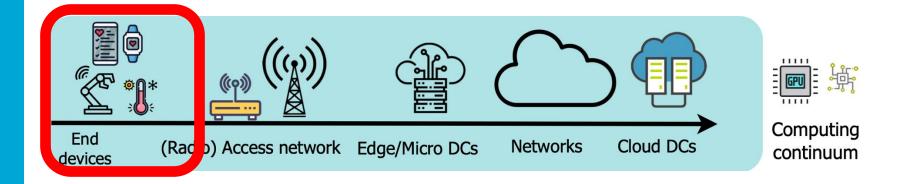
Why Bringing Intelligence to Edge


Problem Solved !?



Are You Sure ...?

Future Computing – Edge Al 2.0

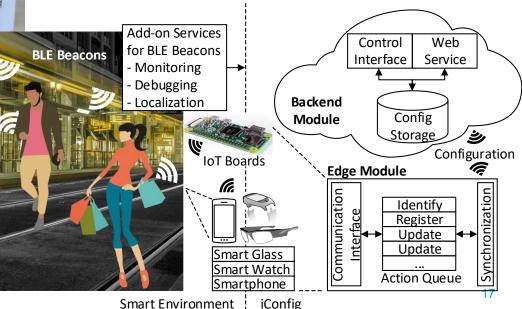

"Roadmap of Edge AI: A Dagstuhl Perspective", ACM SIGCOMM CCR 2022

14

Why + Lessons + Directions

Tiny but not Wasted: Circular Economy?

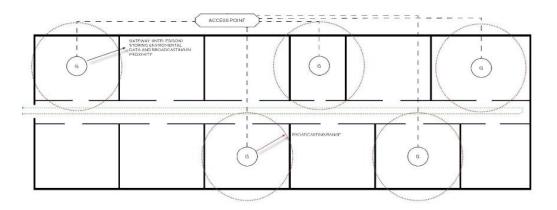
"Roadmap of Edge AI: A Dagstuhl Perspective", ACM SIGCOMM CCR 2022

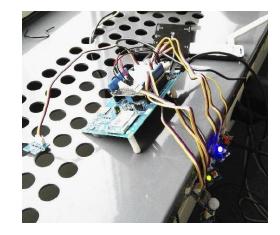

Case: Tiny IoT

" I don't get what's this really useful for ..."

"Why those BLEs are ever needed ? Why configure them ? "

what I see is what i Configure


TUDelft


Starting on Campus

Live testbed on campus

* FUDelft

- Office room context monitoring (IoT boards)
- Proximity reasoning (BLE beacons)

How to Configure ?

- Complications started
 - No backend, no fixed connectivity
 - Poor UI
 - Purely manual
 - Error prone
 - Time consuming
- Scalable ?

FUDelft

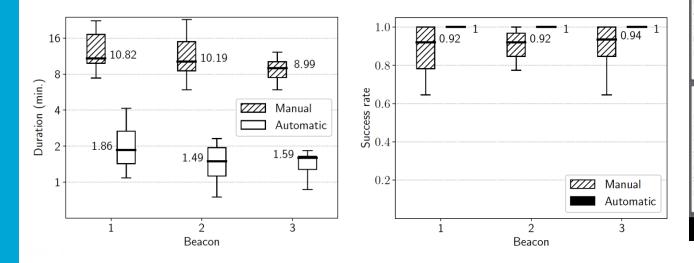
- 10-20, perhaps doable
- 100+, will drive people mad

▶ 🗉 🔻	* 💎 🖹 🔒 15:41
Beacon #6	CONNECT
Beacon General Informatio	n
NAME	
Beacon #6	
ТҮРЕ	
sBeacon, Eddystone TLM, Eddy	stone URL, Eddystone UID
RSSI	
-89 dBm	
STATUS	
SBeacon	
ID 17224680162821758480/EF0A	5B590AB55E10
TEMPERATURE 26.0 °C	
BATTERY VOLTAGE 3.63 V	
FIRMWARE REVISION	

19

Where to track ?

- Distributed across buildings
 - Paper, manual logs got lost...
 - Lack of tools, process
- Management nightmare


ACTION	UPDATE STATUS	MAC ADDRESS	BEACON ID	NEAREST ROOM	MAINTENANCE		
Edit up-to-date	. 1.	C9:ED:20:D2:6A:5F	8EC968106F2	<u>01.05.038</u>	PKT COUNT	VOLTAGE	UPTIME
	up-to-date				35155830	3.6000001	459853408
Edit up-	. 1.		5B C28C3BC4AE8	01.05.038	PKT COUNT	VOLTAGE	UPTIME
	up-to-date	EB:26:C9:E4:DC:5B			24238715	3.6000001	459856770
<u>Edit</u>	up-to-date	D6:82:27:05:E4:0B	2F0446B54A6	01.05.038	PKT COUNT	VOLTAGE	UPTIME
					31240056	3.6000001	459853016

Usability Study

ruDelft

- Basic smartphone tool
 - Six times longer, manual vs. automatic
 - Lowest rate 58% + only 1/3 got entirely right

▶ 🗉 🐳		* 💎 🖹 🔒 15:41
Beacon #6		CONNECT
Beacon General Inforr	nation	
NAME		
Beacon #6		
ТҮРЕ		
sBeacon, Eddystone TLM,	Eddystone UR	L, Eddystone UID
RSSI		
89 dBm		
STATUS		
Disconnected		
PASSWORD		
SBeacon		
D		
17224680162821758480	/EF0A5B590Al	B55E10
TEMPERATURE		
26.0 °C		
BATTERY VOLTAGE		
3.63 V		
FIRMWARE REVISION		
	~	_
\triangleleft	0	

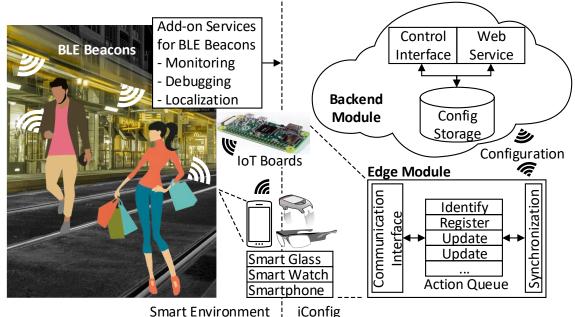
Challenges behind

- The issues of being tiny
 - Battery only

≢ TUDelft - No wire connectivity

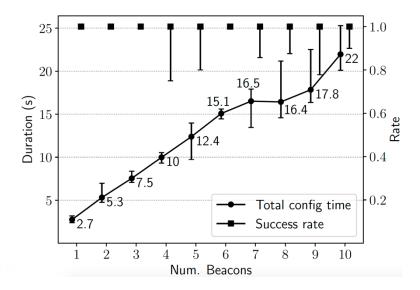
What's missing ?

- Device life cycles
 - Registration: location, tags
 - Configuration
 - Update
 - Monitoring
 - Debugging

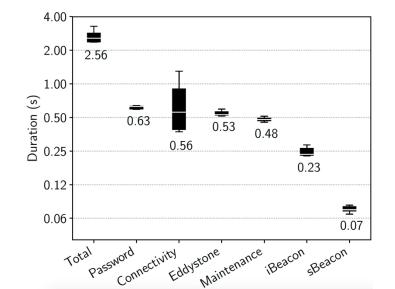

• More automation

iConfig

TUDelft


- For configuration automation
 - Portable frontend + central backend

Does it work ?


- Testbed experiments
 - ~2.2s per beacon
 - Password 25%

FUDelft

But not enough:

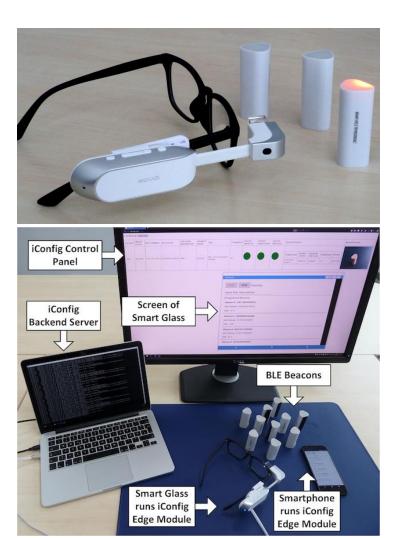
- Novelty ?
- Another App ?

25

Wait ...

- Something's missing
 - Conventional design
 - Web UI, cloud backend
 - Old-fashion interaction
 - Poor usability

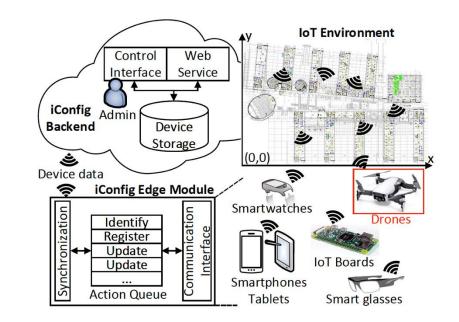
ACTION	UPDATE STATUS	MAC ADDRESS	BEACON ID	NEAREST ROOM	MAINTENANCE		
Edit up-to-dat		C9:ED:20:D2:6A:5F	8EC968106F2	<u>01.05.038</u>	PKT COUNT	VOLTAGE	UPTIME
	up-to-date				35155830	3.6000001	459853408
<u>Edit</u>	up-to-date	EB:26:C9:E4:DC:5B	C28C3BC4AE8	01.05.038	PKT COUNT		
					24238715	3.6000001	459856770
<u>Edit</u>	up-to-date	D6:82:27:05:E4:0B	2F0446B54A6	<u>01.05.038</u>	PKT COUNT	VOLTAGE	UPTIME
					31240056	3.6000001	459853016


elí

Next shot

- Voice!
 - No hands

what I see is what i Configure

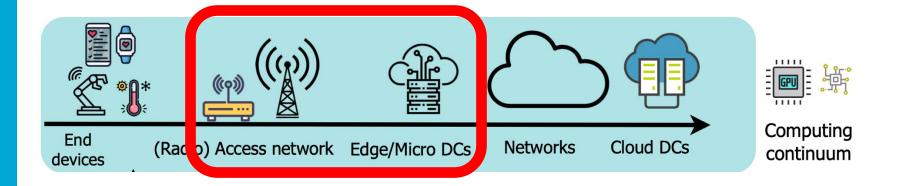

- Use cases
 - Configuration Automation
 - Debug + Monitor
 - Energy-aware management

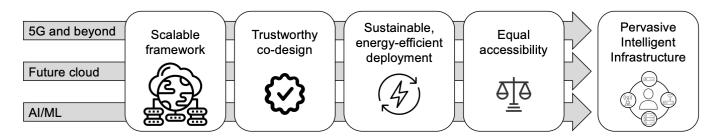
Sky is the limit ©

ruDelft

- Drone based IoT management
 - ACM SIGCOMM MAGESys

28


Tiny things hard to manage


Recycle is a MUST for Sustainability

Tools (Edge) are Missing

Bigger but not Static: Programmable ?

"Roadmap of Edge AI: A Dagstuhl Perspective", ACM SIGCOMM CCR 2022

30

Lesson #2

"What's Killer App on the Edge?"

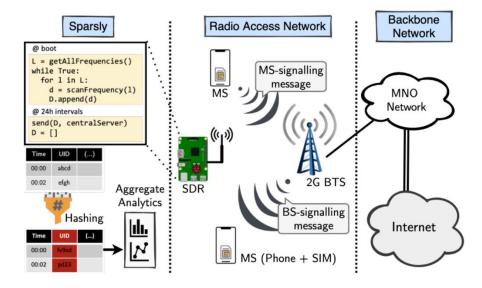
FUDelft

Case: Crowd Intelligence on Edge

- Societal impact of past years
 - Responding and coping with emergency/pandemics
 - Urban activity/mobility sensing on the edge

Motivation

- Low cost and scalable
 - User equipment
 - Deployment and coverage


Gap: high fidelity entails high cost, infrastructure dependency, privacy intervention

- Passive (non-intrusive)
 - No need to force user interactions nor mandatory engagement
- Privacy-aware/friendly
 - Balance fidelity and data (local) regulations

Design

- SDR: Software Defined Radio
- Cellular signal probing
- Paging requests (PR, BSsignaling) and location update requests (LUR, MSsignaling)
- International Mobile Subscriber Identity (IMSI) for sensing purpose
- R-Pi with Noolec NESDR dongle, spectrum (900MHz)

Unexpected

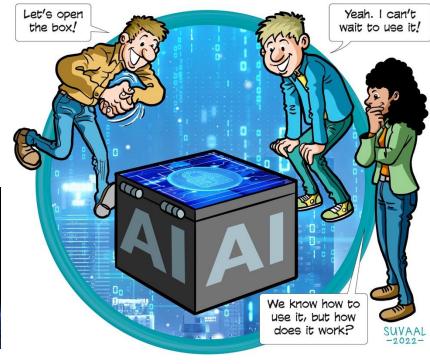
- Project ends...
 - Regulatory and legal considerations
 - Privacy in local context

TUDelft

Reusable is Key

- Reflections
 - Privacy on Edge? regulations and legal
 - Difference across countries
 - Programmability has saved us

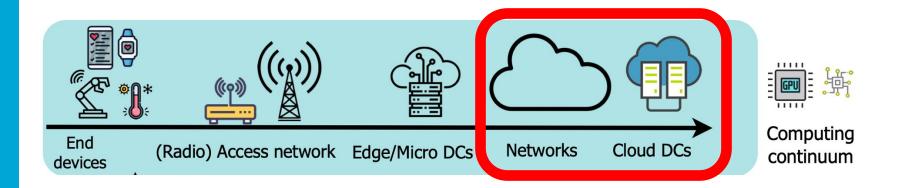
Where is my Tag? Unveiling Alternative Uses of Apple FindMy Service

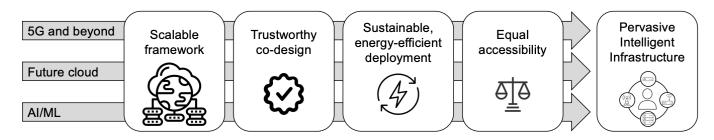

"Learn from the mistakes of others. You can't live long enough to make them all yourself." - Eleanor Roosevelt

Lesson to Action

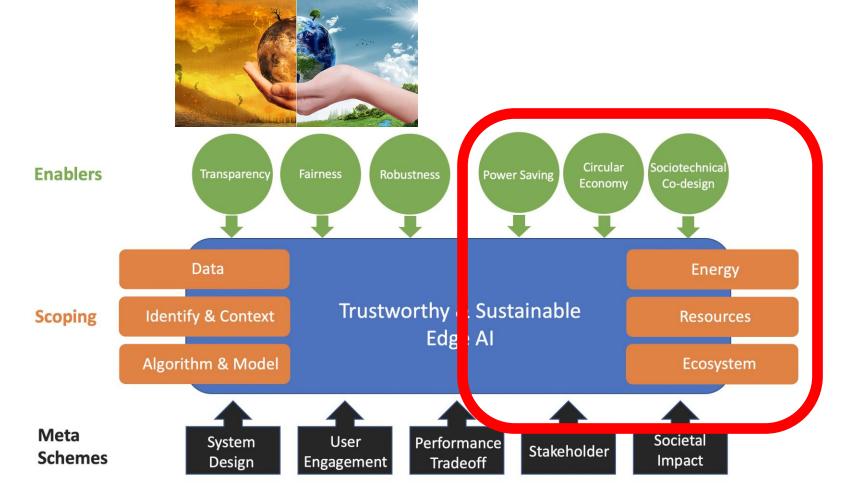
Industry + Academia

EU Horizon Project Score: 98/100 | Rate: 8%




TUDelft

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 101021808.


Huge but not Monster: Energy ?

FUDelft

"Roadmap of Edge AI: A Dagstuhl Perspective", ACM SIGCOMM CCR 2022

Aaron Ding, Marijn Janssen, Jon Crowcroft. "Trustworthy and Sustainable Edge AI: A Research Agenda", IEEE TPS

TUDelft

Sustainable Edge Al

- EU Marie Curie grant of €4M
- 20+ industrial academic partners

Approximate Computing for Power and Energy Optimisation

ruDelft

APROPOS Project Sustainable Al Score: 14.5/15 Rate: 3%

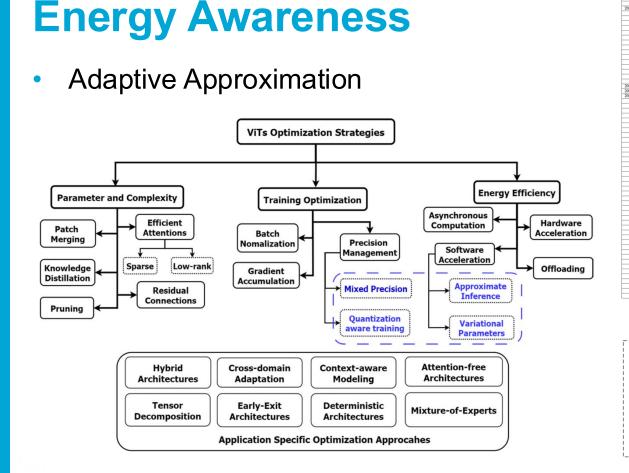
Vehicular Data

- Data increases
- Electric cars: battery life matters!

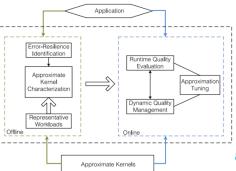
750MB per second, as Google's driverless car prototype reported

Autonomous Car Sonsors & Data

Autonomous Car - Sensors & Data										
Sensors	# Number	Data Volume								
Camera	(8-12)	500 - 3500 Mbit/s								
Lidar	(2-4)	20-100 Mbit/s								
Radar	(4-6)	0.1-15 Mbit/s								
GPS		50 Kb/s								
Ultrasonic	(8-16)	500-3500 Mb/s								
	20 TB Car/Day									
		Source: Elektrobit								

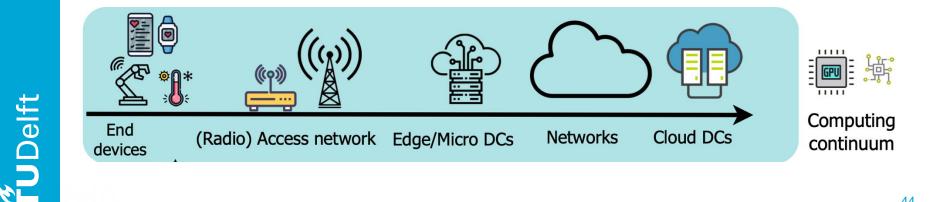


fu Delft

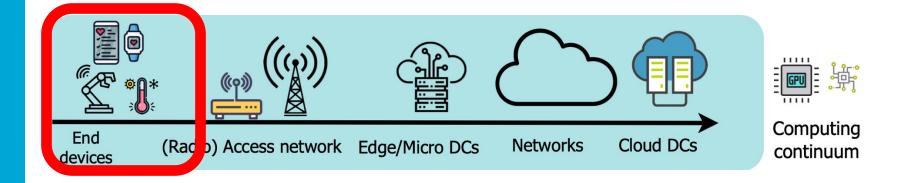

There is no free lunch

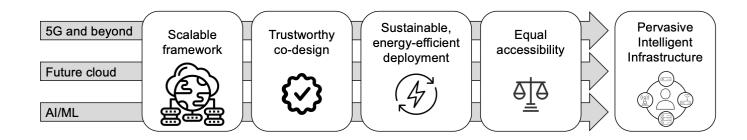
Safety Critical vs Energy Saving

Can we strike both?



¥		Sensors Included						
Year	Dataset	Camera	LIDAR	Radar	GPS/GNSS	IMU	HD MAP	URL
2 - 2022	KITTI [205]	Y	Y	N	N	Y	N	KITTI
5 - 2019	KAIST Dataset [51]	Y	Y	N	Y	Y	N	KAIST
2016 2016	HD1K [143]	Y	Y	N	N	N	N	HDIK
2016	CVC-14 [130]	Y	N	N	N Y	N	N	CVC-14 Brain4Cars
2016	Brain4Cars [120] JAAD [146]	Y	N	Y N	N	N	N	JAAD
2016	Cityscapes [53]	Y	N	N	Y	Y	N	CITYSCAPES
2016	Udacity	Y	N	N	N	N	N	UdaCity
6 - 2019	comma ai driving dataset [264]	Y	N	Y	Y	Y	N	Comma datasets
2017	TRoM [192]	Y	N	N	N	N	N	TRoM
2017	Raincouver [309]	Y	N	N	N	N	N	Raincouver
2017	VPGNet [159]	Ŷ	N	N	Y	N	N	VPGNet
2017	TuSimple	Y	N	Y	N	N	N	TuSimple
2017	TorontoCity [326]	Y	Y	N	N	N	N	TorontoCity
2017	CityPersons	Y	N	N	N	Y	N	CityPersons
2017	Mapillary Vistas [221]	Y	N	N	N	N	N	Mapillary Vistas
2017	Multi-spectral (Univ of Tokyo) [92]	Y	N	Y	N	N	N	Multi-spectral
2018	CULane [233]	Y	N	N	Y	Y	N	CULane
2018	DBNet [47]	Y	Y	Y	Y	Y	N	DBNet
2018	IDD [315]	Y	N	N	N	N	N	IDD
2018 2018	MVSEC (U Penn) [403]	Y		N	N	N	N	MVSEC
2018	NightOwls [222] Road Damage [199]	Y	N	N	N	N	N	NightOwls Road Damage
2018	Road Damage [199] Wilddash [377]	Y	N	N	N	N	N	Road Damage wildDash
2018 8 - 2020	BDD-100K [370]	Y	Y	N	Y	Y	N	Berkeley
8 - 2020	ApolloScape [113]	Y	Y	N	Y	Y	N	Apollo
8 - 2020	ApolloScape [113] Honda Driving [239]	Y	Y	N	Y	Y	N	HDD
2019	Argoverse [41]	Y	Y	N	N	N	Y	Argo
2019	Astvx HiRes [207]	Y	Y	N	N	N	N	Argo
2019	BLVD [352]	Y	Y	N	N	N	N	BLVD
2019	Boxy Driving [24]	Ŷ	N	N	N	N	N	BOSCH
2019	EuroCity [34]	Ŷ	N	N	N	N	N	Eurocity Persons
2019	EU Long-term Dataset [354]	Ŷ	Y	Y	Y	Y	N	EU Dataset
2019	IceVisionSet [240]	Ŷ	Ŷ	N	Ŷ	N	N	IceVision
2019	StreetLearn [209]	Ŷ	Ň	N	Ň	N	N	Street Learn
2019	PandaSet	Y	Y	N	Y	N	N	PandaSet
2019	WoodScape [368]	Y	Y	N	Y	Y	N	WoodScape
2019	Unsupervised Llamas - Bosch [25]	Y	Y	N	Y	N	N	Bosch
2020	4-Seasons [336]	Y	N	N	Y	Y	N	4-Seasons
2020	A*3D [242]	Y	Y	N	N	N	N	ASTAR-3D
2020	nuScenes [37]	Y	Y	Y	Y	Y	Y	nuscenes
2020	POSS [234]	Y	Y	N	N	N	N	POSS
2020	DDD20 [108]	Y	N	N	Y	Y	N	DDD20
2020	Highway Driving [139]	Y	N	N	N	N	N	Kaist
2020	Lyft Level 5 [106]	Y	Y	N Y	N Y	N Y	Y	lyft
2020	Brno Urban Dataset	Y	Y		Y	Y	N	BRNO
2020 2020	Ford Multi AV [4]	Y	Y	N	Y	Y	Y N	Ford Seasonal Audi
2020	A2D2 [80]	Y	Y	Y	Y	Y	N	LIBRE
2020	LIBRE [38] Toronto-3D	Y	Y	Y N	Y	Y	N	Toronto-3D
2020	NEOLIX [324]	Y	Y	N Y	Y	Y	N	Neolix
2021	CADC [244]	Y	Y	Y N	Y	Y	N	CADC
2021	RadarScenes [266]	Y	N	Y	Y	Y	N	RadarScenes
2021	CARRADA [230]	Y	N	Y	N	N	N	CARRADA
2021	Waymo [290]	Y	Y	N	N	N	Y	Waymo Open
2021	SODA10M [93]	Y	N	N	N	N	N	SODA10M
2021	PixSet:LeddarTech [61]	Y	Y	Y	Y	Y	N	PixSet
2021	ONCE [202]	Ŷ	Ŷ	N	Ň	Ň	N	ONCE
2021	Deep Route AI	Ŷ	Ŷ	Y	Y	Y	Y	Deep Route
2021	DurLAR[169]	Ŷ	Ŷ	Ň	Ŷ	Ŷ	Ň	DurLAR
2022	MUAD[75]	Ŷ	N	N	N	N	N	MUAD
2022	SHIFT	Ŷ	Y	N	N	Y	N	SHIFT
2022	Rope3D[364]	Ŷ	Ŷ	N	Y	N	N	Rope3D
2022	CODA[168]	Ŷ	Ŷ	N	Ŷ	N	N	CODA
2022	View-of-Delft [232]	Y	Y	Y	Y	Y	N	Delft-View
2023	LiDar-CS [70]	N	Ŷ	N	N	N	Y	LiDar-CS
2023	ZoD [11]	Y	Y	N	Y	Y	N	ZoD
2023	Race-Car [151]	Y	Y	Y	Y	Y	N	Race-Car




⊈ TUDelft

Why + Lessons + Directions ?

Tiny but not Waste: Safe, Circular

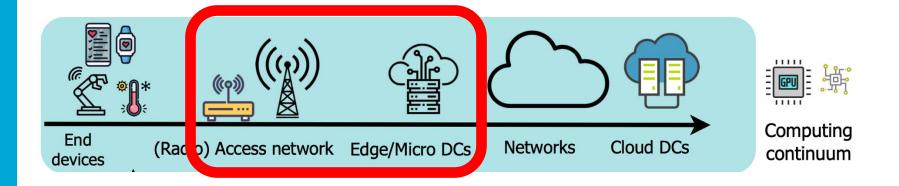
FUDelft

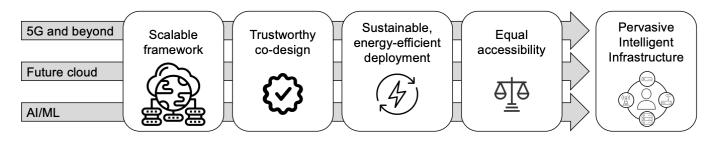
Tiny but not Waste: Safe, Circular

"IoT-KEEPER: Detecting Malicious IoT Network Activity using Online Traffic Analysis at the Edge" *IEEE TNSM 2020, Q1 Journal IF 4.7*

"Context-dependent Trade-offs around Platform-to-platform Openness: The Case of IoT" *Elsevier Technovation 2021, Q1 Journal IF 11.1*

"Where Is My Tag? Unveiling Alternative Uses of the Apple FindMy Service" *IEEE WoWMoM 2022, Core A*


"XAI for Accountable MI Detection in IoT Emergency Communication Systems" ACM IoT 2023, Best Paper Runner-up


ruDelft

"ARASEC: Adaptive Resource Allocation and Model Training for Serverless Edge Computing" *IEEE Internet Computing 2024, Q1 Journal IF 3.7*

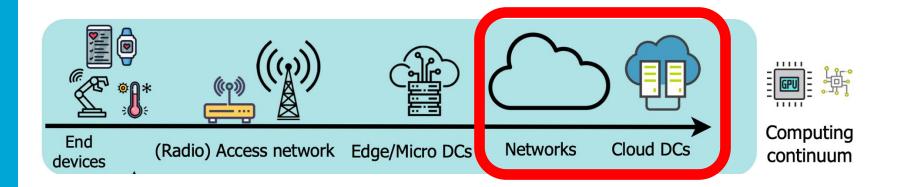
Bigger but not Static: Trust + Reusable

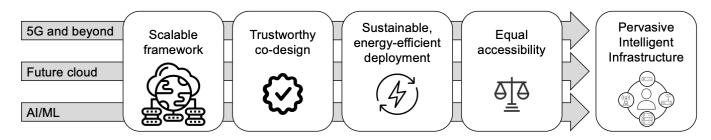
Bigger but not Static: Trust + Reusable

"Characterising the Role of Pre-Processing Parameters in Audio-based Embedded Machine Learning" *ACM SenSys 2021, Core A**

"Bias Detection and Generalization in Al Algorithms on Edge for Autonomous Driving" *ACM/IEEE SEC 2022*

"Bias in Automated Speaker Recognition" ACM FAccT 2023 Best PhD Paper




"Bias Propagation in On-device Machine Learning Workflows" ACM TOSEM 2023, Q1 Journal IF 6.6

"SPATIAL Architecture: Gauging and Monitoring the AI Inference Capabilities of Modern Applications" *IEEE ICDCS 2024, Core A**

Huge but not Monster: Approximate Al

"Roadmap of Edge AI: A Dagstuhl Perspective", ACM SIGCOMM CCR 2022

Huge but not Monster: Approximate Al

"Transfer Learning-Based Outdoor Position Recovery with Cellular Data" *IEEE TMC 2021, Q1 Journal IF 7.7*

"Approximate Edge AI for Energy Efficient Autonomous Driving Services" IEEE COMST 2023, Q1 Journal IF 35,6

"Nimbus: Towards Latency-Energy Efficient Task Offloading for AR Services" IEEE TCC 2023, Q1 Journal IF 5,3

"Test-time Specialization of Dynamic Neural Networks" *IEEE CVPR MAT 2024, Best Paper Award*

ruDelft

"Approximating Vision Transformers for Edge: Variational Inference and Mixed-precision for Multi-modal" *Spring Nature Computing 2025, Q1*

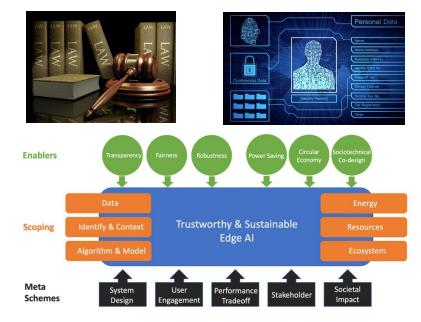
Takeaway

EDITOR: Schahram Dustdar, dustdar@dsg.tuwien.ac.at

DEPARTMENT: INTERNET OF THINGS, PEOPLE, AND PROCESSES

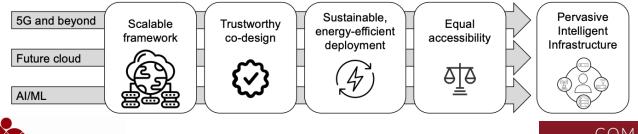
Revisiting Edge AI: Opportunities and Challenges

Tobias Meuser^(a), Technical University of Darmstadt, 64283, Darmstadt, Germany Lauri Lovén 🤗, University of Oulu, 90014 Oulu, Finland Monowar Bhuyan [®], Umeå University, 90187 Umeå, Sweden Shishir G. Patil ⁹. UC Berkeley, California, Berkeley, CA, 94709, USA Schahram Dustdar⁽⁰⁾, Vienna University of Technology, Vienna 1040, Austria Atakan Aral[®], Umeå University, 90187 Umeå, Sweden and University of Vienna, Vienna 1090, Austria Suzan Bayhan[®], University of Twente, 7500 AE, Enschede, The Netherlands Christian Becker ⁶, University of Stuttgart, 70569, Stuttgart, Germany Eyal de Lara ⁹, University of Toronto, Toronto, ON, M5S 1A1, Canada Aaron Yi Ding⁹, TU Delft, 2600 AA, Delft, The Netherlands Janick Edinger ⁶, University of Hamburg, 22527, Hamburg, Germany James Gross⁹, Royal Institute of Technology Stockholm (KTH), 100 44 Stockholm, Sweden Nitinder Mohan⁹, Technical University of Munich, 80333, Munich, Germany Andy D. Pimentel[®], University of Amsterdam, 1098 GH, Amsterdam, The Netherlands Etienne Rivière ⁶, UCLouvain, B-1348, Louvain-la-Neuve, Belgium Henning Schulzrinne ⁹, Columbia University, New York, NY, 10027, USA Pieter Simoens ⁹, Ghent University-imec, B-9052, Gent, Belgium Gürkan Solmaz⁹, NEC Laboratories Europe, 69115, Heidelberg, Germany Michael Welzl⁹, University of Oslo, 0313, Oslo, Norway


Edge artificial intelligence (AI) is an innovative computing paradigm that aims to shift the training and inference of machine learning models to the edge of the network. This paradigm offers the opportunity to significantly impact our everyday lives with new services such as autonomous driving and ubiquitous personalized health care. Nevertheless, bringing intelligence to the edge involves several major challenges, which include the need to constrain model architecture designs, the secure distribution and execution of the trained models, and the substantial network load required to distribute the models and data collected for training. In this article, we highlight key aspects in the development of edge AI in the past and connect them to current challenges. This article aims to identify research opportunities for edge AI, relevant to bring together the research in the fields of artificial intelligence and edge computing.

Roadmap for Edge AI: A Dagstuhl Perspective


Aaron Yi Ding¹⁺, Ella Peltonen², Tobias Meuser³, Atakan Aral⁴, Christian Becker⁵, Schahram Dustdar⁶, Thomas Hiessl⁶, Dieter Kranzlmüller⁷, Madhusanka Liyanage⁸, Setareh Magshud⁹, Nitinder Mohan¹⁰, Jörg Ott¹⁰, Jan S. Rellermeyer^{11,1}, Stefan Schulte¹², Henning Schulzrinne¹³, Gürkan Solmaz¹⁴, Sasu Tarkoma¹⁵, Blesson Varghese¹⁶, Lars Wolf¹⁷


¹TU Delft, ²University of Oulu, ³TU Darmstadt, ⁴University of Vienna, ⁵University of Mannheim, ⁶TI Wien, ⁷LMU Munich, ¹University College Dolbin, ⁹University of Töbingen, ¹OTU Munich, ¹¹Leibitz University Hannover, ¹²Hamburg University of Technology, ¹³Columbia University, ¹⁴ME Lab, ¹⁵University of Helsinki, ¹⁴Ouens's University Belfast, ¹¹TU Brausschweig

* Corresponding author: Aaron Ding (aaron.ding@tudelft.nl)

Outlook

COMPUTER COMMUNICATION REVIEW

acm

sigcomm